WP 2013-16 May 2013

Working Paper

Charles H. Dyson School of Applied Economics and Management Cornell University, Ithaca, New York 14853-7801 USA

Impacts of local food system activities by small direct-to-consumer producers in a regional economy: a case study from upstate NY

T.M. Schmit, B.B.R. Jablonski, and Y. Mansury

It is the Policy of Cornell University actively to support equality of educational and employment opportunity. No person shall be denied admission to any educational program or activity or be denied employment on the basis of any legally prohibited discrimination involving, but not limited to, such factors as race, color, creed, religion, national or ethnic origin, sex, age or handicap. The University is committed to the maintenance of affirmative action programs which will assure the continuation of such equality of opportunity.

Assessing the Economic Impacts of Local Food System Producers by Scale: A Case Study from New York

Abstract

Policymakers and economic developers are increasingly interested in the impacts of local food systems, yet attempts to obtain accurate estimates are often complicated by a lack of available data. Utilizing a unique data set from producers in New York, we examine the extent of differential purchasing and sales patterns for small-scale direct agriculture (SDA) producers. The supplemental data are integrated into a regional input-output model to assess the total effects and distributional implications of equivalent policies targeted to agriculture sectors. We demonstrate that SDA producers have different expenditure patterns than other agricultural producers and, for equivalent policy shocks targeted toward agriculture industry expansion, have lower total employment and output impacts, but higher effects on labor income and total value added than non-SDA producers. Our results underscore the importance of collecting appropriate data for analysis and outline the local economic benefits of small-scale local food system participants.

Assessing the Economic Impacts of 'Local' Food System Producers by Scale: A Case Study from New York

As interest in local food systems continues to grow, policymakers and economic developers grapple with better understanding the impacts on local communities and economies (Clancy, 2010; Jensen, 2010; King et al., 2010; Martinez et al., 2010; Pirog & O'Hara, 2013; The National Research Committee on Twenty-First Century Systems Agriculture, 2010). Often such interests are driven by efforts focused on improving diet and health outcomes (e.g., increasing consumption of locally-produced fresh fruits and vegetables) or improving healthy food access for disadvantaged consumers (e.g., establishing farmers' markets in rural or urban food deserts). On the producers' side, support for expanding local food marketing opportunities often centers on improving access to markets and profitability.

The role of small- and medium-scale producers in developing local and regional food systems has also attracted renewed attention. The strong growth in local food systems' direct-to-consumer (D2C) marketing channels in the United States, such as farmers' markets and community supported agriculture (CSA), are dominated by smaller-scale producers (Low & Vogel, 2011). Recent attention towards the development of regional food hubs and values-based supply chains has expanded marketing efforts to retail, wholesale, and institutional channels, and these efforts are often combined with a commitment to buy from small- to medium-sized local producers whenever possible (Barham et al., 2012; Hardesty et al., 2014).¹

Efforts to develop a better understanding of the purchasing and sales practices by smalland medium-scale producers are a vital step in quantifying their economic impacts. Indeed, Heady and Sonka (1974) used Input-Output (IO) analysis and mathematical programming techniques to simulate that smaller farms rather than larger farms that were encouraged by

agricultural policies could support greater income generation in rural communities. However, as Irwin et al. (2010) point out, empirical testing of this 'intriguing simulation result' has not yet occurred.

Efforts to assess the impacts of local agricultural and food system activities are often complicated by a lack of available data necessary for complete evaluation. Frequently, these efforts suffer from a lack of data that identify the major inter-industry linkages between these types of firms within the sectors of the food system and across other sectors of the local economy. Data problems are exacerbated when the analysis depends on information that is differentiated by firm size. Analyses that rely on aggregate data may distort the size of the policy impacts, particularly where purchasing and sales patterns of the reference group are distinct.

The primary purpose of this paper is to assess the local economic impact of small- and medium-scale producers with D2C sales relative to other agricultural producers. To accomplish this purpose, we must first estimate empirically the extent of differential patterns of purchases and sales between these two groups of producers. We develop estimates of these differential patterns of purchases and sales from a unique set of primary data on purchase and sales information generated from interviews with a random sample of small- and medium-scale producers in an 11-county region of New York that utilize D2C outlets within their marketing portfolio. From these data, we construct the sales and purchase patterns for a D2C agricultural sector of small- and medium-scale firms (henceforth the small direct agriculture sector or SDA) that is distinct from the data for sales and purchases that are commonly available for an aggregate agriculture sector (henceforth the default agriculture sector), but that do not distinguish purchase and spending patterns by firm size or market channel. Thus, in turn, we create two agriculture sectors from the default sector – the SDA sector and the non-SDA sector (NSDA).

Finally, we incorporate the redefined sectors into a input-output model framework, derive their distinct economic multipliers, and estimate the economic impacts of exogenous policy shocks to alternative agriculture sectors.² Importantly, we show that (*i*) the spending patterns between SDA and NSDA sectors differ considerably, (*ii*) the SDA sector relies less on intermediate imports (foreign and domestic) and has greater payments to value added than the NSDA sector, and (*iii*) equivalent policy shocks result in larger labor income and value added economic impacts (direct + indirect + induced) in the SDA sector. The results have important implications for economic development initiatives as priority may be given to expanding the SDA sector given relatively larger impacts to labor income and total value added.

We begin the rest of this paper by reviewing the context of economic impact analysis in relation to recent local food system studies and the research limitations provided with available aggregate data. This is followed by a description of the data collected and its use within the SAM framework. Finally, the empirical results are discussed, along with their implications and directions for future research.

Economic Impact Analyses and Local Food

To conduct economic impact analyses, one must have information about inter-industry linkages both within and among sectors of an economy; i.e., as a business or industrial sector buys from and sells goods and services to other sectors of the economy and to final users, the firm stimulates additional economic activity by other businesses and within other industrial sectors. A input-output model represents an accounting system that links the economic transactions within an economy among production sectors, factors of production, and institutions (Miller and Blair, 2009). Many economic impact assessments of local food systems are based on IMPLAN (IMpact Analysis for PLANning) data and software from the IMPLAN Group LLC (e.g., Otto & Varner,

2005; Hughes et al., 2008; Henneberry et al., 2009, Swenson, 2011a, 2011b, 2010; Gunter & Thilmany, 2012). As with any economic impact analysis based on a SAM, measures of the economic multipliers and other impacts are conditioned by the static framework assumed in the model—which imply that prices are constant, production takes place according to fixed-proportion, linear homogenous production functions, and production capacity is unlimited. These limitations often are of little consequence if the policy changes or other direct changes in the economy are relatively small compared with the overall size of the local economy.

The one exception that is perhaps critical in the study of local food systems relates to whether the input purchases and output sales patterns of the SDA sector are dissimilar to that of other agriculture sectors. The economic sectors reflect average purchase and sales patterns across all firms in the sector; thus, it is impossible to distinguish differential expenditure patterns of firms in the default IMPLAN default data. For this reason, the estimates of the impacts from increased local food sales based on existing IMPLAN data may be misleading if the SDA sector has different patterns of input expenditures (e.g., different production functions) and/or they purchase a different proportion of their inputs from local sources. In a relatively recent study, Hughes et al. (2008) point out that IMPLAN data may not reflect the input expenditure patterns of producers likely to participate in local and regional food systems, and they suggest that an area of future research could include making adjustments to default IMPLAN input coefficients to reflect more accurately the behavior of small operations. King et al. (2010) remark that local food system participants assume additional supply chain functions, and though they are not referring to expenditure patterns directly, there are potentially significant expenditure implications. In an earlier study, Lazarus et al. (2002b), caution that the aggregation of all types of swine operations into a single sector may be particularly problematic for the purpose of any

analysis of the economic impacts for the swine industry at a time of major structural changes in the industry.

By augmenting the IMPLAN database with the primary data needed to construct a new SDA sector, we can isolate the local economic impacts of these local food system participants. This paper builds on previous local food system studies that use primary data to augment or adjust IMPLAN data. While these studies attempt to quantify the differential aspects of particular local food system supply chains or sectors; e.g., farmers' markets (Otto & Varner, 2005; Hughes et al., 2008; Henneberry et al., 2009), farm-to-school programs (Gunter & Thilmany, 2012), and meat processing (Swenson, 2011a), none have looked specifically at the issue of differential economic impacts based on firm size. Platas (2000) and Lazarus et al. (2002a) estimate the differential economic impacts of exogenous shocks to alternative hog sectors differentiated by type of operation and firm size. This study adapts their data collection protocols to collect individual producer data on costs of production and levels of local spending with an application to local food systems impacts within a regional economy.

Methodology

A mixed methods approach is utilized to address the research objectives, where data from a case study area are collected and combined within an input-output modeling framework. We follow with a description of the case study data collected, how it is used within IMPLAN to derive the distinct SDA and NSDA sectors from the default agriculture sector.

Case Study Data

In 2011, data from agricultural producers were collected within an 11-county region in New York referred to as the Capital District (CD) region.³ Given our case study approach, generalizations of our results to other areas should be guided by the relative similarity of regional

characteristics, including agricultural production activities, as well as producers' access to input and output markets. The CD region has a wide diversity of agricultural production activities, with an emphasis on fruit and vegetable production. Access to output markets may be represented by the nature of the populations within a study area. The CD region is characterized by a large urbanized (metropolitan) core, surrounded by less urbanized (micropolitan) and nonurbanized areas. We expect our results to be reasonably representative of other regions with similar spatial population characteristics.

A team of Cornell Cooperative Extension (CCE) educators in the region identified farmers in each county that utilized D2C outlets as part of their marketing channel portfolio.⁴ Based on their knowledge of farming in the region the team identified 752 farms, a total remarkably consistent with data from the 2007 Census of Agriculture which reported that there were 797 farms in the region with D2C sales in 2007 (USDA, 2007b). We contacted a total of 130 farm operators (or 17% of the original farm population provided by CCE), each being selected randomly from the CCE population list of farms. The number of farms drawn by county was based on the percentage of all farms in the region according to farm counts by county from the 2007 Census of Agriculture (USDA, 2007a). Of the 130 farms contacted, 116 participated in interviews where the data was collected during the summer of 2011. A total of 97 interviews contained complete information and from which 82 were identified as small or mid-scale farms (i.e., had annual sales less than \$500,000). While several farms produced multiple types of commodities, based on commodity sales information collected, respondents were classified into categories by the primary commodity sold. According to this classification scheme, the distribution of farms was: 27% vegetables, 23% meat/livestock, 17% other crops, 15% fruit, 12% greenhouse/nursery, and 6% dairy. Given the relatively small sample of dairy producers and their

more limited attention in D2C markets in the sample, dairy farms were excluded from the final sample from which the average expenditure and sales patterns were constructed. Accordingly, the final sample contained 77 farm observations.

The interview protocol was designed to collect detailed information about the amount and location of farm expenditures (inputs) and farm sales (outputs).⁵ Farmers were asked to provide their 2010 annual farm operating expenditures by category, and the proportion of each expenditure purchased locally; i.e., purchased within the 11-county region.⁶ Expenditure categories and average expenditures per farm, differentiated by location of expenditure, are shown in Table 1. While the proportion of local expenditures varied by category, overall, 73% of expenditures reported in the survey were local. To create the SDA sector in IMPLAN, the survey expenditure categories were mapped to appropriate IMPLAN sectors. The mapping protocol is shown in the second column of Table 2 and discussed in more detail below.

[Table 1 here]

In addition to providing farm sales by commodity type, farmers were asked to provide the allocation of sales by marketing channel and the proportion of these sales classified as local. Sales locations should ideally reflect where geographically the products are destined for consumption or processing; however, this is sometimes unknown. Producers were instructed to use the operating location of the buying agent/firm if known (e.g., a food processing plant, a grocery store, or a local food distributor). If the buyer's place of operation or residence was unknown (e.g., consumers at a farmers' market, or wholesale auction barn), they were instructed to use the location of where the sales took place. Average sales per farm by marketing channel and location are reported in Table 2. Local sales exceeded non-local sales in all channels and,

overall, 90% of sales were local. As with expenditures, sales are mapped to relevant IMPLAN sectors (column 2) and are discussed in more detail below.

[Table 2 here]

IMPLAN Models

By default, the entire economy is represented by 440 sectors within IMPLAN. Each IMPLAN sector is represented by a single, static production function – a mathematical expression that relates the quantity of inputs required to produce the resulting output (Lazarus et al., 2002b; Liu & Warner, 2009).⁷ Total expenditures in each sector are distributed to intermediate purchases (i.e., local purchases of intermediate inputs from other sectors), payments to value added (i.e., employee compensation, proprietor income, other property type income, and indirect business taxes), intermediate imports (i.e., intermediate inputs purchased from outside the local economy, from domestic or foreign markets), and other sources (e.g., institutions, transfers to households, investments).

Using 2010 IMPLAN data, two multi-county models were constructed of the CD region. Model 1 contains a fully disaggregated sector scheme but for a default agriculture sector, and uses only existing IMPLAN data. The default agriculture sector aggregates the farm production sectors in IMPLAN consistent with the types of commodities produced by the final sample of surveyed SDA producers. This includes grains (IMPLAN sector 2), vegetables (3), fruit (4), greenhouse and nursery (6), other crops (10), non-dairy cattle (11), poultry (13) and other nondairy animal production (14). It excludes dairy (12) and oilseeds (1) production that are left separate, as well as tree nuts (5), tobacco (7), cotton (8), and sugarcane and sugar beets (9) that do not exist in the study area. Model 2 follows from Model 1 where the default agriculture sector is separated into two customized sectors - the SDA sector and the NSDA sector, utilizing the expenditure patterns and local spending shares from the survey data.

To create the SDA sector and apportion it from the default agriculture sector, we first determine the total size of the SDA sector in the study area. Since Table 1 and Table 2 provide estimates of average expenditures and sales per farm, averages can be scaled up by the estimated number of SDA farms in the region. The original population of farms identified with D2C sales in the CD region irrespective of farm size or primary commodity was 752 (see above), and 77 of the 97 farms sampled (79.4%) were classified as small- or medium-scale, non-dairy/non-oilseed farms. Multiplying this percentage by the gross number of D2C farms determines the estimated number of SDA farms in the region; i.e., 752 x .794 = 597. Note that the size (gross output) of the SDA sector (\$93,865 x 597 = \$56,037,405) is approximately 28% of the total default agriculture sector in the study area. While this ratio exceeds the ratio of D2C sales to total agricultural sales in the study area from Census data, sales in the SDA sector include both D2C and other non-D2C sales.

Farm survey expenditure categories were mapped to their corresponding IMPLAN sector (Table 1) and expenditure shares (or gross absorption coefficients (GAC) in IMPLAN language) were computed. Purchases of retail trade commodities were margined using national trade margins available in IMPLAN, with the non-retail margin portion allocated to a corresponding producing sector.⁸ Note that some expenditure categories were mapped to the SDA sector itself and represent purchases SDA producers made from other SDA producers in the region. Hired labor expenses (survey) were mapped to employee compensation (IMPLAN), and taxes (survey) were allocated to indirect business taxes (IMPLAN), both components of value added. Since total outlays must equal total value of total outputs in the model, the difference between total

sales and total expenditures (\$21,581/farm) was mapped to a combination of proprietor income (73%) and other property type income (27%), following the same relative distribution existing in the default agriculture sector (Model 1).

The SDA sector was created in IMPLAN by first customizing study area data. The tobacco farming sector (with zero activity in the region) was transformed into the SDA sector. Total sector estimates of employment, output, and value added were inserted, with the same amounts deducted from the default agriculture sector, thereby creating the NSDA sector. With a lack of sufficient employment (i.e., jobs) data from the survey, total SDA sector employment (631 jobs) was computed by dividing the total estimated employment compensation for the SDA sector (\$16,953/farm x 597 farms) by the ratio of employment compensation to employment in the default agriculture sector (\$16,037).

The next step involves customizing the expenditure pattern, or industry production function, for the SDA sector. Gross absorption coefficients (GAC), or technical input coefficients, for each commodity purchased (including margined sectors) were entered into IMPLAN for the SDA sector. In addition, GACs for each of the industries buying SDA commodities (Table 2) were edited to reflect the differential purchases between SDA and NSDA commodities (formerly purchases from the default agriculture sector). For SDA sales to retail trade sectors, sales were margined prior to estimating the revised GACs.

Customizing commodity production for the SDA sector followed. Commodities are produced by industries, some of which produce multiple commodities, generally a primary commodity and one or more byproducts. Given the data collected, we assume that the SDA sector produces only one SDA commodity.

The final step involves customizing trade flows to reflect the portion of commodities purchased by the SDA sector from local sources; i.e., the regional purchase coefficients (RPCs). By default, IMPLAN RPCs for each commodity are indifferent across all sectors that purchase it. For Model 2, we edit the RPCs for each of the commodities purchased by the SDA sector following the local spending percentages in Table 1. After making the customizations above for Model 2, the model was reconstructed in IMPLAN.

Results

The differences in local spending patterns between the default agriculture sector (Model 1) and the SDA and NSDA sectors (Models 2) can now be assessed along with the differential economic impacts from alternative exogenous shocks supporting agriculture industry expansion. *Local Purchasing Patterns*

Table 3 provides a summary of local expenditure patterns for the default agriculture sector (Model 1) and the SDA and NSDA sectors derived from it (Model 2). For ease of exposition, we aggregate the individual model sectors to the 2-digit NAICS level in the table, and exclude categories of expenditures where the intermediate purchases are zero for all of the agriculture sectors. As one would expect, the local purchasing patterns are similar for the Default and NSDA sectors since the SDA sector represented a relatively small proportion of the total default agriculture from where it was extracted. Accordingly, our attention will concentrate on differences between the NSDA and SDA sectors.

[Table 3 here]

In addition, all local intermediate agriculture purchases are included in the "All Agriculture Production" row. Specifically, for Model 1, "All Agriculture Production" includes purchases of the default agriculture sector from itself as well as from oilseed and dairy farming;

for Model 2, the NSDA and SDA purchases from "All Agriculture Production" include purchases from SDA, NSDA, and oilseed and dairy farming. As shown, the SDA sector has a lower level of local intermediate purchases from agriculture per unit of output (\$0.027) than the NSDA sector (\$0.059).

It is clear that the intermediate purchase patterns differ considerably between the SDA and NSDA sectors, with total local intermediate purchases by SDA at \$0.295 compared to \$0.367 for NSDA. In particular, SDA has higher local purchases for agricultural support activities, construction (repairs), utilities, and retail trade per dollar of output, whereas lower purchases are most apparent from manufacturers, transportation and warehousing, and real estate and rental. Differences in these spending patterns ultimately affect the level and distribution of multiplier effects.

By contrast, SDA contributes more to total value added per dollar of output (\$0.462) than NSDA (\$0.365). SDA producers rely less on hired labor given that proportionately more labor is provided by owner operators, and reflected in higher payments to proprietor income and other property type income. Higher business taxes per unit of output were also reported by the SDA producers in the region.⁹ Finally, the SDA sector imports less per unit of output than the NSDA sector (\$0.231 versus \$0.259).

Multipliers

The estimated multipliers for the alternative agricultural sectors (Table 4) demonstrate the consequences of the differential expenditure and sales patterns. For completeness, we include the multipliers from the default agriculture sector, but prioritize our attention to the disaggregate agriculture sector results. Consistent with a higher level of intermediate input purchases per dollar of output, the output multiplier for the NSDA sector (1.94) is above that for SDA (1.87).

Labor income multipliers are more similar and are consistent with the similar levels of outlays per unit of output to labor income (employee compensation + proprietor income) across the SDA and NSDA sectors.

[Table 4 here]

The size of the employment multiplier varies inversely with the direct employment coefficient; i.e., the amount of employment needed to produce one dollar of goods. Accordingly, the lower employee compensation per dollar of output in the SDA sector (Table 3) and (by assumption) equivalent wage rates in the SDA and NSDA sectors (see above), imply a higher SDA employment multiplier (Table 4). The result may appear counter-intuitive at first blush, but it is as it should be: the smaller the direct employment coefficient, the larger the direct change in output per additional job in that sector. Thus, there is a larger direct change in output for each additional job created to generate indirect and induced changes throughout the economy. The logic of the employment multiplier extends directly to the notion of the total value added multiplier. In our case, the higher total value added contributions per dollar of output for the SDA sector result in a lower total value added multiplier (2.12 versus 2.47).

The individual multipliers can be decomposed into their indirect and induced components and by industry sector that demonstrate the distributional impacts of a potential exogenous policy shock. These multiplier impacts depend on not only the inter-industry linkages between the agriculture and other sectors, but also on the composite of all inter-industry linkages between the sectors in the economy, and the induced impacts between sectoral changes and household consumption. Figures 1 and 2 show sector-specific contributions (indirect and induced effects) for the output and employment multipliers for the SDA and NSDA sectors, respectively. For output, Figure 1a orders the combined indirect and induced effects by industry from highest to

lowest for the SDA sector (the sum of all the columns will equal 0.87, see Table 4). Then, to help show differences in component contributions, the same order of industries is retained for Figure 1b, but now for the NSDA sector (the column sum here will equal 0.94, see Table 4). Consistent with Table 3, Figure 1a and 1b reveal clearly different multiplier contribution patterns; i.e., different related sector impacts. Figure 2a and 2b are similarly constructed, but now for the employment multipliers.

[Figures 1 and 2 here]

For output, comparisons across multiplier distributions show higher indirect and induced effects for the NSDA sector in the real estate and rental, manufacturing, and composite agriculture production sectors relative to the SDA sector, as well as for wholesale trade and transportation and warehousing (Figures 1a and 1b). Lower indirect effects from wholesale trade and transportation and warehousing for the SDA sector may well be the result of SDA producers taking on more of the functions of these sectors themselves. In addition, higher purchases from retail trade for the SDA sector also support higher multiplier contributions from this sector. For employment, higher contributions to the SDA multiplier come particularly from the agricultural support activities and retail trade sectors (Figures 2a and 2b).

Impact Results

To understand the overall extent of differential economy-wide impacts from expansion in alternative agriculture sectors, we imagine separate hypothetical scenarios where an exogenous shock (e.g., federal government spending to support agricultural economic development efforts) increases final demand by \$1M in the targeted agriculture sector.¹⁰ Through shocking each sector separately, we can assess the differences in the total economic impacts. As the initial stimulus is hypothetical, the specific magnitude of the shock is less important to our analysis than the

relative impacts across the affected sectors. However, relatively large changes in final demand may induce changes in the production function profiles of the industries affected. In our case, a \$1M shock to the SDA (NSDA) sector represents an increase in total output of about 1.8% (0.7%).¹¹

The impact summary of equivalent policy shocks (i.e., \$1M increase in final demand) is shown in Table 5. For completeness, we include total estimated effects for the default agriculture sector of the \$1M shock, but focus our comparisons on the differences in the SDA and NSDA results. To interpret the results, consider those for the shock to the SDA sector. Here, a \$1M shock contributes \$1.872M to total output when the indirect and induced effects are considered. Similarly, the total effects on employment, labor income, and total value added are 19.4 jobs, \$0.641M, and \$0.982M, respectively. Total employment effects for the SDA sector are 16.6% lower compared to an equivalent NSDA sector shock, and is consistent with the lower reliance (per unit of output) for hired labor. Lower intermediate purchases for the SDA sector is also revealed in a 3.6% lower total output effect.

[Table 5 here]

In contrast, the total effects for labor income (employee compensation and proprietor income) and total value added are 7.3% and 8.7% higher, respectively, for the SDA sector. These results reflect in part, the higher contributions to total value added per unit of output for the SDA sector (the direct effect), as well as larger indirect and induced impacts from the support activities for the agricultural and forestry sector, a sector with high labor requirements per unit of output.

Discussion and Conclusions

The results of our analysis have significant implications for policies promoting local economic development. First, the results confirm that existing secondary data is ill-equipped to adequately describe the spending patterns for SDA producers in the CD region and, therefore, caution is advised in utilizing default secondary data to accurately estimate economic impacts from stimuli or policy shocks aimed at expanding the SDA sector. Intermediate purchase patterns are distinctly different from those assumed in existing secondary (IMPLAN) sources, both in terms of technical input (production function) coefficients, as well as local spending parameters (regional purchase coefficients). Furthermore, the SDA sector relies less on intermediated imports and has greater payments to value added. This is a significant result, as studies relying on default IMPLAN agriculture sectors that attempt to calculate the impact of local and regional food systems do not reflect an accurate picture of impact of the small- and mid-scale farms that dominate D2C sales channels.

Second, studies that calculate the impact of local food systems utilizing default IMPLAN agriculture sectors will either under- or over-estimate the true magnitude of the local economic impact from the expansion of these sectors, depending on the metric under consideration. From equivalent policy shocks, we show that the SDA sector has lower total economic impacts for employment and output, but higher impacts for labor income and total value added, than the NSDA sector. Understanding these differential impacts will importantly guide policy development aimed at industry expansion where policy objectives may be ill-defined. In particular, the larger impacts on total value added; i.e., differential contributions to an economy's gross domestic product, may be particularly useful in justifying spending of public monies to support the changes in final demand in the SDA sector. Policy goals and objectives of resourcelimited entities, however, may not be this simple. If policymakers are more concerned with the

jobs enhancement or total economic (output) activity, alternative recommendations to the NSDA sector arise. One can also consider a closer inspection of the distribution of impacts than evaluated here. For example, SDA has a higher utilization of inputs from the support activities for agriculture and forestry sector—a sector with high relative labor requirements. Since many of the services included in this sector require employees with specialized skills (e.g., breeding, crop and livestock professional services, spray crop chemicals/herbicides), do the demands for these services foster growth in relatively more skilled labor?

Future Research

This study presents information based on one case study, and the expandability of its recommendations will clearly benefit from additional research and data collection. Determining, for example, the specific types of input markets that promote additional local purchases by the agricultural sector is important in devising and prioritizing economic development strategies for business recruitment and retention.

While important, this type of economic impact assessment does not provide insight into the long-run impacts of a particular policy shock. Input-output models provide a snapshot of the economy at a given point in time. To provide a longer term perspective, it may be important to determine the extent to which the small direct agricultural producer's purchases of local inputs affect their profitability; i.e., is it more profitable to purchase inputs from a non-local source? Based on USDA survivability data, Platas (2000) and Lazarus et al. (2002a) note that small and mid-scale hog operations are less likely to be in operation five years into the future, than are large-scale operations. Thus, an assessment of how increased local purchases by the small direct agricultural sector may contribute to or impede profitability is a key point for future research. The answers may have significant repercussions for selecting appropriate policies.

This study also does not address the within-sector distributional impacts. Because of data limitations and disclosure concerns for individual agricultural production sectors (e.g., fruits and vegetables, livestock, dairy), we could not investigate policies targeted to specific agricultural production sectors. Given distinct differences in agricultural production activity across regions, a more micro-level approach would help to identify effective sector-based policies.

Finally, the design of appropriate survey instruments should not be overlooked. Translating traditional income statement categories of more familiarity to producers is less convenient when mapping to IMPLAN sectors. Surveys should be designed to better elucidate who the seller of products are that farm operators are purchasing from (retailers, manufacturers, etc.), as well as allocations to components of value added (e.g., proprietor income, other property type income), in addition to the locality of where the purchases were made.

The Capital District region in New York State includes the counties of Albany, Columbia, Fulton, Greene, Montgomery, Rensselaer, Saratoga, Schenectady, Schoharie, Warren and Washington.

⁴ Note that the many of the farms also utilized other types of (non-D2C) market outlets in their portfolio (see Table 2). ⁵ A copy of the interview protocol is available upon request from the corresponding author.

⁶ Note that capital expenditure data were not available in the survey, however, their absence does not affect our multiplier estimates. In the input-output/Social Accounting Matrix (SAM) framework, capital expenses are treated as investments, also known as "fixed capital formation" in the SAM literature. This type of expenses is distinct from I-O expenses, which are part of the producer budget that has been earmarked for current production of output. Investments, on the other hand, are motivated by the desire to enhance future capacity. Because of the inter-temporal nature of investments (the costs are incurred today but the reward is realized in the future), the capital account is rendered exogenous in all our models. The exogeneity assumption means that capital expenses have no any bearing on the multiplier estimates.

⁷ For an in-depth discussion of how production functions are constructed within IMPLAN, see Lazarus et al. (2002b).

For example, total purchases of fuel and oil (\$5,533) were assumed to be evenly allocated to retail trade gasoline (IMPLAN commodity 3326) and retail nonstore (3331) purchases. The total purchases of retail trade gasoline (\$2,844.50) were then multiplied by the retail trade gasoline margin (15.0%) and applied to 3326, with the balance allocated to petroleum refineries (3115). Purchases of wholesale trade commodities would also need to be margined, but no wholesale trade purchases were included in the survey data (Table 1).

⁹ Indirect business taxes consist of excise taxes, property taxes, fees, licenses, and sales taxes paid by businesses (IMPLAN Group LLC, 2012).

¹⁰ Final demand is the value of goods and services produced and sold to final users (institutions). Final use means that the good or service will be consumed and not incorporated into another product.

¹¹ As pointed out by a reviewer, modelling an increase in federal support of \$1 million would also require modelling a corresponding decrease in household expenditures due to households paying additional taxes to cover the increased cost of the program. However, given the relatively small level of increased costs incurred to households, and the fact that households would face the same cost whether the program supported either SDA or NSDA producers, we omit this technical detail from the analysis.

¹ The U.S. Department of Agriculture defines a regional food hub as "...a business or organization that actively manages the aggregation, distribution, and marketing of source-identified food products primarily from local and regional producers to satisfy wholesale, retail, and institutional demand" (Barham et al. 2012, p.4).

² Technically we incorporate our analysis into a regional IMPLAN Social Accounting Matrix (SAM). A typical SAM provides a mapping into a functional category for households, usually based on household income class. point; however, the IMPLAN SAM does not serve this purpose except under very, very restricted conditions (see Alward, G. 1996).

References

- Alward, G., and S. Lindall. (1996). Deriving SAM Multipliers Using IMPLAN. In *Deriving SAM Multiplier Models Using IMPLAN*. Paper presented at the IMPLAN Users Conference.
 August 15-16, 1996. Minneapolis, MN.
- Barham, J., Tropp, D., Enterline, K., Farbman, J., Fisk, J., & Kiraly, S. (2012). *Regional food hub resource guide*. Retrieved from http://www.ams.usda.gov/AMSv1.0/foodhubs.
- Clancy, K. (2010). *A priority research agenda for agriculture of the middle*. Retrieved from http://www.agofthemiddle.org/archives/2010/05/a_priority_rese.html.
- Gunter, A., & Thilmany, D. (2012). Economic implications of farm to school for a rural Colorado community. *Rural Connections*, 6, 13–16.
- Hardesty, S., Feenstra, G., Visher, D., Lerman, T., Thilmany-McFadden, D., Bauman, A., Gillpatrick, T., & Rainbolt, G.N. (2014). Values-based supply chains: Supporting regional food and farms. *Economic Development Quarterly*, 28(1), 17-27.
- Heady, E.O., & Sonka, S.T. (1974). Farm size, rural community income, and consumer welfare. *American Journal of Agricultural Economics*, 56, 534–542.
- Henneberry, S.R., Whitacre, B., & Agustini, H.N. (2009). An evaluation of the economic impacts of Oklahoma farmers markets. *Journal of Food Distribution Research*, 40, 64–78.
- Hughes, D.W., Brown, C., Miller, S., & McConnell, T. (2008). Evaluating the economic impact of farmers' markets using an opportunity cost framework. *Journal of Agricultural and Applied Economics*, 40, 253–265.

- Irwin, E.G., Isserman, A.M., Kilkenny, M., & Partridge, M.D. (2010). A century of research on rural development and regional issues. *American Journal of Agricultural Economics*, 92, 522-553.
- Jensen, J.M. (2010). *Local and regional food systems for rural futures*. Columbia, MO: Rural Policy and Research Institute.
- King, R., Hand, M.S., DiGiacomo, G., Clancy, K., Gomez, M.I., Hardesty, S.D., Lev, L., &
 McLaughlin, E.W. (2010). *Comparing the structure, size, and performance of local and mainstream food supply chains* (ERR-99). Washington, DC: U.S. Department of Agriculture, Economic Research Service.
- Lazarus, W.F., Platas, D.E., Morse, G.W., & Guess-Murphy, S. (2002a). Evaluating the economic impacts of an evolving swine industry: The importance of regional size and structure. *Review of Agricultural Economics*, 24, 458–473.
- Lazarus, W.F., Platas, D.E., & Morse, G.W. (2002b). IMPLAN's weakest link: Production functions or regional purchase coefficients? *Journal of Regional Analysis and Policy*, 32, 33–49.
- Liu, Z., & Warner, M. (2009). Understanding geographic differences in child care multipliers:
 Unpacking IMPLAN's modeling methodology. *Journal of Regional Analysis and Policy*, 39, 71–85.
- Low, S.A., & Vogel, S. (2011). Direct and intermediated marketing of local foods in the United States (ERR 128). Washington, DC: U.S. Department of Agriculture, Economic Research Service.

- Martinez, S., Hand, M., DaPra, Pollack, S., Ralston, K., Smith, T., Vogel, S., Clark, S., Luanne,
 L., Low, S., & Newman, C. (2010). *Local food systems: Concepts, impacts, and issues* (ERR 97). Washington, D.C.: U.S. Department of Agriculture, Economic Research Service.
- Miller, R., & Blair, P. (2009). *Input-output analysis: foundations and extensions*. New York, NY: Cambridge University Press.
- O'Hara, J., & Pirog, R. (2013). Economic impacts of local food systems: Future research priorities. *Journal of Agriculture, Food Systems, and Community Development*, 3, 35-42.
- Otto, D., & Varner, T. (2005). *Consumers, vendors, and the economic importance of Iowa farmers' markets: An economic impact survey analysis.* Ames, IA: Leopold Center for Sustainable Agriculture, Iowa State University.
- Platas, D.E. (2000). Economic and fiscal impacts of different sizes of swine operations on Minnesota counties (PhD thesis). St. Paul, MN: University of Minnesota.
- Swenson, D. (2011a). Exploring small-scale meat processing expansions in Iowa. Ames, IA: Leopold Center for Sustainable Agriculture, Iowa State University.
- Swenson, D. (2011b). Measuring the economic impacts of increasing fresh fruit and vegetable production in Iowa considering metropolitan demand. Ames, IA: Leopold Center for Sustainable Agriculture, Iowa State University.
- Swenson, D. (2010). Selected measures of the economic values of increased fruit and vegetable production and consumption in the upper Midwest. Ames, IA: Leopold Center for Sustainable Agriculture, Iowa State University.

- The National Research Committee on Twenty-First Century Systems Agriculture (2010). *Toward sustainable agricultural systems in the 21st Century*. Washington, D.C.: The National Academies Press.
- U.S. Department of Agriculture (USDA) (2007a). *Census of Agriculture, State and County Profiles*. Washington, DC: National Agriculture Statistics Service.
- U.S. Department of Agriculture (USDA) (2007b). *Food Environment Atlas*. Washington, DC: Economic Research Service.

		Average expenditures per farm			
			Non-		
	IMPLAN commodity or	Local	local	Total	Percent
Survey category	value added mapping ¹	(\$)	(\$)	(\$)	Local
Fuel, oil	3326, 3331	5,533	156	5,689	97%
Machine/ building repair	3039, 3417	5,687	757	6,444	88%
Machine hire, trucking	3335, 3362, 3365	557	124	680	82%
Record keeping/analysis services	3368	856	0	856	100%
Real estate rental/ lease	3360	975	0	975	100%
Insurance	3357, 3358	2,965	876	3,841	77%
Utilities	3031, 3032, 3033	4,529	267	4,796	94%
Livestock grain	SDA, NSDA, 3323	946	137	1,083	87%
Livestock forage/ bedding	SDA, NSDA	377	0	377	100%
Replacement livestock	SDA, NSDA	252	364	616	41%
Veterinarian	379	272	36	308	88%
Breeding	3019	0	49	49	0%
Livestock professional services	3019	474	0	474	100%
Other livestock expenses	3019	135	6	141	96%
Fertilizer and lime	3323	2,772	383	3,155	88%
Seeds and plants	3323	1,747	5,283	7,030	25%
Spray crop chemical/herbicide	3323	2,334	496	2,830	82%
Crop professional services	3019	390	209	600	65%
Other crop expenses	3019	941	217	1,159	81%
All operating expenses	3019	5,080	4,244	9,325	54%
Total intermediate purchases		36,824	13,603	50,427	73%
	Proprietor income,				
Difference between total sales	Other property type				
and total operating expenses ²	income	21,581	0	21,581	100%
Hired labor	Employee compensation	16,792	161	16,953	99%
Taxes	Indirect business taxes	4,656	249	4,905	95%
Total value added contribution		43,028	410	43,439	99%
Total outlays		79,852	14,014	93,865	85%

Table 1. Average operating expenses per farm, small direct agriculture producers, Capital District Region NYS, by category and location of expenditure, 2010.

Source: Producer survey, Capital District Region, NYS, 2010.

¹ Mappings to multiple commodities are assumed to be evenly distributed between them. For example, for livestock grain, we assume that one-third of purchases are made from retail farm supply stores (3323), one-third from other small direct agriculture producers (SDA), and one-third from non-small direct agriculture producers (NSDA). Where purchases are for retail trade commodities, purchases are margined when creating the SDA sector.

 2 The relative contributions to proprietor income and other property type income are assumed to be the same as the relative distribution in the default agriculture IMPLAN sector, 73% and 27%, respectively.

	_	Average sales per farm			
			Non-		
	IMPLAN sector	Local	local	Total	Percent
Survey Channel	mapping	(\$)	(\$)	(\$)	local
Direct-to-Consumer	Households	65,579	3,715	69,294	95%
Other farmers ¹	SDA, NSDA	5,763	97	5,860	98%
Restaurants	413	3,729	351	4,079	91%
Retail grocers ²	324, 329, 330	8,767	2,309	11,077	79%
Wholesalers/processors ³	43, 54, 59	1,189	2,367	3,556	33%
Total		85,027	8,839	93,865	90%

Table 2. Average sales per farm, small direct agriculture producers, Capital District Region NYS, by channel and location of sales, 2010.

Source: Producer survey, Capital District Region, NYS, 2010.

 1 SDA = small direct agriculture sector, NSDA = Non-small direct agriculture sector. Sales to SDA based on level of intra-sector purchases (Table 1), with balance of sales to NSDA.

² The distribution of total sales to alternative retail trade sectors is proportional to the sectors' gross output levels in the study area. Sales are subsequently margined by national retail trade margins in IMPLAN and the retail sector production functions are edited to reflect purchases from SDA distinct from NSDA.

³ Given near-zero purchases by the wholesale sector (319) of agriculture production commodities in the default IMPLAN data, wholesale/processor sales are fully allocated to processing sectors (43, 54, 59) based on the distribution of comparable producer types (other crops (21%), fruit and vegetable (51%), and meat products (28%)) in the survey data.

	Value of outlays per dollar of output			
	Default	NSDA	SDA	
Category of outlays	(Model 1)	(Model 2)	(Model 2)	
All Agriculture Production (1-14) ³	0.043	0.059	0.027	
Support activities for ag & forestry (19)	0.050	0.048	0.059	
Mining (20-30)	0.002	0.002	0.000	
Utilities (31-33)	0.015	0.016	0.031	
Construction (34-40)	0.005	0.005	0.030	
Manufacturing (41-318)	0.066	0.070	0.017	
Wholesale trade (319)	0.019	0.020	0.000	
Retail trade (320-331)	0.001	0.001	0.039	
Transportation and warehousing (332-340)	0.018	0.019	0.001	
Information services (341-353)	0.001	0.001	0.000	
Finance and insurance (354-359)	0.038	0.040	0.032	
Real estate and rental (360-366)	0.066	0.069	0.012	
Professional services (367-380)	0.007	0.007	0.012	
Administrative and waste services (382-390)	0.001	0.001	0.000	
Educational services (391-393)	0.002	0.002	0.000	
Accommodations (411-413)	0.001	0.001	0.000	
Other services (414-426, 433-436)	0.001	0.001	0.016	
Government (427-432, 437-440)	0.005	0.006	0.017	
Total intermediate purchases	0.341	0.367	0.295	
Employee compensation	0.229	0.248	0.181	
Proprietor income	0.106	0.082	0.167	
Other property type income	0.039	0.030	0.062	
Indirect business taxes	0.018	0.005	0.052	
Total payments to value added	0.393	0.365	0.462	
Institutional purchases	0.009	0.009	0.013	
Intermediate imports (foreign and domestic)	0.257	0.259	0.231	
Total outlays	1.000	1.000	1.000	

Table 3. Aggregated summary of expenditures per dollar of output for the default agriculture, non-small direct agriculture (NSDA), small direct agriculture (SDA) sectors, Capital District Region, NYS, 2010.^{1,2}

¹ The defined agricultural production sector is an aggregation of production sectors in IMPLAN consistent with the types of commodities produced by the surveyed SDA producers. This includes grains (2), vegetables (3), fruit (4), greenhouse and nursery (6), other crops (10), non-dairy cattle (11), poultry (13), and other non-dairy animal production (14). It excludes dairy (12) and oilseeds (1) production that are left separate, as well as tree nuts (5), tobacco (7), cotton (8), and sugarcane and sugar beets (9) that do not exist in the study area.

² Expenditure patterns are aggregated to the 2-digit NAICS level (but for the agriculture and agricultural support sectors). Categories of indirect purchases where all agriculture sectors have zero purchases are excluded. The default agriculture expenditure pattern utilizes default IMPLAN data prior to splitting the sector into the SDA and NSDA sub-sectors (Model 1). The NDSA and SDA expenditure patterns are based on survey-derived gross absorption coefficients and regional purchase coefficients (Model 2).

³ Values represent purchases for all agricultural sectors, including dairy and oilseed farming. For the SDA and NSDA patterns, they include combined local purchases from SDA, NSDA, oilseed, and dairy farming.

Model 1	Model 2	
Default	NSDA	SDA
1.53	1.50	1.73
1.76	1.81	1.84
2.32	2.47	2.12
1.90	1.94	1.87
	Model 1 Default 1.53 1.76 2.32 1.90	Model 1 Model Default NSDA 1.53 1.50 1.76 1.81 2.32 2.47 1.90 1.94

Table 4. Multipliers for the Default Agriculture, Small Direct Agriculture (SDA), and Non-Small Direct Agriculture (NSDA) sectors.¹

¹ Capital District Region, New York State, 2010.

			Total				Total	
		Labor	Value			Labor	Value	
Impact Type	Employment	Income	Added	Output	Employment	Income	Added	Output
Model 1 ²		Default Ag	riculture					
Direct Effect	14.3	\$335,711	\$392,871	\$1,000,000				
Indirect								
Effect	4.2	\$121,915	\$249,783	\$471,572				
Induced								
Effect	3.4	\$134,223	\$268,614	\$428,993				
Total Effect	21.8	\$591,848	\$911,268	\$1,900,565				
Model 2^3	Non-Sm	all Direct Ag	griculture (N	SDA)	Sma	all Direct Ag	riculture (SD	A)
Direct Effect	15.5	\$330,655	\$365,119	\$1,000,000	11.3	\$348,446	\$462,776	\$1,000,000
Indirect								
Effect	4.4	\$131,264	\$267,927	\$510,696	4.5	\$146,372	\$226,934	\$406,015
Induced								
Effect	3.4	\$135,129	\$270,432	\$431,964	3.7	\$145,935	\$292,077	\$466,458
Total Effect	23.3	\$597,048	\$903,479	\$1,942,660	19.4	\$640,753	\$981,787	\$1,872,472

Table 5. Impact summary of \$1 million shock to alternative agriculture production sectors, 2010 dollars.¹

¹ The defined agricultural production sector is an aggregation of production sectors in IMPLAN consistent with the types of commodities produced by the surveyed SDA producers. This includes grains (2), vegetables (3), fruit (4), greenhouse and nursery (6), other crops (10), non-dairy cattle (11), poultry (13), and other non-dairy animal production (14). It excludes dairy (12) and oilseeds (1) production that are left separate, as well as tree nuts (5), tobacco (7), cotton (8), and sugarcane and sugar beets (9) that do not exist in the study area.

² The results from Model 1 utilize the agricultural sector as described above, prior to splitting the sector into the SDA and NSDA sub-sectors.

³ The results from Model 2 separate the default agricultural sector into the SDA and NSDA sectors based on the survey data.

Figure 1. Decomposition of output multiplier for Small Direct Agriculture (SDA) and Non-Small Direct Agriculture (NSDA) sectors

Figure 2. Decomposition of employment multiplier for Small Direct Agriculture (SDA) and Non-Small Direct Agriculture (NSDA) sectors

OTHER A.E.M. WORKING PAPERS

WP No	Title	Fee (if applicable)	Author(s)
2013-15	The Operational Dimensions of Results-Based Financing	0'	Brien, T. and R. Kanbur
2013-14	Identifying Factors Influencing a Hospital's Decision to Adopt a Farm-toHospital Program	Sr	nith, II, B., Kaiser, H. and M. Gómez
2013-13	The State of Development Thought	Cu	urrie-Alder, B., Kanbur, R., Malone, D. d R. Medhora
2013-12	Economic Inequality and Economic Development: Lessons and Implications of Global Experiences for the Arab World	Ka	anbur, R.
2013-11	An Agent-Based Computational Bioeconomic Model of Plant Disease Diffusion and Control: Grapevine Leafroll Disease	At Ny	allah, S., Gómez, M., Conrad, J. and J. /rop
2013-10	Labor Law violations in Chile	Ka	anbur, R., Ronconi, L. and L. Wedenoja
2013-09	The Evolution of Development Strategy as Balancing Market and Government Failure	De	evarajan, S. and R. Kanbur
2013-08	Urbanization and Inequality in Asia	Ka	anbur, R. and J. Zhuang
2013-07	Poverty and Welfare Management on the Basis of Prospect Theory	Jä Pi	ntti,M., Kanbur, R., Nyyssölä, M. and J. rttilä
2013-06	Can a Country be a Donor and a Recipient of Aid?	Ka	anbur, R.
2013-05	Estimating the Impact of Minimum Wages on Employment, Wages and Non-Wage Benefits: The Case of Agriculture in South Africa	Br	norat, H., Kanbur, R. and B. Stanwix
2013-04	The Impact of Sectoral Minimum Wage Laws on Employment, Wages, and Hours of Work in South Africa	Br	norat, H., Kanbur, R. and N. Mayet
2013-03	Exposure and Dialogue Programs in the Training of Development Analysts and Practitioners	Ka	anbur, R.
2013-02	Urbanization and (In)Formalization	GI	nani, E. and R. Kanbur
2013-01	Social Protection: Consensus and Challenges	Ka	anbur, R.

Paper copies are being replaced by electronic Portable Document Files (PDFs). To request PDFs of AEM publications, write to (be sure to include your e-mail address): Publications, Department of Applied Economics and Management, Warren Hall, Cornell University, Ithaca, NY 14853-7801. If a fee is indicated, please include a check or money order made payable to <u>Cornell University</u> for the amount of your purchase. Visit our Web site (*http://aem.cornell.edu/research/wp.htm*) for a more complete list of recent bulletins.