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The Economic Impacts of Climate Change on Agriculture:

Accounting for Time-invariant Unobservables in the

Hedonic Approach

By Ariel Ortiz-Bobea∗

Abstract

I propose a strategy of measuring the long-run economic impact of climate change on

farmland values that tackles the elusive problem of time-invariant spatially-dependent

unobservables in the hedonic approach. The strategy exploits that a county’s agricultural

productivity is primarily influenced by its own climate, and the fact that climate as-

signment appears random conditional on average county-neighborhood characteristics.

Results suggest that large impacts of climate change on US agriculture seem unlikely.

Findings are robust to multiple checks and cannot be attributed to measurement error.

Ignoring such confounders considerably overstates long-run climate change impacts on

the sector. (JEL Q15, Q51, Q54, R21)

There is a growing consensus that climate change is the global environmental challenge

of our era, and there is a pressing need for robust approaches of estimating its economic

impacts. Agriculture has received unparalleled attention in this regard, due to its inherent

dependence on climate and its central role in global development (Schelling, 1992). A

fundamental debate in the literature revolves around the consistent estimation of causal

climate effects on measures of agricultural welfare. On one hand, the so-called Ricardian or
∗Assistant Professor and CoBank/Farm Credit East Sesquicentennial Faculty Fellow in Production Eco-

nomics and Sustainability, Charles H. Dyson School of Applied Economics and Management, Cornell Uni-
versity, Ithaca, NY 14850 (e-mail: ao332@cornell.edu).
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hedonic models estimating the cross-sectional effect of climate on farmland values appear

vulnerable to time-invariant unobservables (see Schlenker et al., 2005, henceforth SHFa

and Deschênes and Greenstone, 2007, henceforth DG). On the other hand, panel models

estimating the effect of weather fluctuations on agricultural profits appear vulnerable to

time-varying unobservables (see Fisher et al., 2012a and Deschênes and Greenstone, 2012).

Despite a heated methodological debate over the past two decades, the literature on the

impacts of climate change on US agriculture remains inconclusive.

This paper proposes a novel identification strategy to estimate the long-run effect of

climate on farmland values. The approach posits, in line with the literature, that the spatial

gradient of farmland value partly reflects the shadow value of climate. One can therefore

rely on the estimated shadow values to derive long-run estimates of climate change on

agriculture that implicitly account for the full range of farmer adaptations to climate. In

addition, the proposed approach makes two identifying assumptions. First, it posits that

the agricultural productivity in a non-irrigated county is primarily, if not only, affected by

its own climate, and not by the climate of neighboring counties. Throughout the paper I

refer to the own-climate effect as the direct effect of climate.

Second, the approach posits that climate assignment to a county is as good as random

conditional on average observable characteristics of its neighboring counties. The idea is rem-

iniscent of a distributed lag time-series model (with one lag) but applied to cross-sectional

data indexed in a geographical space. Only the direct climate estimates (or current esti-

mates in the time-series analogy) are relied upon for inference due to the aforementioned

identifying restrictions. To simplify my exposition I will sometimes refer to climate varia-

tion conditional on neighborhood characteristics as direct climate variation, and to models

relying on such variation as direct models.

I find convincing evidence that climate appears randomly assigned to counties condi-

tional on observables of neighboring counties. In contrast, I find that climate does not

appear randomly assigned to counties unconditionally or conditional on state or district

fixed effects. If these observables are indicative of the distribution of unobserved determi-

nants of farmland values (Altonji et al., 2000), then consistent estimation becomes possible
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based on direct climate variation. This identification strategy resolves a long-standing chal-

lenge in this literature. Relative to benchmark hedonic approaches (relying on unconditional

or within-state or within-district climate variation), the proposed method can additionally

account for spatially-dependent time-invariant unobservables that are regionally correlated

with climate.1

The workings of the proposed approach are perhaps best illustrated with an example.

Suppose people have a preference for certain climates (Albouy et al., 2016) and that res-

idential sorting over time leads to growth and development pressure on farmland in areas

with desirable climates to humans. Suppose further that climate-based sorting mainly op-

erates into regions, not into counties within regions.2 This phenomenon leads to a regional

correlation of development pressure on farmland with climate which could bias benchmark

estimates of climate effects on agricultural productivity rents.3 However, climate remains

uncorrelated with development pressure conditional on regional or “neighborhood” climate

and other characteristics. The proposed identification strategy is based on this conditional

climatic variation which isolates a consistent direct effect of climate.

I use the proposed identification strategy to evaluate the effect of climate change on US

farmland values. I find no robust indication of large effects of climate change on agriculture.

Climate change impact estimates on farmland values are relatively small and remain undis-

tinguishable from zero for all climate scenarios. The preferred estimates range between

�11.0 and +12.9% projected mean change on farmland values across all scenarios, time

horizons and regression weights. This is equivalent to yearly changes of �5.7 to +6.7 bil-

lion, respectively. These estimates are surprisingly stable over sixty years of farmland value

data and across regional subsets of the data, and are robust to the choice of dependent
1This conceptually coincides with the plausible structure of potential omitted variables that have been

proposed in the literature, such as unobserved soil characteristics or development pressure (see Mendelsohn
et al., 1994 and DG 2007).

2That is, people consider the broad climatic characteristics of a region when considering a move, but then
sort further into counties based on non-climatic amenities or employment opportunities. I later show that
increases in housing prices, a plausible indicator of desirable living locations, are not correlated with climate
variables conditional on neighborhood-average changes in housing values. Note that I define a region as a
set of spatially contiguous counties that need not correspond to administrative groupings such as districts
or states.

3This would also be the case for state- or district-fixed-effect estimates if regions are loosely defined and
do not follow state or district administrative boundaries.
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and independent variables, to county neighborhood definitions and neighborhood weighting

schemes, as well as climate change models and scenarios.

On the other hand, benchmark hedonic results with state-fixe-effect point to large climate

change damages ranging from �18.1 and �74.5% projected mean change on farmland values

across all scenarios, time horizons and regression weights. Those estimates are statistically

significant and equivalent to yearly losses of 9.4 to 38.9 billion. These figures are in line with

previous findings (e.g. Schlenker et al., 2006, henceforth SHFb, and Fisher et al., 2012b).

However, these benchmark estimates are not stable over time or across regional subsamples.4

As a result, the added robustness of the proposed strategy makes a clear practical difference.

The are three main threats to validity to the proposed strategy. First, the framework

assumes climate affects agriculture through a direct local channel. This paper focuses on the

mostly non-irrigated counties of the Eastern US so the water supply should overwhelmingly

originate from local rainfall.5 In addition, economic spillover effects from agriculture tend

to be small (Hornbeck and Keskin, 2015). Thus, any indirect climate effect of neighboring

counties should be minor, if any exists at all. Second, the incorporation of neighborhood-

average controls may introduce collinearity. This inflates estimation uncertainty but does

not cause bias. I find that estimation precision is indeed affected for least squares estimates

but remains acceptable but for the most extreme scenarios. Finally, the proposed approach

exacerbates vulnerability to classical measurement error of climate variables. To address

this concern I conduct a series of placebo tests showing that identification of direct climate

effects is proper. I also devise a strategy to indirectly rule out the presence of attenuation

bias.6
4Elsewhere (Ortiz-Bobea, 2016), I find that exurban and rural development pressure on farmland in select

US regions operates as a major omitted variable in the hedonic framework.
5This follows the sample restrictions in SHFa and SHFb to avoid the confounding effect of irrigation. The

assumption is debatable in irrigated areas because runoff from precipitation in certain counties may affect
the water supply for irrigation in neighboring counties. Moreover, only a relatively small fraction — in the
range of 5 to 25%— of precipitation in the Eastern US ends up as surface runoff (personal communication
from Meredith Reitz, United States Geological Survey, 2/10/2016). This runoff ends up in streams and rivers
which are not heavily used for irrigation in the Eastern US. According to the 2012 US Agricultural Census,
only 11.9% of agricultural land is irrigated in the Eastern US. In addition, irrigation in the East tends to be
less intensive than in the West. For instance, the 2010 USGS water withdrawal estimates indicate that the
median Eastern county uses 625 MGal/day/acre of water over irrigated lands, which is considerably lower
than the 2,822 MGal/day/acre for the median Western county.

6The strategy consists in contrasting estimates of the proposed model with those of another model with
comparable vulnerability to measurement error but with a different vulnerability to time-invariant spatially-
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This research is naturally close to the seminal work of Mendelsohn et al. (1994, hence-

forth MNS) and subsequent improvements by SHFa, SHFb, Fezzi and Bateman (2015) and

Severen et al. (2016). However, these studies rely on sample-wide or within-state variation

to identify climate effects (benchmark models), which is well-known to be problematic. In-

deed, I find climate is correlated with observables even within relatively small agricultural

districts. This paper agrees with the diagnosis in DG (2007) regarding the vulnerability of

the previous hedonic literature to omitted-variable-bias. DG (2007, 2012) instead propose a

panel model with county fixed effects to control for time-invariant unobservables.7 However,

the approach yields short-run estimates which remain inconclusive in the long-run when neg-

ative short-run effects are found, as in DG (2012). My solution is considerably different and

relies on a cross-sectional model that directly yields long-run effects of climate on farmland

values. Because direct climate variation is arguably orthogonal to unobservables (tested on

observable characteristics), the proposed approach resolves a long-standing challenge in this

literature.

The proposed approach bears some resemblance to models and strategies adopted in

other literatures. An example is Bajari et al. (2012), who recover hedonic prices of air

pollution accounting for time-varying correlated unobservables in housing values. The study

relies on prior sales prices to control for temporal autocorrelation of unobservable attributes

of a house or neighborhood. The approach I propose is close to a spatial analog of their

strategy and exploits the spatial autocorrelated structure of unobservables in recovering

climate effects.8 There is also some similarity with Muehlenbachs et al. (2015) who use a

difference-in-differences-nearest-neighbor-matching estimator to explore the effects of shale

gas development on property values. That paper assumes that time-invariant unobservables

operate at a different (larger) spatial scale than the treatment (drilling), so that treatment

appears random within each matched pair of properties.9 In this paper, I also seek to exploit

dependent confounders.
7That paper also includes state-by-year fixed effects to account for regional price shocks.
8A notable difference is that I include (spatial) lags of independent variables as controls, not lags of the

dependent variable.
9The identifying assumption is that nearby matching properties (within the same census tract) have

common or similar neighborhood unobservables, which are therefore uncorrelated with treatment (drilling)
status. The paper uses an array of empirical techniques including this matching estimator based on cross-
sectional data. The matching estimator also allows to control for time-varying unobservables given that
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the fact that the “treatment” (climate) is correlated with unobservables at certain spatial

scales but not at others.

To a large extent, the model in this paper borrows its structure from models used to

estimate spillover effects (e.g. Jaffe, 1986; Anselin et al., 1997; Bandiera and Rasul, 2006;

LeSage and Pace, 2009; Conley and Udry 2010). These models are generally conceived to

estimate the effect of independent variables of “neighboring” observations on the dependent

variable of an observation of interest.10 However, climate “spillovers” from neighboring

counties are negligible by construction and regressors capturing neighboring effects operate

as controls for spatially-dependent unobservables regionally correlated with climate.

Finally, this paper bears some surprising resemblance to the neighborhood sorting lit-

erature in labor, which exploits the fact that people sort themselves on unobservables into

relatively coarse groupings or spatial scales, but not into finer ones. An example is Bayer et

al. (2008), who compare neighbors residing on the same versus nearby city blocks to infer

the role of local informal social interactions on labor outcomes. That study posits that peo-

ple sort on unobservables into residential neighborhoods, but not into blocks within these

neighborhoods, rendering “block assignment” random conditional on the neighborhood.11

The identification strategy proposed here has a very similar spirit.

This paper makes three main contributions. First, it proposes a hedonic approach of

estimating long-run climate change impacts on agriculture that demonstrably reduces omit-

ted variable bias concerns that have plagued the literature. Its robustness can be tested ex

ante against observable characteristics, enhancing its wide applicability to different contexts

around the world. Second, the empirical results contribute to the overall debate on climate

change impacts on US agriculture by inducing an internally consistent order of climate

change impact estimates. As expected from theory, the long-run estimates in this study are

more optimistic than the short-run estimates of the restricted profit panel approach in DG

matching is restricted to transactions within the same year.
10The concept of distance varies in these references and may refer to proximities in technological, social

or geographical space between agents.
11The identifying assumptions are that unobserved attributes among block residents are uncorrelated

conditional on characteristics of residents in nearby blocks (neighborhood) and that social interactions
operate locally at the block-level. This strikingly resembles the present context in which unobservables are
presumed orthogonal to climate conditional on the characteristics of neighboring counties and in which the
effect of climate is presumed to be direct.
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(2012). Overall, these new findings provide a neutral but cautionary long-run outlook for

US agriculture. Third, the paper motivates an approach with applicability to other fields

for estimating the direct causal effect of an exogenous variable in a cross-sectional setting

plagued by time-invariant spatially-dependent omitted variables.

The remainder of the paper is structured as follows. In section 1, I present some back-

ground and relate my contribution to the treatment of unobservables in this literature. In

section 2, I discuss and motivate the econometric strategy. I devote section 3 to data sources

and summary statistics and present the empirical results based on US agriculture in section

4. I then discuss these results more broadly in section 5 and conclude in section 6.

1 Previous Literature

This paper builds upon the seminal work of MNS (1994), who introduced the so-called Ri-

cardian approach, the first major attempt to econometrically estimate the potential impacts

of climate change on agriculture. This hedonic method posits that climate is capitalized in

farmland values because farmers allocate land to its most profitable use given their cli-

matic constraints. The approach has consisted in estimating the effect of the cross-sectional

county-level variation in climate on farmland values. The estimated shadow values of cli-

mate are subsequently used to make projections about the long-run climate change impacts

on the sector under current technological and market conditions.

MNS initially found a small positive effect of climate change on US agriculture, which at

the time contradicted earlier negative findings based on biophysical or production function

approaches (Adams, 1989; Adams et al., 1990; Kaiser et al., 1993; Adams et al., 1995). How-

ever, SHFa (2005) finds that MNS confounds high temperatures with irrigation, which would

understate the detrimental effect of a warmer climate. Because the pricing of irrigation wa-

ter is highly distorted and its future supply is uncertain, SHFa restrict its conclusions to the

eastern half of the US that is mostly non-irrigated. In contrast, the revised SHFa estimates

point to major climate change damages on the non-irrigated eastern US. SHFb (2006) finds
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similar damages on non-irrigated US counties in a comprehensive hedonic study.12

There have been four main strategies to either reduce or detect the influence of omitted

variables in the hedonic framework. The first approach, which is universal, is to simply

add control variables to the model. As shown later (table 7), the fact that observable de-

terminants of farmland value are correlated with climate suggests the same may apply to

unobservables. This approach is largely unconvincing and cannot be relied solely upon.

A second and related approach consists in examining the stability of climate change im-

pacts estimates when omitting control variables. Stable climate change estimates would

suggest that control variables are weakly correlated with climate variables. However, this

check is uninformative regarding the strength of the correlation of climate variables with

unobservables.

The third approach, which is also common practice, consists in indirectly assessing the

presence of time-varying omitted variables by analyzing the stability of estimates for multiple

cross-sections over time. Naturally, this check cannot detect omitted variables that do

not vary over time or vary very slowly, which is possibly a greater concern. The fourth

approach, first introduced in SHFb, simply consists in including state fixed effects to rely

on within-state variation for the estimation of climate effects. This approach is effective

when unobservables mainly operate as common farmland price shocks that follow state

boundaries (e.g. a state-level policy change). However, some unobservables such as soil

quality or development pressure are not exactly expected to follow coarse administrative

lines. This leaves room for correlation between climate and unobservables within states or

similar administrative units.

The hedonic approach is theoretically appealing but its empirical limitations have been

widely conceded. Unobservable time-invariant or slowly-varying factors such as soil quality

or the option value of farmland could be confounded with climate biasing estimates in

unknown direction.

This shortcoming prompted DG (2007) to develop an alternative panel method that
12SHFb introduces several methodological improvements, including a new set of climate variables that im-

prove model fit, and a more efficient GMM estimator that parametrically accounts for the spatial correlation
of disturbances (Kelejian and Prucha, 1999).
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estimates the effect of presumably random weather fluctuations on yearly agricultural profits,

and controls for time-invariant unobservables that appear to plague cross-sectional hedonic

studies. The approach estimates a short-run effect of climate on profits and, as a result, the

small effect found in DG is interpreted as a possibly positive impact of climate change on

long-run sector profits. This finding contradicts preceding negative estimates in SHFa and

SHFb.

However, Fisher et al. (2012b) find that both errors in weather data and the countervail-

ing smoothing of income by farmers to weather shocks, bias DG results toward zero. In a

noteworthy response, DG (2012) acknowledge the data issues but propose a distributed lag

panel model that addresses the latter criticism. While still negative, the revised DG (2012)

damages are substantially smaller — less than half— than those based on the hedonic ap-

proach.

This leaves the literature in an unsettled and puzzling state. First, a negative short-run

effect as in DG (2012) remains inconclusive regarding the sign of the long-run effect. Second,

the ordering of short and long-run effects is counterintuitive because the long-run estimates

of the hedonic approach should be more optimistic than the short-run estimates of the profit

panel approach, not the opposite.13

In light of the importance of the problem and the state of the literature, this paper

explores an approach that demonstrably reduces the vulnerability of long-run estimates of

climate change impacts to an additional class of omitted variables. The proposed approach

estimates the long-run climate effects on farmland value conditional on average character-

istics in the vicinity of each observation. I now present the proposed strategy in greater

detail.
13An interesting study by Burke and Emerick (2012) exploits spatial variation in climatic trends across

the US to estimate the magnitude of adaptation in US crop agriculture. The study finds that little to no
adaptation has occurred in response to recent changes in climate. However, recent climate trends in the
region are relatively small so the study does not address the point of this paper, which is the long-run impact
of major climate change if farmers are able to adapt given current technological possibilities and market
prices.
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2 New Econometric Strategy

The hedonic approach posits that agricultural producers chose to allocate their land to the

most valuable uses given local climatic constraints. Because farmland capitalizes the dis-

counted future stream of expected profits from the land, the spatial gradient of farmland

value should partly reflect the shadow value of climate. This framework allows the im-

plicit modeling of the role of climate in agriculture without explicitly considering individual

production decisions.

One can approximate the outer envelope of the farmland value gradient with a model of

the form:

yct = X
0

c� + Z
0

ct⌘ + ✏ct (1)

✏ct = uc + ect

where yct is farmland value in county c and year t, Xc is a vector of climate variables, Zct

is a vector of observed controls that may vary over time, and ✏ct is a an error term that is

unobservable to the econometrician. Furthermore, this disturbance can be decomposed into

a permanent (uc) and a transitory (ect) factor.

The major challenge of the hedonic approach is the consistent estimation of �. This

would allow reliable climate change impact projections of the form �ŷc = �X
0

c�̂, where

�Xc is a vector of climate change projections for all climate variables included in the

model. Consistent estimation of � requires E[X
0

c✏ct|Zct] = 0. This condition is violated if

either permanent (uc) or transitory (ect) omitted factors covary with climate variables Xc.

As noted in section 1, the stability of hedonic estimates over time is an implicit check of

whether E[X
0

cect|Zct] = 0 holds. The main unresolved problem is that E[X
0

cuc|Zct] = 0

may not hold and cannot be easily verified. That is, climate might be correlated with

time-invariant (or slowly-varying) unobservables that also explain farmland values.

The proposed identification strategy isolates the effect of climate by conditioning the

regression with variables capturing average characteristics of neighboring counties. The

10



identifying assumption is that uc is orthogonal to climate conditional on the neighborhood-

average controls and that the climate effect on agriculture is primarily direct. Essentially,

the proposed model augments (1) in the following form:

yct = X
0

c�
d + Z

0

ct⌘
d +X

0

N(c)�
i + Z

0

N(c)⌘
i + ✏ct (2)

where XN(c) and ZN(c) are weighted averages of the climate and control variables of the

nearby surrounding counties of c (excluding c), respectively. The set of neighbors to county

c is noted N(c), so that XN(c) =
P

j2N(c) wjXj where wj are weights that sum to unity.

I consider various weighting schemes and neighborhood definitions in the empirical part of

the paper.

Notice the model in (2) has two � vectors which essentially partition the effect of climate

on farmland values into two components. The vector �d identifies the direct (local) effect of

climate on farmland values, and �i captures the indirect (neighborhood) effect of climate on

farmland values. If the “true” climate effects on agricultural rents are primarily direct —as

one should expect in a non-irrigated context— then these are solely embodied in �d. On the

other hand, �i essentially captures the effect of unobservables that are regionally confounded

with climate. Therefore, climate change impact estimates should be based on estimates of

�d. This marginal direct effect of climate on farmland values is essentially estimated off

the neighborhood-conditioned cross-sectional variation of climate. This approach eliminates

the effect of spatially-dependent omitted variables that are incidentally regionally correlated

with climate.

Alternatively, the identification strategy in this paper assumes E[X
0

c✏ct|XN(c),Zct,ZN(c)] =

0. Fortunately, this assumption can be tested against observables by checking whether

observed determinants of farmland values are orthogonal to climate variables conditional

on neighborhood-average values of these observables. In other words, we have to verify

whether climate is just regionally correlated with observables, or if that correlation extends

to a local direct level across the sample. To verify this, I later estimate a series of linear

models regressing individual observables on individual climate variables conditional on the
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neighborhood-average value of the observable. If climate variables have any explanatory

power in predicting observables in this setting, then the identifying assumption fails.

Throughout the paper I present least squares estimates with standard errors adjusted for

spatial dependence of an unknown form following the semi-parametric approach developed

by Conley (1999).14 In the online appendix and in the summary discussion table (table 9), I

also report estimates based on linear models weighted by the squared root of farmland area

following modeling choices in MNS, SHFa and DG (2007). In addition, I report results based

on the spatial error model GMM estimator developed by Kelejian and Prucha (1999) and

used in SHFb. This estimator is more efficient than OLS but imposes a parametric structure

on error dependence. Results based on these alternative estimators are comparable, although

the associated measures of uncertainty differ.

3 Data Sources and Summary Statistics

A. Data Sources

This study relies on four major types of data: agricultural, climate, soil quality and general

socio-economic data. I rely on standard data sources in this literature to isolate the contri-

bution of the proposed identification strategy. Table 1 provides a summary of key variables

in the study and their source. A portion of the agricultural data was obtained directly from

Quick Stats, the US Department of Agriculture’s (USDA) online database. This database

provides data from the US Census of Agriculture as well as from various national surveys,

such as the Cash Rent Survey, all conducted by USDA.

The Census provides county-level aggregates of data collected from all farms.15 The

dependent variable in the study, farmland value, is obtained from the Census by asking

farmers their estimate of the current market value of their land and buildings. Unfortunately,
14Conley proposes a spatial Heteroskedasticity and Autocorrelation Consistent (HAC) covariance matrix

of the OLS estimator. The spatial HAC covariance matrix is obtained by performing a weighted average
of spatial autocovariances of observations falling within a certain cutoff distance. The weighting scheme in
this paper is a Bartlett kernel that linearly declines from 1 to 0 with distance up to the cutoff distance.
Throughout the paper the cutoff is set at 200 miles. Accounting for the spatial correlation of disturbances
in this context is crucial to avoid overconfident estimates due to deceivingly small standard errors.

15USDA defines a farm as an operation having sold more than $1,000 of agricultural products during the
census year.
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Table 1: Variables and Data Sources

Variable(s) Time Periods Used Resolution Source
Agriculture:

Value of land and buildings, farmland
area (Census)

1997, 2002, 2007, 2012 County USDA Quick Stats

1950, 1954, 1959,
1969, 1974, 1978,
1982, 1987, 1992

County Haines (2004)

Non-irrigated cropland cash rent
(Cash Rent Survey)

2009-2012 County USDA Quick Stats

Climate:

Daily minimum and maximum
temperature

1950-2005 4 km Schlenker and Roberts
(2009)

Monthly average temperature and
precipitation

1912-2005 4 km PRISM

Cropland weights for grid-to-county
aggregation

2008-2014 30 m USDA CDL

Controls:

Population 1970-2012 County US Census
1950, 1960 County US Census via Haines

(2004)
Personal income per capita 1969-2012 County BEA
Family income 1949, 1959, 1969 County US Census via Haines

(2004)
Soil variables: average water capacity,
clay content, minimum permeability,
K-factor of topsoil, best soil class

N/A Polygon,
sub-county

scale

USGS STATSGO

Altitude 100 m USGS, National Atlas
of the US

Satellite vegetation indices 250 m USGS EROS Center,
eMODIS Remote
Sensing Phenology

Data
Notes: Only farmland values for 1964 were missing from Haines (2004) at the time of data collection.
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Quick Stats only provides Census data since 1997 so older Census data going back to 1950

were obtained from Haines (2004). To the best of my knowledge, this is the first study to

incorporate this historical Census data for the purpose of climate change impact analysis.

The goal is to assess the stability of hedonic estimates over much longer time periods.

The primary climate data source is Schlenker and Roberts (2009), who provide a detailed

daily gridded dataset for 1950-2005 based on the interpolation of daily weather station

data and monthly gridded data from the PRISM Climate Group , which is USDA’s official

climatological data.16 These and the underlying PRISM data have a spatial resolution of

just 2.5 miles and cover the contiguous US.

Because the underlying climate data is gridded it needs to be aggregated to the county

level to match the agricultural observations. I perform this aggregation by weighting each

native PRISM grid by the amount of cropland it contains based on USDA’s Cropland Data

Layer (CDL).17 Because I explore climate variables for time periods prior to 1950, I also rely

on the monthly temperature data from PRISM, which is available since 1895.18 I should

emphasize that the level of spatial resolution of the underlying climate data is orders of

magnitude higher than the county-level scale of the analysis.19

The hedonic model relies on the cross-sectional variation of farmland values which are

affected by well-known time-invariant factors such as certain soil quality characteristics. Soil

quality data was obtained from the US Geological Survey’s (USGS) STATSGO database

which aggregates similar soils into distinct polygons across the country. Similar to climate

data, county-level soil quality data is obtained by weighting each soil polygon by the amount
16Following Schlenker and Roberts (2009), I rely on the monthly precipitation variables from PRISM,

rather than on re-aggregated daily precipitation interpolations which appear to be noisy.
17The CDL provides 30 meter resolution land cover pixels corresponding to over 100 classes. The weights

were based on cropland pixel counts falling within each PRISM data grid. The average of CDL cropland
counts for years 2008-2014 were used. In the online appendix, I provide a map of the cropland weights
as well as a table with all land cover classes that constitute cropland. Detailed crop cover data for older
cross-sections (e.g. 1950) is not available. However, because farmland area has decreased by 27.4% from
1950 to 2012 and the most productive farmland has most likely remained in farms, cropland weights for
recent periods can be thought as capturing the “core” agricultural area of each county for older time periods.

18Just recently, the PRISM group released daily data with 4 kilometer resolution free of charge. However,
the earliest year is available is 1981.

19The average county area east of the 100th meridian west (referred to as the Eastern US in this paper)
is 610.7 squared miles while the PRISM data grids are about 6.25 squared miles. Therefore, a county of
average size “fits” about 98 distinct PRISM data grids. Ninety five (ninety nine) percent of counties in the
Eastern US can “fit” at least 33 (5) distinct PRISM data grids.
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of cropland based on the CDL.

The analysis also includes a set of economic control variables, namely county-level pop-

ulation density and income per capita. These controls have been introduced in an attempt

to capture the influence of population pressures on farmland. County-level population data

comes from the US Census and Intercensal Estimates. These data are only available on-

line from the US Census for years 1970-2012. Prior census years were obtained from Haines

(2004). Intercensal Estimates prior to 1970 were not readily available. I therefore interpolate

population between decennial censuses for each county using a natural spline.20

Data on per capita personal income is obtained from the Bureau of Economic Analysis

(BEA). Unfortunately, these only span the 1969-2012 period. I use family income from the

US Census as a substitute for earlier time periods.21 Similar to population, I interpolate

family income between decennial censuses for each county using a natural spline.22 All

values in the paper are expressed in 2012 USD using the Consumer Price Index (CPI).23

Finally, the paper relies on auxiliary data for a series of placebo tests to determine

whether direct climate effects can be reliably estimated. Data on altitude for each 100 by

100 meter grid cell for the lower 48 US States was obtained from USGS’s National Atlas.

This information was aggregated to the county level by averaging altitude values over grid

cells falling within each county.

In the auxiliary analysis I also rely on satellite measurements of vegetation or “green-

ness” indices. These measurements are obtained for each 250 by 250 meter grid cell of the

lower US States from the USGS EROS Center. Because my interest is to explore the spatial
20Just as with intercensal estimates, this approach is not meant to capture year-to-year fluctuations in

population with precision, but provide an approximation of the population level between census years.
Results based on the closest Census year are virtually identical.

21Note these variables are not directly comparable because family size varies across the country. I therefore
compare personal capital income and family income for 1969 which is the earliest overlapping year. The
correlation is 0.82 for all US counties and 0.87 for counties in the eastern sample. There are a few outliers.
Counties with relatively low family income relative to personal income per capita include places like New
York county (NY) or small coastal counties such as Kenedy county (TX). Counties with relatively low
personal income per capita relative to family income per capita include highly remote counties such as
Hinsdale county (CO) where family size is likely to be large. Outliers do not tend to be highly agricultural
in nature, so this variable seems appropriate.

22Again, this is not intended to capture short run fluctuations in income within counties, but to preserve
the variation in income across counties.

23Other studies have used the GDP implicit price deflator. I use the CPI because it is available over a
longer time span and these two indexes are virtually indistinguishable within their overlapping time period
with a correlation of 0.997 over 1947-2012.
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association between climate and these vegetation indices, I rely on the time-averaged indices

(2001-2014) rather than yearly satellite measurements that may be prone to weather fluctu-

ations. The gridded data for the Eastern and Western halves of the country were merged,

purged of grid cells corresponding to water bodies and aggregated to counties using the

aforementioned procedure. I generate county-level vegetation indices for all nine vegetation

indices available.24

B. Summary Statistics

Agricultural data. Summary statistics for farmland values are presented in table 2. Overall,

farmland values have increased over the past several decades, with some areas experiencing

disproportionally greater appreciations. Over this period, the farmland value cross-section

has greatly changed. For instance, the correlation between (log) farmland values for indi-

vidual years in 1950-2012 relative to the 1987-2012 average has fluctuated between 0.687 in

1950 and 0.972 in 1997.25

The spatially heterogenous pattern of farmland appreciation has been coupled with a

steady but equally heterogenous fall in total farmland area across the eastern part of the

country. In 1950, land in farms across the sample totaled 688 million acres. By 2012,

this acreage had dropped to 500 million, a 27.4% decrease. The number of urban counties

has more than doubled over 1950-2012 but the number of counties classified as non-urban

remains large, exceeding 2,200 in all years. The analysis in this paper will be confined to

these non-urban counties, following SHFb.

Climate data. I follow the literature and compute climate normals as the 30-year average

of yearly weather. The main results in the paper follow the climate specification in SHFb,
24These vegetation indices include: Beginning of measurable photosynthesis in the vegetation canopy

(SOST), Level of photosynthetic activity at the beginning of measurable photosynthesis (SOSN), End of
measurable photosynthesis in the vegetation canopy (EOST), Level of photosynthetic activity at the end of
measurable photosynthesis (EOSN), Time of maximum photosynthesis in the canopy (MAXT), Maximum
level of photosynthetic activity in the canopy (MAXN), Length of photosynthetic activity or growing sea-
son (DUR), Maximum increase in canopy photosynthetic activity above the baseline (AMP) and Canopy
photosynthetic activity across the entire growing season (TIN).

25The correlation of farmland value relative to 1987-2012 are 0.687 (for 1950), 0.715 (1954), 0.771 (1959),
0.810 (1969), 0.874 (1974), 0.840 (1978), 0.872 (1982), 0.948 (1987), 0.966 (1992) 0.972 (1997), 0.967 (2002),
0.966 (2007) and 0.934 (2012).
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Table 2: Summary Statistics of Farmland Real Estate

Year(s)
Farmland Values (2012 USD) Observations
m min max sv Non-urban Urban All

1950 1,063 67 129,888 4,516 2,233 229 2,462
1954 1,283 68 297,803 7,071 2,233 229 2,462
1959 1,867 181 337,523 10,098 2,233 229 2,462
1969 2,324 244 772,776 16,351 2,227 225 2,452
1974 2,909 186 558,623 12,990 2,226 225 2,451
1978 3,632 440 224,056 6,412 2,227 226 2,453
1982 3,160 457 246,818 7,754 2,233 227 2,460
1987 2,439 362 321,491 7,817 2,223 226 2,449
1992 2,291 262 92,274 3,725 2,226 222 2,448
1997 2,795 280 346,299 9,419 2,234 227 2,461
2002 3,220 308 126,306 5,479 2,235 228 2,463
2007 3,989 497 147,550 6,254 2,236 227 2,463
2012 4,574 512 792,500 17,327 2,237 230 2,467

1959-1982 3,001 307 316,232 11,720 2,237 231 2,468
1987-2012 3,358 377 362,222 9,555 2,237 231 2,468

Notes: Data are for counties in the eastern sample multi-year averages ignore missing observations. Large
changes in maximum values and standard deviations in consecutive sample years results from some highly
populated counties being dropped from the Agricultural Census. This also drives changes in the standard
deviation.

Table 3: Summary Statistics of Climate Variables

Variable(s) Month(s) m min max sv

Degree-days 8-32ºC Apr-Sep 2429.9 1108.3 3686.8 520.1
10-30ºC Apr-Sep 2058.8 848.8 3171.2 473.7
>34ºC Apr-Sep 9.5 0.0 140.2 13.7
>30ºC Apr-Sep 64.3 0.2 411.8 56.5

Precipitation (mm) Apr-Sep 602.1 321.5 1041.0 97.6
Jan 74.2 9.4 169.3 39.3
Apr 89.6 20.1 149.2 21.9
Jul 105.6 38.4 217.6 26.3
Oct 81.2 31.9 135.7 18.5

Mean temperature (ºC) Jan 0.0 -16.4 19.1 6.5
Apr 12.9 2.5 24.2 4.3
Jul 24.8 16.8 30.7 2.6
Oct 13.9 4.9 26.0 4.0

Notes: Climate variables are county-level averages over the 1976-2005 period. The data covers 2,470 counties
lying east of the 100th meridian west. Mean temperature and precipitation are generated from the monthly
gridded PRISM dataset while the degree-days variables were constructed from the daily gridded dataset in
Schlenker and Roberts (2009).
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Table 4: Correlation of Climate Normals Over Time

Correlation relative to 1976-2005
Variable(s) Month(s) 1916 1926 1936 1946 1956 1966 1976

-1945 -1955 -1965 -1975 -1985 -1995 -2005
Degree-days 8-32ºC Apr-Sep - - - - 0.999 1.000 1

10-30ºC Apr-Sep - - - - 0.999 1.000 1
>34ºC Apr-Sep - - - - 0.991 0.997 1
>30ºC Apr-Sep - - - - 0.995 0.999 1

Precipitation (mm) Apr-Sep 0.944 0.940 0.935 0.950 0.967 0.983 1
Jan 0.949 0.904 0.936 0.942 0.986 0.993 1
Apr 0.882 0.865 0.848 0.889 0.931 0.966 1
Jul 0.838 0.877 0.920 0.930 0.954 0.981 1
Oct 0.820 0.776 0.781 0.813 0.881 0.942 1

Mean temperature (ºC) Jan 0.996 0.994 0.996 0.996 0.999 0.999 1
Apr 0.997 0.997 0.998 0.998 0.999 1.000 1
Jul 0.988 0.991 0.994 0.996 0.995 0.999 1
Oct 0.997 0.997 0.996 0.997 0.998 1.000 1

Notes: Climate variables are county-level averages over the corresponding 30-year period. The data covers
2,470 counties lying east of the 100th meridian west. Mean temperature and precipitation are generated
from the monthly gridded PRISM dataset while the degree-days variables were constructed from the daily
gridded dataset in Schlenker and Roberts (2009).

which includes linear and quadratic terms for degree-days between 8 and 32ºC and precip-

itation, the square root of degree-days exceeding 34ºC.26 These variables are aggregated

over the April-September period to encompass the typical growing season. I also report

results for specifications based on monthly climate variables following MNS as well as linear

degree-days variables.27

Summary statistics for all climate variables (1976-2005) considered in the paper are

presented in table 3. There is considerable climatic variation across the sample with a cross-

sectional range of approximately 35ºC and 14ºC for mean temperatures for January and

July, respectively. Large variations are also observed for degree-days variables. Precipitation

also varies considerably across all months, although the variation is naturally smaller when

precipitation totals for a longer time period such as April-September is considered.

Because I estimate hedonic models over a long period of time, it seems natural to verify
26Degree-days are computed using the double-sine method with a horizontal cutoff. The computations

account for the time-path of temperature throughout the day.
27The specification in MNS includes monthly climate normals for mean temperature and precipitation for

the months of January, April, July and October. The linear degree-days specification includes linear terms
for degree-days between 10 and 30ºC, and degree-days above 30ºC.
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how climate cross-sections have evolved. Table 4 shows the correlation of climate normals

over time. Because data from Schlenker and Roberts (2009) are only available since 1950, I

cannot assess the correlations of degree-days variables for earlier time periods. However, the

correlations in excess of 0.95 (for most variables, and especially for temperature) for the 30-

year periods ranging from 1916-1945 through 1946-1975, indicate the climate cross-section

has remained fairly stable.

It would be interesting to explore regional trends in climate and the resulting agricultural

responses over such a long time period. However, the nature of the underlying PRISM data

so far precludes from this type of analysis, making the detection of climate trends vulnerable

to artifacts or even endogeneity.28 I therefore rely on climate normals for 1976-2005 for all

regressions.29 It is worth noting that the farmland value cross-section appears to have

evolved considerably more than the climate cross-section as indicated by the lower and

steadily decreasing correlations over time in the farmland value variable.

Climate change impacts are reported for various warming scenarios as projected by

the Hadley GEM2-ES General Circulation Model (GCM) or HadGEM2-ES (Jones et al.,

2011).30 Starting in its fifth Assessment Report (AR5) in 2014, the Intergovernmental Panel

on Climate Change (IPCC) adopted warming scenarios that correspond to Representative

Concentration Pathways (RCP). Instead of emissions, these scenarios represent trajectories

of greenhouse gas concentration. The scenarios are named based on the radiative forcing

values in year 2100 relative to pre-industrial levels. The four scenarios are RCP2.6, RCP4.5,
28The PRISM group discourages the use of their data for climate trend detection. More specifically, the

PRISM documentation states that the long-term average datasets “are not currently suitable for calculat-

ing multi-decadal climate trends. Although longer-term networks are used, grids still contain non-climatic

variations due to station equipment and location changes, stations openings and closings, and varying

observation times.” (See p.5 in http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf, ac-
cessed 7/12/2016). In other words, although highly detailed, we ignore if statistically significant differences
in PRISM trends are driven by changes in climate or non-climatic factors. Moreover, the estimation of
causal effects of recent climate change is made more difficult by the recent findings in Mueller et al. (2016)
which indicate that the large-scale agricultural intensification of the US Midwest altered the local climate
thus making recent climate trends (surprisingly) endogenous to agricultural productivity.

29SHFb find no differences in results when the climate normals are computed based on the preceding
30-year weather average for each census year. This is not surprising given that climate correlations across
time are very high.

30Results based on other four GCM and a uniform warming scenario considered in MNS and SHFa are
also available in the online appendix. These are not presented due to space constraints but results are
similar across GCMs. The four additional CGMs are: the second generation Canadian Earth System Model
(CanESM2), the Community Climate System Model (CCSM4), the Geophysical Fluid Dynamics Laboratory
Earth System Model (GFDL-ESM2M), and the The Norwegian Earth System Model (NorESM1-M).
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RCP6, and RCP8.5, corresponding to additional “trapped” atmospheric energy of 2.6, 4.5,

6.0, and 8.5 W/m2, respectively. To put this in context, the RCP2.6 and RCP8.5 scenarios

are likely to lead to global mean temperature increases of 1 and 2ºC by 2046-2065, respec-

tively. Note that regional temperature changes can be much greater. I follow the approach

outlined in Auffhammer et al. (2013) to generate county-level projections for mid-century

(2036-2065) and end-of-century (2070-2099).31

Other data. Summary statistics for control variables are presented in table 5. The control

variables in this study follow SHFb. Some controls overlap with those in MNS, but updated

variables have greater explanatory power. As expected, income per capita and population

density vary considerably across the sample, although the variation is substantially reduced

when only non-urban counties are considered. For instance, the maximum income per

capita drops from 119,000 to 83,600 USD. However, the mean income per capita remains

fairly stable at around 37,000 USD. On the other hand, the mean population density drops

significantly from over 250 to just under 80 inhabitants per square mile. In contrast, the

distribution of soil quality controls does not seem to vary much when urban counties are

excluded, indicating that the sample restriction is mainly removing the influence of highly

populated and high income areas. The interested reader can find maps of all key climate

and control variables in the online appendix.

County neighborhoods. This study relies on county “neighborhoods” to create controls

that capture regional confounding effects with climate. Table 5 summarizes the distribution

of both the number of neighbors and the geographical distance to them for alternative

groupings. Neighborhood composition remains comparable when the sample is restricted to

non-urban counties. The “first order” neighborhood is the most restrictive definition and

only includes counties that are adjacent to the county of interest (first-order neighbors).

This definition yields a median number of 6 neighbors in the sample. This is lower than the
31First, I compute changes in monthly climate normals for each variable for mid-century (2036-2065)

and end-of-century (2070-2099) periods relative to a historical reference period (1976-2005). Second, I
downscale the relatively coarse projections on the GCM grid to the PRISM grid based on inverse distance
weights between the four nearest GCM grid centroids to each PRISM grid. Third, I add the downscaled
projections to the fine-scale climatologies of PRISM or Schlenker and Roberts (2009). This preserves the
smoothness of climate variation in the projections. Fourth, I aggregate these projections to the county-level
using cropland weights based on the 2008-2014 CDL as previously mentioned.
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median number of counties by agricultural district in the sample (9 to 10).32 The “second-

order” neighborhood expands the previous set with counties that are adjacent to first-order

neighbors, that is, with second-order neighbors.

Table 6: Number of neighbors and Distance to Neighbors under Alternative
County Neighborhood Definitions

Number of county neighbors Distance from neighbors (miles)
min Q1 Q2 m Q3 max min Q1 Q2 m Q3 max

All counties east of 100 meridian west:
1rst-order 1 5 6 5.8 7 10 4.6 13.9 16.7 17.4 20.1 75.5
2nd-order 2 16 18 18 20 33 4.6 19.2 26.9 27.4 34.1 103.0
3rd-order 2 33 38 36.5 41 60 4.6 26.8 37.5 37.9 47.9 132.4
4th-order 2 55 65 61.2 70 91 4.6 34.1 48.4 48.5 61.9 165.4
Districts 1 7 10 10.3 12 33 - - - - - -

States 2 27 67 66.4 92 171 - - - - - -
Non-urban counties east of the 100th meridian west:

1rst-order 1 5 6 5.6 6 10 4.6 14 16.8 17.5 20.3 93.9
2nd-order 1 15 17 16.7 19 32 4.6 19.2 27.0 27.6 34.2 117.6
3rd-order 1 29 35 33.4 39 56 4.6 26.7 37.4 38.0 47.9 151.8
4th-order 1 48 59 55.6 66 88 4.6 33.8 48.1 48.4 61.8 165.4
Districts 1 6 9 9.5 11 33 - - - - - -

States 1 27 65 60.3 83 155 - - - - - -
Notes: Q1, Q2 and Q3 correspond to first, second (median) and third quartiles. The “first-order county
neighborhood” is comprised of all counties that are directly contiguous, i.e. share borders, with the county
of interest (first-order neighbors). Only 2 counties have no contiguous neighbors and correspond to island
counties (Richmond, NY, and Nantucket, MA). For these, I create a neighbor set that includes the 6 closest
counties (which is the median number of contiguous neighbors). The “second-order (third-order) neighbor-
hood” expands the first-order neighborhood with the set of counties contiguous to first-order (second-order)
neighbors to the county of interest. The fourth neighborhood definition corresponds to the set of counties
whose centroids fall within 75 miles of the centroid of the county of interest. In this table, “non-urban”
counties have population densities below 400 inhabitants per square mile in 2012.

Higher-order neighborhoods are defined analogously. This naturally increases the range

of counties included in the neighborhood and pushes up the average distance to a neighbor.

The median number of neighbors for the second, third and fourth-order neighborhoods

is around 17-18, 35-38 and 59-65 counties, respectively. These are larger groupings than

districts, and the latter is comparable to the median number of counties by state in the

sample (65-67).
32The USDA groups counties within states into Agricultural Statistics Districts (ASD) based on their

similarities regarding geography, climate and cropping practices. I refer to these as agricultural districts in
this paper and I use the latest definition of these districts as of 2016.
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Note that county neighborhoods are defined relative to each county, so neighborhoods of

adjacent counties actually overlap. This is not the case for administrative groupings such as

districts or states which are non-overlapping. This plays a key role in controlling for “smooth”

spatially-dependent omitted variables that do not follow administrative boundaries.

Notes: The map illustrates neighbor relationships which are typically overlapping. The first-order neigh-
borhood includes only first-order neighbors. The second-order neighborhood includes first and second-order
neighbors, and so on for higher order neighborhoods. The black circle has a radius of 100 miles around the
county of interest to provide a scale. The county of interest is Christian county, IL.

Figure 1: Illustration of Various Neighborhood Sets For the State of Illinois.

Figure 1 illustrates how these neighborhoods compare to state and district size for the

state of Illinois. The identifying assumption in this paper favors more restrictive neighbor

definitions as these reduce the chances of incidental confounding of climate. However, these

might increase vulnerability to measurement error. I explore this and other concerns in the

following section.

4 Results

A. Evidence in Support of the Identifying Assumptions

The identification strategy in this paper relies on two assumptions. First, that a county’s

agricultural productivity is primarily affected by its own climate, and second, that climate

assignment to a county is random conditional on neighborhood-average characteristics. The
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first assumption appears innocuous but the second assumption should be tested. I provide

three types of evidence in support of the second assumption and to address concerns about

identification.

First, I verify (against observables) whether climate appears randomly assigned under

varying conditioning factors. To this end, I estimate a series of linear models of control

variables on individual climate variables. If climate assignment is random then climate

variables should provide no statistically significant explanatory power on the level of these

observables. Observables include control variables typically used in this literature, including

economic control variables such as income per capita and population density, as well as soil

quality indicators.33

Table 7 shows the t-statistics for climate coefficients for these auxiliary regressions. Cli-

mate variables are unconditionally correlated with control variables at conventional levels

(p  0.05) in 18 out of the 21 associations examined (column 1). Columns 2 and 3 in-

dicate the number of statistically significant associations conditional on state and district

fixed effects is 13 and 12, respectively. This is important, because it confirms that dummy

variables, even for very small groupings such as districts, cannot fully absorb the spatial

covariance among climate and control variables.

On the other hand, none of the 21 associations examined are significant at conventional

levels conditional on the first-order neighborhood average of the observable characteristic

(column 4). This number slowly rises for less restrictive neighborhood definitions reaching

2, 4 and 5 significant associations when conditioning on second, third and fourth-order

neighborhood-average characteristics (columns 5-7). Apparently, relying on less restrictive

neighborhoods increases the chances of incidental correlations of climate with spatially-

dependent observables. In other words, climate appears randomly assigned conditional on

first-order neighborhood average characteristics, but not when considering less restrictive

neighborhoods. This obviously favors the use of first-order neighborhoods for estimation.

However, this finding could potentially reflect an artifact. For instance, climate variables

may appear uncorrelated with observables conditional on first-order neighborhood charac-
33These are control variables used in SHFb. I exclude latitude of a county’s centroid for reasons that will

soon become apparent.
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Table 7: t-statistics from Pairwise Regressions of Control Variables on Cli-
mate Variables

Fixed Effects Neighborhood Order
Pooled State District 1rst 2nd 3rd 4th

Degree-days 8-32ºC (1) (2) (3) (4) (5) (6) (7)
Income per capita (2012) -13.59⇤⇤⇤ 5.34⇤⇤⇤ 7.27⇤⇤⇤ -0.56 0.95 1.85 2.77⇤⇤

Population density (2012) -1.12 6.36⇤⇤⇤ 9.50⇤⇤⇤ 0.66 0.24 0.25 0.31
Average water capacity -3.16⇤⇤ 3.00⇤⇤ 3.31⇤⇤⇤ 1.61 2.12⇤ 2.34⇤ 2.30⇤

Clay content 16.86⇤⇤⇤ -1.89 5.84⇤⇤⇤ -0.74 -0.95 -0.99 -1.06
Minimum permeability -3.61⇤⇤⇤ 1.90 -2.12⇤ -0.91 -0.87 -0.77 -0.44
K-factor of topsoil -1.92 2.59⇤⇤ 3.65⇤⇤⇤ 1.43 1.58 1.47 1.36
Best soil class -2.27⇤ 12.89⇤⇤⇤ 9.51⇤⇤⇤ 0.72 1.48 2.02⇤ 2.59⇤⇤

Degree-days >34ºC (1) (2) (3) (4) (5) (6) (7)
Income per capita (2012) -3.22⇤⇤ -0.96 -2.38⇤ -1.01 -1.66 -1.80 -1.56
Population density (2012) -3.54⇤⇤⇤ -1.03 1.10 -0.17 -1.35 -1.57 -1.65
Average water capacity 1.02 -3.31⇤⇤⇤ 1.57 0.64 0.38 -0.09 -0.61
Clay content 14.19⇤⇤⇤ -6.29⇤⇤⇤ 0.46 -0.83 -1.78 -2.26⇤ -2.52⇤

Minimum permeability -7.08⇤⇤⇤ 2.16⇤ -1.65 -0.39 0.05 0.53 0.87
K-factor of topsoil 2.15⇤ -4.85⇤⇤⇤ 1.44 1.03 0.61 -0.20 -0.95
Best soil class 2.73⇤⇤ 5.18⇤⇤⇤ 5.38⇤⇤⇤ 0.45 0.80 0.93 1.05

Precipitation (1) (2) (3) (4) (5) (6) (7)
Income per capita (2012) -14.56⇤⇤⇤ -1.59 -0.75 -0.71 0.95 1.39 1.45
Population density (2012) 2.34⇤ 1.97⇤ -0.16 0.11 1.03 1.21 1.27
Average water capacity -8.74⇤⇤⇤ 1.69 -1.57 0.14 0.58 1.12 1.44
Clay content -5.19⇤⇤⇤ -3.38⇤⇤⇤ -6.82⇤⇤⇤ -1.81 -2.51⇤⇤⇤ -3.19⇤⇤⇤ -3.67⇤⇤⇤

Minimum permeability 7.88⇤⇤⇤ 0.33 0.92 -0.08 0.08 0.04 0.37
K-factor of topsoil -6.50⇤⇤⇤ 1.09 -3.18⇤⇤ -1.08 -1.35 -1.20 -0.80
Best soil class -11.61⇤⇤⇤ -3.90⇤⇤⇤ -6.32⇤⇤⇤ -0.92 -1.48 -1.54 -1.41

Notes: The table presents the t-statistics for pairwise regression coefficients of climate variables (shown
by panel) on observable determinants of farmland values (shown by rows). Symbols ⇤,⇤⇤ and ⇤⇤⇤ indicate
statistical significance at the 5, 1 and .1 percent level, respectively. Standard errors are corrected for spatial
correlation following Conley (1999). Results based on farmland-weighted regressions are comparable. The
sample (n = 2, 457) includes all counties east of the 100th meridian west. Column (1) indicates the coefficient
for a pooled unconditional regression based on sample-wide variation. Columns (2) and (3) correspond to
state- and district-fixed-effect specifications, respectively. Columns (4) to (7) indicate coefficients conditional
on neighborhood-average values of the observable based on different neighborhood definitions (see section 3
for more details).
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Table 8: t-statistics from Pairwise Regressions of Select Indicators on Normal
Degree-Days

Fixed Effects Neighborhood Order
Pooled State District 1rst 2nd 3rd 4th

Degree-days 8-32ºC (1) (2) (3) (4) (5) (6) (7)
Geographical indicators:

Latitude -151.71⇤⇤⇤ -50.91⇤⇤⇤ -25.91⇤⇤⇤ -3.22⇤⇤ -5.94⇤⇤⇤ -8.95⇤⇤⇤ -11.89⇤⇤⇤

Longitude -11.67⇤⇤⇤ 7.00⇤⇤⇤ -1.02 0.84 1.19 1.58 1.76
Altitude -31.78⇤⇤⇤ -52.44⇤⇤⇤ -50.03⇤⇤⇤ 0.79 0.44 -0.04 -0.17

Satellite indicators (2001-2014):

AMP -59.55⇤⇤⇤ -12.95⇤⇤⇤ -10.22⇤⇤⇤ 2.42⇤ 3.91⇤⇤⇤ 3.79⇤⇤⇤ 3.47⇤⇤⇤

DUR -17.27⇤⇤⇤ -5.70⇤⇤⇤ 0.10 2.46⇤ 3.35⇤⇤⇤ 3.47⇤⇤⇤ 3.39⇤⇤⇤

EOSN 34.25⇤⇤⇤ 3.24⇤⇤ -1.86 -3.47⇤⇤⇤ -5.01⇤⇤⇤ -5.54⇤⇤⇤ -5.93⇤⇤⇤

EOST -25.46⇤⇤⇤ 1.36 -3.68⇤⇤⇤ 1.93 1.37 1.37 1.93
MAXN -23.55⇤⇤⇤ -11.50⇤⇤⇤ -14.45⇤⇤⇤ -0.37 0.15 0.57 0.90
MAXT -6.13⇤⇤⇤ 18.11⇤⇤⇤ 3.99⇤⇤⇤ 2.04⇤ 2.27⇤ 3.02⇤⇤ 4.04⇤⇤⇤

SOSN 33.63⇤⇤⇤ 4.03⇤⇤⇤ -1.71 -3.36⇤⇤⇤ -4.87⇤⇤⇤ -5.41⇤⇤⇤ -5.81⇤⇤⇤

SOST 0.15 10.95⇤⇤⇤ -1.59 0.37 -0.04 0.51 1.23
TIN -98.82⇤⇤⇤ -28.58⇤⇤⇤ -17.03⇤⇤⇤ 1.99⇤ 2.56⇤ 2.23⇤ 1.73

Agricultural indicators (1976-2005):

Corn yield -26.79⇤⇤⇤ 8.18⇤⇤⇤ 3.54⇤⇤⇤ 1.81 5.04⇤⇤⇤ 6.28⇤⇤⇤ 5.82⇤⇤⇤

Soybean yield -29.16⇤⇤⇤ 5.26⇤⇤⇤ 5.30⇤⇤⇤ 2.85⇤⇤ 4.36⇤⇤⇤ 4.36⇤⇤⇤ 3.72⇤⇤⇤

Notes: The table presents results presented in table 7 but for different observables and for a single climate
variable. Results for the other 2 climate variables are presented in the online appendix. Symbols ⇤,⇤⇤ and ⇤⇤⇤

indicate statistical significance at the 5, 1 and .1 percent level, respectively. Standard errors are corrected for
spatial correlation following Conley (1999). More details and definitions of regarding the satellite indicators
are provided in section 3.
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teristics because there is insufficient variation for identification of climate effects.34 To verify

this possibility, I conduct a similar analysis but on a different set of observables for which

one should expect a at least some degree of correlation with climate. Good candidates for

such analysis are variables that are known to affect climate or to be affected by climate.

Examples I explore in table 8 include geographic, vegetation indices captured remotely from

satellites and agricultural indicators which I regress on normal degree-days (8-32ºC).35

In contrast to previous results, climate variables are correlated with most of these indica-

tors conditional on first-order neighborhood average characteristics. Out of the 14 associa-

tions, 8 are significant at conventional levels when the first-order neighborhood is considered

(table 8, column 4). This number reaches 9 for second and third-order neighborhoods, and

finally 8 for fourth-order neighborhoods. Similarly, 13, 13 and 9 of these associations are

significant at conventional levels for unconditional associations and associations conditional

on state and district fixed-effects, respectively. This result indicates that —conditional on

first-order neighborhood characteristics— climate variables are uncorrelated with seemingly

unrelated observables, but remain correlated with related ones.

These findings seem encouraging but cannot fully rule out the possibility that the re-

lationships in table 8 (column 4) may be nonetheless attenuated due to errors-in-variables

issues. It is difficult to directly disprove this. I therefore devise a strategy to indirectly

detect attenuation bias in the proposed model estimates. The idea consists in contrasting

estimates of the proposed model with those of another model with comparable vulnerability

to measurement error but with a different vulnerability to time-invariant spatially-dependent

confounders.

To this end, I developed a simulation to assess the degree of attenuation bias for com-
34In other words, the neighborhood-average regressor may be “wiping out” too much variation, leaving

little residual variation for climate variables to explain. An important concern in this literature is the amount
of climate variation used in the estimation of climate effects. For instance, a point of contention in FHRS
(2012) and DG (2012) revolves around the extent to which state-by-year fixed effects “wipe out” meaningful
weather variation in the panel model for the consistent estimation of weather effects.

35Geographical indicators (latitude, longitude and altitude) are expected to correlate with climate because
geographical coordinates and orography are major drivers of climate. In addition, vegetation type and
intensity should relate to climate. I therefore rely on 9 vegetation indices that capture the timing and/or
intensity of “greenness” of ground vegetation as measured from satellites (see section 3). The same reasoning
applies to agricultural production as measured by crop yields. Due to space constraints, I show the results
for the other two climate variables, extreme degree-days (>34ºC) and precipitation, in the online appendix.
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Notes: Each panel provides simulation results based on the three main climate variables used in the paper.
Within each panel, the curves represent the level of attenuation bias (0% is “no attenuation”, 100% is “full
attenuation”) to varying levels of measurement error variance for competing models. The data generating
process (DGP) of the simulation is y
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Figure 2: Attenuation Bias of Competing Models Classical Measurement Er-
ror of Climate Variables

peting models when facing varying levels of measurement error in climate variables. Results

depicted in figure 2 show, unsurprisingly, that benchmark pooled models are less vulnerable

to attenuation bias than state- or district-fixed-effect models.36 This is true for all three

climate variables analyzed.37

Also, and as expected, the preferred model is more vulnerable to attenuation than the

pooled and state fixed-effect benchmark models. However, the degree of attenuation remains

comparable to that of the district fixed-effect model, especially for temperature variables

(degree-days) which play a key role in driving climate impacts in this literature.38 In the

online appendix I develop a complementary simulation where I assess the performance of
36This is the classic result from Griliches and Hausman (1986) that classical measurement error is “am-

plified” in a within model.
37Interestingly, attenuation bias rises more rapidly with measurement error for degree-days variables than

for precipitation. This is due to the higher degree of spatial autocorrelation for temperature variables
(degree-days) relative to precipitation.

38Also, the degree of attenuation remains very similar across first, second, third and fourth order neighbor-
hood direct models. This is particularly true for temperature variables (degree-days) with a higher degree
of spatial autocorrelation.
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competing models in the presence of varying forms of omitted variables.39 The key finding is

that the proposed direct model is superior to the district fixed-effect model in the presence

of a smooth spatially-dependent regional confounder.

In other words, the proposed model and the benchmark district-fixed-effect model behave

similarly in the presence of classical measurement error, but perform differently when facing

a spatially-dependent omitted variable that is regionally confounded with climate. We thus

have a clear way to distinguish attenuation from omitted-variable bias in the empirical

results.

B. Benchmark Hedonic Estimates of the Impact of Climate Change

Replication of Benchmark Hedonic Estimates— Here I present climate change impact pro-

jections on farmland values based on benchmark hedonic models relying on pooled, within-

state and within-district climate variation. I follow the specification proposed in SHFb and

Fisher et al. (2012, appendix ), which is a semi-log model of farmland values with degree-

days climate variables and various controls.40 I follow this specification because SHFb is

arguably the most comprehensive hedonic study on US agriculture. Following SHFb, I re-

strict the sample to counties lying east of the 100th meridian west to avoid confounding a

warmer climate with irrigation. Climate change impacts on farmland values are depicted

for all cross-sections in figure 3 for the HadGEM2-ES climate model.41

Three major points stand out. First, damage estimates for recent cross-sections (1987-

2012) are large and fairly stable across the three benchmark specifications.42 I find impacts

of -76.5, -74.5 and -68.1% toward the end of the century for the most severe warming scenario

(RCP 8.5) under the pooled, state and district-fixed-effect models, respectively. Previous
39Including linear, state-level and spatially-dependent regional climate confounders.
40The specification includes: degree-days 8-32ºC (linear and quadratic terms), squared root of degree-

days >34ºC, precipitation (linear and quadratic terms), income per capita, population density (linear and
quadratic terms), average water capacity, clay content, minimum permeability, K-factor of topsoil and best
soil class. All climate variables correspond to normal April-September climate for 1976-2005 (see section 3).
I exclude latitude as a control because it is a well known predictor of climate. Results remain stable with
this omission.

41Following suggestions in Burke et al. (2014), I report results based on four other climate models and a
uniform climate change scenario in the online appendix. However, results remain qualitatively very similar
to those report here.

42In addition, climate change impact estimates remain fairly stable when control variables are omitted
(see online appendix) which at first glance seems reassuring.

29



A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Notes: Projected farmland value percent changes correspond to the farmland-weighted sample average
projection. The top (bottom) row of each panel corresponds to the predicted farmland value change for
2036-2065 (2070-2099) relative to the 1976-2005 reference period. RCP scenarios increase in severity from
left to right as described in section 3. The 95 percent confidence intervals for the predicted mean change
are corrected for spatial correlation (Conley, 1999).

Figure 3: Climate Change Impacts Based on Benchmark Hedonic Models
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studies have not reported within-district estimates. This similarity is important because it

indicates these estimates are not attenuated.43 Recall that measurement error in climate

variables leads to a rapid attenuation for within models, especially for the district-fixed-

effect specification (see figure 2). However, such a pattern is not apparent in these empirical

estimates.

Second, damage estimates for recent cross-sections (1987-2012) are very similar to those

in the literature. For instance, for the state fixed-effects model, SHFb finds impacts of -27.4,

-31.6, -61.6 and -68.5% for the B1, B2, A2 and A1F1 climate change scenarios for the end

of the century. In this replication I find impacts of -27.3, -48.1, -55.2% and -74.5% for RCP

2.6, 4.5, 6.0 and 8.5 climate change scenarios (figure 3 panel B). Although these scenarios

are not equivalent, they show a high agreement between low and high warming scenarios.44

To provide some context, the most severe estimate of -74.5% change in farmland value is

equivalent to a 38.9 billion annual loss in profits.45

Finally, and perhaps more intriguingly, climate change impact estimates appear unstable

over time and tend to drift toward smaller estimates for older cross-sections. In fact, some

of the impact estimates for older cross-sections for the district-fixed-effect model (figure 3

panel C) are no longer significant at conventional levels for the RCP2.6 warming scenario.

Because earlier implementations of benchmark hedonic models have not incorporated older

Agricultural Census data, this pattern had gone relatively unnoticed.46

To verify whether this pattern is found across subsets of the data, I estimate the model for
43The district-fixed-effect estimates are only about 10% lower than the pooled estimates.
44When I include latitude as a control variable, as in SHFb, results appear slightly more detrimental for

the state fixed effect specification: -34.5, -55.6, -62.0 and -79.4% for RCP 2.6, 4.5, 6.0 and 8.5 climate change
scenarios, respectively. The results are perhaps even closer to SHFb when, in addition to including latitude,
the estimation is based on the GMM estimator used in SHFb: -24.6, -43.0 and -49.3 and -68.2 for RCP 2.6,
4.5, 6.0 and 8.5 climate change scenarios, respectively. Results based on the GMM model without latitude
as a control variable are shown in the online appendix.

45This estimate has as a 95% confidence interval of -87.2 to -49.3%, which is fairly wide but remains
negative. The total value of farmland for the sample is approximately $1 trillion USD (2012$). This is
calculated by multiplying the average farmland value for 1987-2012 by the average number of farmland
acres in the same period. Assuming a 5% capitalization rate this is equivalent to a yearly profit of $52.258
billion (G$).

46MNS considers 2 cross-sections (1978 and 1982), SHFa considers 5 cross-sections (1982, 1987, 1992,
1997, and 2002) and SHFb reports results for 4 cross-sections (1982, 1987, 1992 and 1997). However, Fisher
et al. (2012b) reports (in the online appendix) estimates based on 6 cross-sections (1969, 1974, 1978, 1982,
1997 and 2002). The same attenuation pattern reported here is also noticeable in that study. For instance,
the impact estimates for the state fixed effects model with farmland weights are roughly half for the 1969
relative to the 2002 cross-section. Note this study reports results based on 13 cross-sections (spanning 1950
through 2012).

31



A. North

B. South

Notes: All counties are non-urban and fall east of the 100th meridian west. The “North” corresponds to
counties falling in states roughly north of the 37th parallel north (ND, SD, NE, KS, MN, IA,MO,WI, IL,MI,
IN, KY, OH, WV, VA, PA, NY, VT, ME, NH, MA, RI, CT, NJ DE, MD). The “South” comprises counties
within states falling roughly south of the 37th parallel north (TX, OK, AR, LA, TN, MS, AL,NC, SC, GA,
FL). For the 1987-2012 cross-section, the northern (southern) sample has 1,332 (942) observations.

Figure 4: Climate Change Impacts Based on Pooled Benchmark Hedonic Models
For Two Subsamples
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northern and southern subsamples. Figure 4 shows the corresponding climate change impact

estimates for a pooled model.47 A similar attenuation pattern prevails in the northern

subsample but an even stronger attenuation operates in the southern subsample. In fact,

climate change impact estimates are mostly insignificant for the southern subsample for the

1954-1987 period. The regional and temporal instability alone of these impact estimates

raise concerns regarding the robustness of benchmark hedonic models.

Elsewhere (Ortiz-Bobea, 2016), I find that the likely driver of this instability is exurban

and rural development pressure on farmland which operates as a growing and slowly-varying

omitted variable affecting benchmark models. More specifically, I find that benchmark es-

timates attenuate and become insignificant when counties under high development pressure

are dropped. Moreover, I find that benchmark results are not robust to an alternative de-

pendent variable that, in principle, does not embody the option value of farmland (cropland

rent) and is therefore arguably free from the underlying influences of development pressure.

To some extent, the finding is not that surprising. Roback (1982) and Albouy et al. (2016)

have shown that climate plays an important role in the quality of life of US households. The

resulting regional sorting of the US population into desirable climates can therefore lead to

development pressures that are regionally correlated with climate.48

C. New Hedonic Estimates of the Impact of Climate Change

New Hedonic Estimates— I now turn to the preferred approach that estimates the effect

of climate conditional on neighborhood-average characteristics. Recall the proposed model

simply augments the benchmark hedonic model with neighborhood-average values of each

regressor.49 This additional set of regressors is designed to control for spatially-dependent

climate confounders. Results are summarized in figure 5 for all cross-sections for a state-
47Results are comparable for other benchmark specifications.
48I conduct a similar analysis to that in table 7 to verify whether increases in housing prices (1950-1980

1990-2010), which arguably reflect more desirable living locations, can be explained by climate conditional on
neighborhood-average housing value change. I find no evidence this is the case. This seems to indicate that
the US population could be sorting regionally into desirable climates. In other words, regional differences
in climate may help explain why people move across states, but the within-regions climate variation does
not appear to explain in which counties people prefer to locate.

49The main results presented in the paper are based on a first-order neighborhood with equal weights. I
explore varying neighborhood definitions and weighting schemes later on.
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Notes: The model is based on a first-order neighborhood with equal weights. Climate change projections
correspond to the HadGEM2-ES climate model.

Figure 5: Climate Change Impacts Based on Direct Climate Variation With
State Fixed Effects

fixed-effect specification.

Notice that none of the climate change impact estimates on farmland values is distin-

guishable from zero. This is true for all cross-sections, all scenarios and time horizons. The

result is surprisingly stable over time. There is no “drifting” of estimates over cross-sections

as for benchmark estimates. In the online appendix I also show this is true for all other

climate models considered.

Notice, however, that confidence intervals are relatively wide for the most extreme sce-

nario, especially for end-of-century estimates. This is the likely consequence of collinearity

between climate and the neighborhood-average regressors. This would not rule out poten-

tially sizable effects of climate change on the sector under extreme scenarios. However, in the

online appendix I show these new estimates based on a more efficient spatial GMM estimator

(Kelejian and Prucha, 1999) and I obtain much tighter confidence intervals. The associated

point estimates appear slightly negative but remain overwhelmingly insignificant.50

50Only 2 out of 12 estimates are significant at conventional levels for the most extreme scenario (RCP
8.5). The remaining 36 estimates for other climate scenarios (RCP 2.6, 4.5 and 6.0) cannot be distinguished
from zero.
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The main threat to validity for these new estimates is that climate effects may be attenu-

ated due to an amplification of measurement error resulting from the identification strategy.

Previously, I showed that the preferred model is similarly vulnerable to measurement error

than the benchmark model with district fixed effects. As a result, the presence of measure-

ment error in climate should have generated attenuated estimates for both models, not just

the proposed one. As it is clear from figures 3 (panel C) and 5, these estimates differ. The

preferred estimates are close to zero and insignificant while the benchmark district-fixed

effects estimates are large, negative and significant, in line with other benchmark specifica-

tions.51

These new results provide a stark departure from benchmark estimates. The findings

here point to no robust evidence for or against large benefits or damages from climate change

on non-irrigated US agriculture. This result is robust across all cross-sections and across

state-fixed-effect and pooled specifications (see online appendix). I now consider multiple

checks to verify the robustness of these new findings.

Are Empirical Results Robust to Subsamples?— To verify whether the stability of these

results is maintained in subsamples of the data, I estimate the proposed model for northern

and southern subsamples and report the corresponding climate change impact estimates in

figure 6. These correspond to the state-fixed-effects specification but results based on the

pooled results are very similar. In contrast to benchmark models, these results are consistent

with the full sample result. Because the sample is smaller confidence intervals become wider,

especially for the most severe scenario (RCP 8.5) and for the end-of-century horizon.

Are Results Sensitive to the Choice of the Dependent Variable?— Here I consider cash

rent for non-irrigated cropland instead of the price of farmland.52 Impact estimates based on

the proposed model and a state-fixed-effect specification are presented in figure 7. Estimates

are also indistinguishable from zero and consistent with the main results of the paper based
51The confidence intervals across benchmark and proposed models do no not overlap when based on the

more efficient GMM estimator shown in the online appendix or on weighted regressions.
52In principle, using this variable rather than farmland values circumvents biases from the option value

of farmland. The reason is that cropland renters are not residual claimants of the land and should therefore
not be willing to pay a premium to rent cropland that is potentially developable in the distant future. In
Ortiz-Bobea (2016), I find that the negative estimates of benchmark models are not robust to cash rents as
an alternative dependent variable.

35



A. North

B. South

Notes: Subsample definitions are described in figure 4.

Figure 6: Climate Change Impacts Based on State-Fixed-Effect Preferred
Models For Two Subsamples
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Notes: Climate scenarios are based on the HadGEM2-ES model. Models adopt the same predictors than
the main models based on farmland values. The sample size slightly varies for each cross-section and ranges
from 1,790 (2009) to 2,010 (2012) counties. This is roughly 80 to 90% of the farmland value data for 2012
which is comprised of 2,232 observations.

Figure 7: Climate Change Impacts for State-Fixed-Effect Direct Models Based
on Cash Rents as Dependent Variable

on farmland values.53

Are Results Sensitive to the Choice of Climate Variables?— Previous results are based

on the degree-day variables and specification adopted in SHFb. To assess how results are

affected by the choice of alternative climate variables I estimate two models, one based on

a linear degree-day variable specification, and another based on monthly climate normals

following MNS. Results for both specification are presented in figure 8. Again, the results

are qualitatively similar for alternative climate variables.

Are Results Sensitive to County Neighborhood Definitions?— Until now I have relied on a

first-order county neighborhood and equal weights to construct the neighborhood-level con-

trol variables. This choice was supported by evidence in tables 7 and 8 and figure 2, showing

that neighborhoods of order 2 and higher, allow for incidental correlations between climate

variables and unrelated observables. One should therefore expect bias in the direction of

benchmark estimates when relying on less restrictive neighborhoods.54

53Results based on a cross-sectional specification are very similar.
54Indeed, in simulation results in the online appendix, I find that the adoption of increasingly large

neighborhoods leads to bias in the direction of the benchmark model biases in the presence of a spatial
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A. Linear Degree-Day Variables

B. Monthly Average Climate Variables

Notes: All proposed models adopt a first-order neighborhood definition and equal weights. The linear degree-
days specification includes separate linear terms for degree-days 10-30°C and >30°C as well as linear and
quadratic precipitation variables. The monthly climate variable specification includes linear and quadratic
terms for monthly mean temperature and precipitation normals for the months of January, April, July and
October. The climate scenarios for the linear degree-days specification is based on the HadGEM2-ES climate
model. The scenario for the monthly average variable specification is a uniform scenario. This was chosen
because climate change projections become highly unstable for relatively large changes in climate reflected
in the GCM scenarios.

Figure 8: Climate Change Impacts Based on Direct Climate Variation with
State-Fixed-Effects Based on Different Climate Variables
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To save space, I report climate change impact estimates based on the proposed models

but with increasingly expansive neighborhoods (second to fourth-order neighborhoods) in

the online appendix. The second-order neighborhood estimates are very similar to the first-

order neighborhood estimates (figure 5). However, the third and especially the fourth-order

proposed estimates appear increasingly negative and significant for recent cross-sections,

resembling the time profile of the impact estimates of benchmark models. This pattern

matches simulation predictions in the online appendix and confirms the presence of a spatial

confounder which appears to gain influence toward more recent cross-sections. Note that

this pattern cannot be explained as a “reduction” in attenuation bias. The reason is that

the various neighborhoods considered lead to similar attenuations when climate variables

are measured with error (see figure 2).

Are Results Sensitive to Neighborhood Weighting Schemes?— So far I have relied on equal

neighboring-county weights when constructing neighborhood-average regressors. I present

these results based on alternative weighting schemes in the online appendix.55 I find that

climate change impact estimates are fairly insensitive to the choice of neighborhood weights.

5 Discussion

To put the new findings in perspective, I summarize climate change impact estimates on

farmland values for competing models in table 9. All models include state fixed effects.

These estimates are based on the same data and correspond to a model based on averaged

variables for the 1987-2012 cross-sections. In line with previous findings in the literature,

benchmark models systematically point to large negative effects of climate change on farm-

land values. This is the case for both unweighted and weighted regressions (columns 1 and

2).

Climate change impact estimates for the benchmark state fixed effects model ranges

confounder. This occurs when the chosen neighborhood exceeds the true scale of the spatial confounder.
55These weights include: equal, inverse of the squared root of the distance, inverse of the distance and

linear or Bartlett weights. The latter simply represents a weighting scheme that linearly decreases until it
reaches 0 for a cutoff distance. Here the cutoff distance is the maximum distance (in miles) to the farthest
neighbor plus 1 mile.

39



Table 9: Climate Change Impacts for Competing Models under Alternative
Scenarios

(1) (2) (3) (4)
Benchmark Benchmark Direct Direct
(Conley) (WLS) (Conley) (WLS)

Scenario Impacts for 2036-2065 (%)

RCP 2.6 �25.8 �18.1 �5.0 2.3
[�37.1;�12.6] [�21.8;�14.2] [�19.2; 11.8] [�10.8; 17.2]

RCP 4.5 �38.1 �28.5 �5.9 4.4
[�51.6;�20.8] [�33.2;�23.6] [�25.7; 19.1] [�13.3; 25.7]

RCP 6.0 �31.3 �22.8 �4.0 4.7
[�43.8;�15.9] [�27.0;�18.3] [�20.5; 16] [�10.1; 21.9]

RCP 8.5 �55.4 �44.8 �9.1 6.2
[�69.5;�34.7] [�50.0;�39.0] [�37.4; 32.0] [�19.0; 39.3]

Scenario Impacts for 2080-2099 (%)

RCP 2.6 �27.3 �19.5 �5.1 2.7
[�38.7;�13.8] [�23.2;�15.6] [�19.8; 12.3] [�10.6; 17.9]

RCP 4.5 �48.1 �37 �7.5 5.9
[�63.1;�27] [�42.7;�30.7] [�33.1; 27.8] [�18; 36.7]

RCP 6.0 �55.2 �43.7 �8.5 6.8
[�70.1;�32.9] [�49.6;�37.1] [�37.7; 34.3] [�20.5; 43.3]

RCP 8.5 �74.5 �63.4 �11 12.9
[�87.2;�49.3] [�69.7;�55.7] [�53.2; 69.2] [�30; 82.1]

Notes: Results are based on the 1987-2012 averaged cross-section and the HadGEM2-ES climate model. All
models include state fixed-effects. Ninety five percent confidence intervals are presented in brackets below the
point estimate. Percent impacts are computed as 100(exp(�X�)�1), where �X� are log farmland changes
driven by changes in climatic variables only. As a result, percent confidence intervals are asymmetrical. �X

is computed as the farmland-weighted change in climate variables under each scenario. Columns 1 and 3
correspond to linear regressions corrected for spatial correlation using the Conley (1999) approach described
earlier. Columns 2 and 4 corresponds to Weighted Least Squares (WLS) with observations weighted by
the square root of farmland. All climate change scenarios correspond to Hadley GEM2-ES climate model.
Results for other climate models are presented in the online appendix.
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from �18.1% to (RCP 2.6, mid-century, weighted) to �74.5% (RCP 8.5, end-of-century,

unweighted). These represent yearly profit changes of �9.4 to �38.9 billion, respectively.

However, as previously shown, benchmark models are unstable over long time periods (figure

3) and across subsamples of the data (figure 4).

On the other hand, the corresponding impacts for the preferred model with state fixed

effects ranges from �11.0% to �4.0% to (�5.7 to �2.1 G$/year) for unweighted regressions,

and from +2.3% to +12.9% (+1.2 to +6.7 G$/year) for weighted regressions. However,

none of these estimates are statistically different from zero. This finding is stable over time

(figure 5), across subsamples of the data (figure 6), and is robust to an alternative dependent

variable (figure 7), climate variables (figure 8) and neighborhood weighting schemes (online

appendix).

In addition, simulation results confirm that the preferred estimates are robust to a wider

range of confounders than benchmark models (see online appendix). However, this flexibility

comes at a price of higher vulnerability to measurement error relative to a pooled or state-

fixed-effect benchmark model. Nevertheless, the small and insignificant preferred estimates

cannot be attributed to classical measurement error. The reason is that mismeasurement

of local climate would also lead to attenuation of benchmark fixed effects estimates, which

is clearly not the case given their similarity to pooled benchmark estimates (figure 3).

The proposed approach is can additionally account for the presence of time-invariant

spatially-dependent regional climate confounders relative to benchmark models. As a re-

sult, these results are more robust. Evidence discussed in Ortiz-Bobea (2016) suggests that

development pressure and the resulting rising option value of farmland is a likely confounder

in benchmark hedonic models. The proposed approach can account for such omitted vari-

ables.

Overall, these new findings provide a neutral but cautionary long-run outlook for US

agriculture. The new long-run estimates are considerably more optimistic than benchmark

estimates and suggests there is no robust evidence of either large benefits or damages from

climate change on eastern US agriculture. However, because confidence intervals remain

relatively wide for extreme and end-of-century scenarios, these findings cannot definitively
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rule out sizable effects of climate change on the sector. In the online appendix I compute

preferred estimates based on a more efficient spatial GMM estimator and I obtain much

tighter confidence intervals. I reach a similar and stronger conclusion that there is no

robust evidence for or against large effects of climate change on eastern US agriculture.56

Finally, note that these new estimates are long-run estimates. As a result, their relatively

small magnitude does not contradict negative short-run estimates found in the literature

on profits (DG 2012) or crop yields (e.g. Schlenker and Roberts, 2009). Divergence be-

tween short-run and long-run estimates should be expected, but long-run estimates should

be systematically more optimistic than their short-run counterparts. The neutral findings

provided in this paper therefore provide an internally consistent order of estimates in the

literature.

6 Conclusion

Over the past two decades there has been a lively debate regarding the potential impacts of

climate change on US agriculture. The more recent studies based on the hedonic approach

find large detrimental effects of climate change on the sector. I find very similar results in my

replication, with impacts ranging from �18.1% (�9.4 G$/year) to �74.5% (�38.9 G$/year)

for the state-fixed-effect benchmark model across all scenarios and time horizons. However, I

find these results are not robust and are likely affected by time-invariant spatially-dependent

omitted variables.

This paper proposes a novel identification strategy to estimate the long-run effect of cli-

mate on farmland values that relies on climatic variation conditional on county neighborhood-

average regressors. This approach additionally addresses the type of confounder that ap-

pears to affect the benchmark models. The approach makes two identifying assumptions

that appear to hold for eastern US agriculture. First, it posits that the effect of climate

on a county’s agricultural productivity operates through its own climate. Second, the ap-

proach posits that unobservables are uncorrelated with climate conditional on neighborhood
56Confidence intervals across models based on this alternative estimator do not overlap, indicating that

the associated climate change impact estimates are clearly statistically different.
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characteristics of each county observation.

New climate change impact estimates based on the proposed approach are dramatically

different and range from �11.0% (�5.7 G$/year) to +12.9% (+6.7 G$/year) for the specifi-

cation including state fixed effects. These estimates, however, are statistically insignificant.

While the confidence intervals remain relatively wide for least squares estimates, more pre-

cise estimates are obtained with alternative spatial models. I find no robust evidence of

large beneficial or detrimental impacts of climate change on eastern US agriculture.

This contribution can help rationalize the relative magnitude of projected climate change

impacts stemming from alternative approaches that allow varying degrees of farmer adap-

tations. Methods that only allow short-run and within-year adjustments should naturally

point to more detrimental effects than methods that allow for long-run adaptations, such as

the hedonic approach. Therefore, the findings in this paper do not contradict the large neg-

ative effects of weather shocks on crops yields because such estimates allow for a narrower

range of farmer responses and adjustments.

It is important to emphasize that the proposed approach is not a panacea for controlling

any type of time-invariant omitted variables in a cross-sectional setting. The proposed

approach only eliminates bias from spatially-dependent regional confounders. In addition,

the model increases vulnerability to measurement error, although this is not a concern in

this paper. Studies relying on the proposed approach should allocate significant efforts to

carefully constructing climate regressors based on detailed data and conduct placebo tests

to rule the presence of measurement error and local confounders from results.

The hedonic approach, in general, has several important caveats. The approach relies

historical variation in the data to infer future responses. However, there are changes that are

not perceptible in historical observations that are expected to occur with climate change.

These include the rise of atmospheric carbon concentrations, the depletion of aquifers or

large-scale ecological changes that affect pest populations and thus agricultural production.

These remain important unknowns and add to the uncertainty of these results. On the other

hand, the reduced-form nature of this approach does not allow unpacking the mechanisms

through which farmers adapt.
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Finally, more research is needed to identify potentially fruitful pathways to enhance

farmer adaptations to a changing climate (Ortiz-Bobea and Just, 2013) and assess policies

that may hinder such adaptations (Annan and Schlenker, 2015). Also, more research effort

should focus in areas, such as sub-saharan Africa, where data is scarce and the potential

effects of climate change on agriculture are likely to be most disruptive (Schlenker and Lobell,

2010). Perhaps one of the major challenges of a changing climate for the agricultural and

food sectors is the rise of climate variability. Particular attention should be devoted to the

understanding of the linkage between climate variability and food price volatility as well as

its resulting distributional consequences (Fafchamps, 1992; Bellemare, 2015).
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Figure 1: 2008-2014 CDL cropland counts per PRISM data grid

1 Data

This section describes how climate variables were constructed. I also provide maps of these climate and
controls variables to allow for a clear visual inspection.

1.1 Cropland Weights for Climate Data Aggregation

County-level climate variables were obtained by aggregating PRISM data based on cropland weights. These
weights were obtained by averaging the the cropland CDL counts for years 2008-2014 falling within each
PRISM data grid. A map of these weights and the land cover classes used to classify CDL pixels to cropland
are provide in the figure and table below.
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1.2 Maps of Key Variables

Notes: Precipitation is derived from PRISM. Degree-days are derived from the daily gridded data in Schlenker and Roberts (2009).

All county-level observations are obtained with 2008-2014 CDL cropland weights.

Figure 2: Seasonal Climate Variables in the Eastern United States (1976-2005)
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Notes: Variables are derived from PRISM based on 2008-2014 CDL cropland weights.

Figure 3: Monthly Climate Variables in the Eastern United States (1976-2005)
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Figure 4: Soil and Economic Control Variables
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2 Additional Evidence in Favor of the Identifying Assumptions

2.1 Correlation Analysis Between Select Observables and Other Climate Vari-
ables

I present an extension of the correlation analysis performed in table 8 of the paper for the other two climate
variables: extreme degree-days and precipitation. The analysis explores where these climate variables can
explain variation in these select observables conditional on neighborhood-average values of the observables.
As stated in the paper, we should expect some degree of association with these select observables because
they either explain climate, or are affected by climate. Results are presented in tables 2 and 3.

For extreme degree days (2), 5 out of the 14 associations are statistically significant at conventional
levels for the first-order neighborhood scale. The number is 7, 5 and 6 for second, third and fourth-order
neighborhood scales. For pooled, and within state and district variation this number is 13, 12 and 12,
respectively. For precipitation (table 3), three out of the 14 associations are statistically significant at
conventional levels for the first-order neighborhood scale. The number is 5, 8 and 11 for second, third and
fourth-order neighborhood scales. For pooled, and within state and district variation this number is 14, 11
and 10, respectively.

Again, in contrast to table 7 in the paper, these results show that climate variables are correlated with
some observables (those that have some known relationship with climate) but not with others (those are are
seemingly unrelated).

2.2 Simulation Exploring Performance of Competing Models Under Alternative
Sources of Bias

To determine whether one can distinguish attenuation bias from other sources of bias, I conduct a series
of simulations to characterize how competing models perform under varying forms of unobservables and
measurement error. The purpose is not to lay out a comprehensive analysis of the properties of these models
but to derive general insights to help differentiate, if possible, among alternative sources of bias. If one can
establish different “footprints” for different sources of bias, than these insights can inform our interpretation
of the previous empirical results.

For this exercise, I assume a general data generating process (DGP) of the form yc = ↵+�xc+ ✏c, where
the unknown parameter of interest (� = 1) represents the direct effect of climate xc on farmland values yc.
The spatial structure of the simulated data mimics the true sample data for the eastern US and xc is a real
climate variable.1 The analysis focuses on the empirical distribution of �̂ rather than impact predictions
(i.e. �ŷ) to simplify exposition. Table 4 provides a description of the DGP for the various cases explored
as well as greater detail about simulation parameters.

Results for the simulations are presented in table 5 where each panel (A-E) corresponds to cases described
in table 4. The results in this section remain qualitatively similar under various simulation assumptions re-
garding the sign and magnitude of the climate confounding, neighbor weighting schemes, alternative neigh-
boring definitions, magnitudes of spatial dependence in the disturbance and errors-in-variables magnitude.

1I adopt a DGP with a single climate explanatory variable, extreme degree-days (>34ºC), for simplicity of exposition.
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Table 2: Coefficients from Pairwise Regressions of Select Indicators on Extreme Degree-
Days

Fixed Effects Neighborhood Order
Pooled State District 1rst 2nd 3rd 4th

Degree-days >34ºC (1) (2) (3) (4) (5) (6) (7)
Geographical indicators:

Latitude -32.46 *** -9.08 *** -2.31 * 2.15 * 2.65 ** 3.18 ** 3.28 **
Longitude -29.66 *** -15.13 *** -10.58 *** -3.21 ** -4.58 *** -5.74 *** -6.53 ***
Altitude -5.1 *** -2.05 * -5.4 *** -0.35 0.13 0.66 1.09

Satellite indicators (2001-2014):

AMP -22.66 *** -2.72 ** -1.31 0.74 1.21 0.99 0.87
DUR -1.78 2.31 * 1.5 0.76 1.36 1.83 2.17 *
EOSN 3.66 *** -12.07 *** -6.93 *** -1.31 -2.48 * -3.38 *** -4.35 ***
EOST -42.48 *** -12.77 *** -8.09 *** 2.81 ** 1.78 0.49 -0.43
MAXN -53.92 *** -24.55 *** -11.22 *** 2.21 * 2.02 * 0.99 0.04
MAXT -22.32 *** -0.18 -4.37 *** 2.56 * 2.96 ** 3.27 ** 3.43 ***
SOSN 2.43 * -12.95 *** -7.86 *** -1.35 -2.58 ** -3.57 *** -4.63 ***
SOST -25.67 *** -7.91 *** -7.19 *** 1.71 1.09 0.68 0.52
TIN -31.64 *** -10.89 *** -3.71 *** 0.36 0.51 0.17 -0.1

Agricultural indicators (1976-2005):

Corn yield -18.41 *** 4.16 *** 2.45 * 1 2.75 ** 1.42 1.56
Soybean yield -21.98 *** -0.02 -1.96 * 1.1 0.69 0.94 -0.26

Notes: The table presents the t-statistics for pairwise regression coefficients of climate variables (shown by panel) on observable
determinants of farmland values (shown by rows). Symbols ⇤,⇤⇤ and ⇤⇤⇤ indicate statistical significance at the 5, 1 and .1 percent
level, respectively. Standard errors are corrected for spatial correlation following Conley (1999). The sample (n = 2, 457) includes
all counties east of the 100th meridian west. Column (1) indicates the coefficient for a pooled unconditional regression based on
sample-wide variation. Columns (2) and (3) correspond to state- and district-fixed-effect specifications, respectively. Columns
(4) to (7) indicate coefficients conditional on neighborhood-average values of the observable based on different neighborhood
definitions (see Data section in the paper for more details).
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Table 3: Coefficients from Pairwise Regressions of Select Indicators on Precipitation

Fixed Effects Neighborhood Order
Pooled State District 1rst 2nd 3rd 4th

Precipitation (1) (2) (3) (4) (5) (6) (7)
Geographical indicators:

Latitude -26.16 *** -12.71 *** -10.75 *** -5.06 *** -7.3 *** -9.41 *** -10.92 ***
Longitude 18.94 *** 15.71 *** 7.00 *** 3.81 *** 5.82 *** 7.72 *** 9.59 ***
Altitude -20.73 *** -7.34 *** 5.35 *** 7.43 *** 8.02 *** 7.64 *** 7.51 ***

Satellite indicators (2001-2014):

AMP -23.79 *** -5.37 *** -2.2 * 1.46 1.61 1.56 1.37
DUR -8.54 *** -0.21 -0.36 0.62 1.31 1.59 1.64
EOSN 36.39 *** 16.90 *** 10.06 *** -0.68 -0.15 0.82 1.94
EOST 11.87 *** 15.47 *** 8.05 *** -0.31 0.66 2.11 * 3.53 ***
MAXN 16.99 *** 18.09 *** 10.29 *** -0.22 0.78 2.11 * 3.29 **
MAXT 12.34 *** 8.16 *** 7.33 *** 0.51 0.68 1.19 2.07 *
SOSN 37.85 *** 18.22 *** 11.08 *** -0.52 0.12 1.22 2.48 *
SOST 25.91 *** 13.40 *** 8.93 *** 0.11 0.63 1.76 2.83 **
TIN -19.63 *** 0.62 0.07 1.65 2.19 * 3.00 ** 3.70 ***

Agricultural indicators (1976-2005):

Corn yield -8.07 *** -2.06 * -0.57 -0.62 0.74 3.84 *** 3.87 ***
Soybean yield -7.62 *** 1.89 0.58 0.69 2.01 * 2.29 * 2.86 **

Notes: See notes of table 2.

Table 4: Performance of Competing Models Under Alternative Forms of Unobservables and
Measurement Error

Case Description Indep. var. Error term
A No omitted variable xc ✏c = uc

B Local or linear confounder xc ✏c = uc + �xc

C State-level confounder xc ✏c = uc + �x̄statec

D Spatial or regional confounder xc ✏c = uc + �xN(c)

E Classical measurement error xc +mc ✏c = uc

Notes: The data generating process (D.G.P) for all cases takes the general form yc = ↵ + �x

⇤
c + ✏c, where ↵ = � = 1

and where x

⇤
c = xc for cases A through D and x

⇤
c = xc + mc for case E with measurement error (�2

m = 1). The climate
variable xc is extreme degree-days (>34ºC) for April-September for county c which is a real variable used in the empirical
analysis. The disturbance always comprises uc, a spatially-dependent error that is uncorrelated with the regressor, with
uc = ⇢

P
i2N(c)

wiui + ec = ⇢uN(c) + ec, �2
e = 1, ⇢ = 0.95 and wis are weights that sum to unity. In this analysis the weights

decay with the inverse of the square root of distance and the set of county neighbors is of second-order contiguity. Different
weights are explored later in the appendix. In addition, the disturbance may incorporate an omitted variable taking varying
forms (cases B through D) with � = 1. The variance of xc and x

⇤
c is scaled to 1 prior to data manipulation to facilitate

comparisons.
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Table 5: Performance of Competing Models Under Alternative Forms of Unobservables and
Measurement Error

Benchmark Models Direct Models — Pooled Direct Models — State FE
Pooled State FE District FE 1st 2nd 3rd 4th 1st 2nd 3rd 4th

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A. No omitted variable

Mean Est. 1.008 0.999 0.996 1.002 1.000 0.999 0.998 1.004 1.002 1.001 1.001
Bias 0.008 -0.001 -0.004 0.002 0.000 -0.001 -0.002 0.004 0.002 0.001 0.001

Std. Error 0.167 0.194 0.122 0.163 0.167 0.167 0.177 0.143 0.14 0.131 0.132
Var. Expl. (%) 50.39 20.21 11.33 1.37 2.21 3.18 4.08 2.15 3.38 4.79 6.01

B. Positive local confounder

Mean Est. 1.896 1.899 1.899 1.899 1.899 1.900 1.900 1.898 1.898 1.899 1.899
Bias 0.896 0.899 0.899 0.899 0.899 0.900 0.900 0.898 0.898 0.899 0.899

Std. Error 0.015 0.086 0.071 0.125 0.125 0.121 0.121 0.102 0.102 0.099 0.098
Var. Expl. (%) 94.8 81.56 69.30 19.51 28.36 36.58 42.68 27.59 37.82 46.71 52.70

C. Positive state-level confounder

Mean Est. 1.812 1.000 0.999 0.582 0.614 0.702 0.761 1.000 1.000 1.001 1.001
Bias 0.812 0.000 -0.001 -0.418 -0.386 -0.298 -0.239 0.000 0.000 0.001 0.001

Std. Error 0.024 0.088 0.059 0.065 0.069 0.073 0.081 0.067 0.068 0.065 0.065
Var. Expl. (%) 90.61 52.17 35.86 1.40 2.61 4.98 7.52 8.68 13.16 17.92 21.72

D. Positive regional confounder

Mean Est. 1.880 1.721 1.486 0.833 1.000 1.176 1.289 0.861 0.999 1.162 1.267
Bias 0.880 0.721 0.486 -0.167 0.000 0.176 0.289 -0.139 -0.001 0.162 0.267

Std. Error 0.015 0.081 0.057 0.071 0.079 0.085 0.092 0.065 0.067 0.067 0.070
Var. Expl. (%) 94.00 75.89 54.59 4.20 9.44 17.25 24.30 6.91 13.90 23.74 31.74

E. Classical measurement error

Mean Est. 0.707 0.184 0.062 0.221 0.118 0.09 0.085 0.132 0.100 0.087 0.085
Bias -0.293 -0.816 -0.938 -0.779 -0.882 -0.910 -0.915 -0.868 -0.900 -0.913 -0.915

Std. Error 0.123 0.040 0.018 0.037 0.019 0.016 0.017 0.029 0.021 0.019 0.019
Var. Expl. (%) 25.04 2.61 0.56 2.53 0.72 0.42 0.38 1.39 0.82 0.63 0.61

Notes: The simulation is based on 1,000 repetitions. The Mean Estimate (Mean Est.) and Standard Error (Std. Error) are
simply the mean and standard deviation of the empirical distribution of �̂. Bias is the absolute difference between the Mean
Estimate and the true value of the parameter (� = 1) . The “Variance explained” (Var. Expl.) refers to the variance explained
by the climate variable used to estimate �̂. It is computed as 1 minus residual variance with the relevant climate variable
divided by residual variance without the relevant climate variable multiplied by 100.
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Panel A illustrates the baseline case without omitted variables or measurement error. As expected, all
models are unbiased. Notice how climate effects conditional on neighborhood climate are estimated off a
very small share of the climate variation (around 1-6%) relative to the benchmark models (11-50%). And
yet, the proposed models yield standard errors of the same order of magnitude. In the absence of omitted
variables and measurement error, all models converge to the same estimate and just differ in efficiency. This
obviously does not correspond to the empirical results in the paper given the large divergence in climate
change impacts across benchmark and proposed models.

Panel B deals with the case of a positive “local” or linear confounder. This is a textbook case of an
omitted variable that is linearly dependent with climate. None of the models can control for this type of
confounder, which explains why the bias is virtually identical across all models. For practical purposes,
results with a local confounder (panel B) and without any confounder (panel A) cannot be distinguished
unless the correlation of the omitted variable with climate fluctuates over time. It is difficult to imagine
what could, in practice, constitute such type of confounder other than omitted climate variables intricately
related to the observed climate.2 Again, this case cannot explain the divergence in the empirical estimates
between benchmark and the preferred models.

The case with a state-level omitted variable correlated with climate is presented in panel C. Naturally,
state and district fixed effects models closely match the DGP and are therefore unbiased (2-3). Interestingly,
pooled models conditional on neighborhood average climate are biased in the opposite direction of the
omitted variable (4-7). However, the proposed models with state fixed effects are unbiased (8-11). The
pooled benchmark model is the most vulnerable to this type of confounder followed by pooled direct models.3

For panel C, the overall pattern of estimates across models holds irrespective of the magnitude and sign
of the state-level confounder, which leads to a predictable order of estimates in which both benchmark and
proposed models with state fixed effects (unbiased) fall between pooled proposed models (moderately biased
in opposite direction of confounder) and benchmark pooled models (severely biased). This constitutes a clear
“footprint” for a state-level confounder which might be more or less pronounced depending on the intensity
of the bias. Note this case does not match the order of the empirical estimates in the paper, in which both
pooled, state- and district-fixed-effect benchmark models point to large damages, while the pooled and state
fixed effects models based on the proposed approach point to small insignificant effects.

Panel D presents the case with a spatially-dependent omitted variable correlated with climate. As
highlighted in the paper, previous hedonic studies have largely ignored this form of omitted variable although
it seems to plausibly characterize potential confounders such as unobserved soil quality or development
pressure. The simulated confounder was generated assuming a second-order neighborhood structure with
equal weights. This matches the neighborhood structure and weights of the second proposed model used,
which explains why these are unbiased (columns 5 and 9). Note that the benchmark models (1-3) are
considerably biased although results are less so for the benchmark fixed-effect models. It seems that the
introduction of state or district dummies slightly reduces, but does not eliminate, the spatial covariance
between the climate variable and the confounder. Also, the proposed models are slightly biased when the

2In fact, an analysis on climate variable covariance similar to that illustrated in tables 7 and 8 in the paper for non-climate
observables indicates that all observed climate variables are locally correlated amongst each other. This does not pose, at first
glance, a major threat given that observed climate variables may serve as proxies for unobserved climate. A problem may arise
if the covariance of observed and unobserved climate is expected to change substantially under climate change. In such cases,
observed climate variables are unreliable proxies for unobserved climate and climate change impact projections may be biased.

3Pooled proposed models are substantially less vulnerable than the pooled benchmark model. The likely reason is that the
proposed models remove a great deal of the state-level unobservable through the neighborhood average control. However, the
state-level unobservable is not fully removed for counties close to state boundaries which explains why the proposed models are
slightly biased in this case.
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assumed neighborhood does not match that of the underlying spatial confounder. The proposed model based
on a first-order neighborhood —which assumes a smaller scale than the underlying scale of the confounder—
is slightly biased downward (columns 4 and 8). Similarly, the proposed models based on third and fourth-
order neighborhoods —which assume a larger scale than the underlying scale of the confounder— are
increasingly biased in the direction of the benchmark model bias (upward) as more expansive neighborhoods
are employed. However, the magnitude of the biases are small relative to the benchmark models.

This indicates that the proposed identification strategy is robust to spatially dependent confounders when
neighborhood definitions approximately match the true scale of the regional confounder. On the other hand,
benchmark pooled and fixed effects models are increasingly biased as larger dimensions of data variation
are considered. Even the district-fixed-effect benchmark model is considerably biased, suggesting that the
incorporation of regional dummies cannot fully absorb unobservables that are smoothly distributed in space
and are correlated with climate. These results indicate that a regional spatial confounder also leads to a
predictable order of estimates, which, in order of bias is: pooled, state fixed effects, district fixed effects and
finally the proposed models.4 This pattern strikingly matches the order of empirical estimates suggesting
that the benchmark hedonic models are plausibly affected by spatially dependent confounders.

Finally, panel E presents the case with classical measurement error in the climate variable. This results
in local climate variation that is noisy but does not affect regional differences in climate. As expected, all
models suffer from attenuation bias, but to varying degrees. The pooled model is the least affected simply
because it does not solely rely on local climatic variation. As expected (Griliches and Hausman, 1986), the
measurement error is amplified in the within dimension as state and district fixed effects are introduced,
exacerbating the attenuation. This pattern may also possibly explain why the empirical estimates based on
state and then on district fixed effects are less severe than pooled ones.5

However, the crucial point is that the proposed models are just as or less attenuated than the benchmark
state and district fixed effects models. In other words, if measurement error severely affects local models, then
it should also affect the benchmark fixed effect models in a comparable fashion. These findings indicate that
measurement error leads a distinct “footprint” than that of a spatial confounder. The pattern highlighted
here clearly does not match empirical results in which state and district fixed effect estimates are large
and significantly negative, while the proposed models point to small and statistically insignificant effects of
climate change on farmland values. In conclusion, measurement error in climate cannot explain the small
effects of climate change on farmland values found in the paper.

In summary, each form of omitted variable analyzed here leads to predictable order of estimates across
models. These patterns are clearly distinct from that resulting from classical measurement error. This
suggests that one can unequivocally distinguish attenuation bias from other forms of biases by contrasting
estimates of different models. The analysis of the empirical results shows that state and district fixed effects
estimates differ substantially from estimates based on the preferred models. This would not be the case in
the presence of measurement error but would be the case in the presence of a negative spatial confounder.

4Regarding the proposed models, less restrictive neighborhoods could lead to bias in the direction of the benchmark models.
5Under certain conditions this ordering may be isomorphic to the presence of a regional confounder. Measurement error

leads to climate effect estimates that approach zero as more restrictive fixed effects are introduced. Similarly, the presence
of a positive (negative) spatial confounder when true climate impacts are positive (negative) would also lead to climate effect
estimates that approach zero as more restrictive fixed effects are introduced. Note that while estimates that approach zero
in the case of attenuation bias are clearly undesirable, estimates that approach zero for the latter case is a reflection of bias
reduction.
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3 Variations of Climate Change Impacts for Benchmark Models

3.1 Stability from Control Variable Omission

As discussed in the paper, one way to assess the robustness of the hedonic model is examining the stability
of climate change impacts estimates when omitting control variables. Figure 5 shows the main benchmark
climate change impacts reported in the paper but I also include impacts based on models omitting control
variables. Estimates without control variables are slightly more negative but remain fairly similar to the main
results presented in the paper. Again, while stable climate change estimates suggest that control variables
are just weakly correlated with climate variables, this strategy remains uninformative regarding the strength
of the correlation of unobservables with climate variables.

3.2 Alternative GMM Estimator

In this section I present climate change impact estimates on farmland values based on the spatial error
model GMM estimator used in SHFb and developed by Kelejian and Prucha (1999). Results are summa-
rized in figure 6. This estimator is more efficient than least squares but requires parametric assumptions
regarding the structure of error dependence. The error weight matrix that captures the spatial dependence
structure assumes a first-order neighborhood relationship with equal weights. Results are very similar for
other weighting schemes, including inverse distance, inverse of the squared root of the distance and Bartlett
or linear weights.

3.3 Alternative General Circulation Models (GCM)

Figures 7 through 11 present climate change impacts for the benchmark models (pooled, within-state and
within-district) based on 4 different General Circulation Models (GCMs) as well as a uniform warming
scenario of 5ºF and an increase of 8% in precipitation. All regressions are weighted by the squared root of
farmland area. The GCMs correspond to: the second generation Canadian Earth System Model (CanESM2),
the Community Climate System Model (CCSM4), the Geophysical Fluid Dynamics Laboratory Earth System
Model (GFDL-ESM2M), and the The Norwegian Earth System Model (NorESM1-M).
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Notes: Results correspond to the climate model used in the paper (HadGEM2-ES).

Figure 5: Climate Change Impacts Based on Benchmark Hedonic Models With and Without
Control Variables
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Notes: Results correspond to the climate model used in the paper (HadGEM2-ES).

Figure 6: Climate Change Impacts Based on Benchmark Hedonic Models Estimated via Spatial
GMM
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Figure 7: Climate Change Impacts For Benchmark Model Based on the CanESM2
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Figure 8: Climate Change Impacts For Benchmark Model Based on the CCSM4
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Figure 9: Climate Change Impacts For Benchmark Model Based on the GFDL-ESM2M
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Figure 10: Climate Change Impacts For Benchmark Model Based on the NorESM1-M
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A. Pooled

B. State Fixed Effects

C. District Fixed Effects

Figure 11: Climate Change Impacts For Benchmark Model Based on A Uniform Scenario
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Notes: The model is based on a first-order neighborhood with equal weights. Climate change projections correspond to the
HadGEM2-ES climate model.

Figure 12: Climate Change Impacts Based on Direct Pooled Climate Variation

4 Variations of Climate Change Impacts for Preferred Model

4.1 Pooled Specification

Climate change impact results for the proposed model presented in the paper correspond to a direct model
with state fixed effects. I present the results based on a pooled specification in figure 12. Results are very
similar to those shown in the paper.

4.2 Stability from Control Variable Omission

Similarly to the benchmark model, I examine the stability of climate change impacts estimates based on
the preferred local model when omitting control variables. Figure 13 shows the preferred climate change
impacts reported in the paper together with climate change impacts based on local models that omit control
variables. Estimates without control variables tend to be more positive but remain statistically similar to
the main results presented in the paper.

4.3 Alternative Neighborhood Definitions

In the paper I rely almost exclusive on first-order neighborhood definitions. This choice was guided by
evidence suggesting that non-climate-related (climate-related) observables were uncorrelated (correlated)
with climate variables conditional on first-order neighborhood characteristics. Unfortunately, the evidence
also suggested that incidental correlations were present when higher order neighborhoods were considered.

Figure 14 shows climate change impact estimates based on the proposed models but with increasingly
expansive neighborhoods (second to fourth-order neighborhoods). The second-order estimates are very
similar to the first-order estimates presented in figure 12 as they cannot be distinguished from zero. However,
the third and especially the fourth-order proposed estimates are increasingly negative and significant for
recent cross-sections, resembling the time profile of the impact estimates of benchmark models. This pattern
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A. Pooled

B. State Fixed Effects

Notes: Results correspond to the climate model used in the paper (HadGEM2-ES).

Figure 13: Climate Change Impacts For Preferred Local Models With and Without Control
Variables
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A. Second-Order Neighborhood

B. Third-Order Neighborhood

C. Fourth-Order Neighborhood

Notes: All proposed models assume equal weights.

Figure 14: Climate Change Impacts Based on Neighborhood Conditional Climate Variation
and Varying Neighborhood Definitions with State Fixed Effects
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Notes: The weights correspond to the second-order neighborhood of Christian county, IL. Each point corresponds to one of its
18 second-order county neighbors. For relatively small counties with close-by neighbors, the inverse distance scheme typically
gives relatively greater weights to close neighbors than the Bartlett weights.

Figure 15: Climate Change Impacts Based on Direct Climate Variation and Varying Neigh-
borhood Definitions

matches simulation predictions in section 2 of this appendix and confirms the presence of a spatial confounder
which appears to gain influence toward more recent cross-sections.

4.4 Alternative Neighboring Weights

In the paper I relied on equal weights for each neighboring county. Here I show results for alternative
weighting schemes illustrated in figure 15 for the second-order neighborhood of a select county in the sample.
These weights include, equal, inverse of the squared root of the distance, inverse of the distance and linear or
Bartlett weights.6 I compute climate change impacts on US farmland values for the proposed direct models
based on these weighting schemes. Results are presented in figure 16 for the pooled model and show that
climate change impact estimates are fairly insensitive to the choice of neighborhood weights.7

4.5 Alternative GMM Estimator

In this section I present climate change impact estimates on farmland values based on the preferred “local”
model estimated via the spatial error model GMM estimator developed by Kelejian and Prucha (1999).
Results are presented in figure 17. Again, this estimator is more efficient than least squares estimators
but assumes a certain structure of error dependence. The error weight matrix that capture the spatial
dependence structure assumes a first-order neighborhood relationship with equal weights (the same structure

6The latter simply represents a weighting scheme that linearly decreases until it reaches 0 for a cutoff distance. Here the
cutoff distance is the maximum distance (in miles) to the farthest neighbor plus 1 mile.

7It appears that the choice of the size of the neighborhood is a more vital modeling choice than neighborhood weighting
schemes.
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A. Inverse of the Squared Root of the Distance Weights

B. Inverse Distance Weights

C. Linear or Bartlett Weights

Notes: All proposed models adopt a second-order neighborhood definition.

Figure 16: Climate Change Impacts Based on Pooled Direct Climate Variation and Varying
Neighborhood Definitions
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used to construct the neighborhood-average controls). Results are very similar for other weighting schemes,
including inverse distance, inverse of the squared root of the distance and Bartlett or linear weights. The
point estimates are negative under this estimator for relatively recent cross-sections. However, these are
largely statistically insignificant.

4.6 Alternative General Circulation Models (GCM)

Figures 18 through 22 present climate change impacts for the preferred model in the paper (first-order
neighborhood with equal weights) based on the 4 aforementioned General Circulation Models (GCMs) as
well as a uniform warming scenario of 5ºF and an increase of 8% in precipitation.

Figure 18: Climate Change Impacts For Preferred Model Based on the CanESM2

Figure 19: Climate Change Impacts For Preferred Model Based on the CCSM4
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A. Pooled

B. State Fixed Effects

Notes: Results correspond to the climate model used in the paper (HadGEM2-ES).

Figure 17: Climate Change Impacts For Preferred Model Based on a Spatial GMM Estimator
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Figure 20: Climate Change Impacts For Preferred Model Based on the GFDL-ESM2M

Figure 21: Climate Change Impacts For Preferred Model Based on the NorESM1-M
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Figure 22: Climate Change Impacts For Preferred Model Based on A Uniform Scenario
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