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An Agent-Based Computational Bioeconomic Model of Plant Disease Diffusion and 

Control: Grapevine Leafroll Disease 

 

Abstract 

Grapevine leafroll disease threatens grape harvests in the United States and around the world. 

This viral disease reduces yield, delays fruit ripening, and affects wine quality. Its spatial-

dynamic diffusion process remains poorly understood and little is known about profit-

maximizing control strategies. In this article, we model the disease spatial-dynamic diffusion in a 

vineyard, evaluate nonspatial and spatial control strategies, and rank them based on expected net 

present values. Nonspatial strategies consist of roguing and replacing symptomatic grapevines 

with and without considering vine age. In spatial strategies, symptomatic vines are rogued and 

replaced, and their nonsymptomatic neighbors are virus-tested, then rogued and replaced if the 

test is positive. We find that age-structured strategies outperform their nonage-structured 

counterparts. More importantly, we show that spatial strategies dominate nonspatial strategies, 

increasing the vineyard expected net present value by 40 percent relative to the baseline of no 

control. 

 

Key words: Agent-based Computational Economics, Agriculture, Bioeconomic Models, Disease 

Control, Grapevine Leafroll Disease, Spatial-Dynamic Processes  

JEL Codes: C15, C63, D24, Q12 
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Grapevine leafroll disease (GLRD) presently threatens grape harvests in the United States (Fuchs 

et al. 2009; Golino et al. 2008; Martin et al. 2005) and around the world (Cabaleiro et al. 2008; 

Charles et al. 2009; Martelli and Boudon-Padieu 2006). This viral disease reduces yield, delays 

fruit ripening, and affects wine quality by lowering soluble solids and increasing fruit juice 

acidity (Goheen and Cook 1959; Martinson et al. 2008). Its economic impact was recently 

estimated at $25,000- $40,000 per hectare over a 25 year-period in New York State vineyards if 

the disease is left uncontrolled (Atallah et al. 2012). GLRD is primarily transmitted via 

vegetative propagation. However, there is increasing evidence that, once introduced through 

infected planting material, the disease is transmitted to healthy vines by several species of 

mealybugs (Hemiptera: Pseudococcidae) and soft-scale insects (Hemiptera: Coccidae) (Martelli 

and Boudon-Padieu 2006; Pietersen 2006; Tsai et al. 2010). Recent plant pathology studies have 

examined the spatiotemporal insect-facilitated diffusion patterns of the disease (Cabaleiro et al. 

2008; Jooste et al. 2011). However, the spatial dynamics of the disease spread process remains 

poorly understood and profit-maximizing strategies to control disease diffusion are unclear.  

Multiple disciplines have taken complementary approaches when modeling disease 

diffusion and control, including ecology, economics and epidemiology. Generally, this literature 

employs aggregate models (often referred to as top-down models) that make simplifying 

assumptions in order to ensure mathematical tractability. These assumptions include perfect 

population mixing and homogeneity of the agents under study. They are too restrictive, 

particularly for decision-makers who might want to develop disease intervention programs 

targeting specific heterogeneous agents based on their role in disease transmission (Greenhalgh 

2011). More recently, with dramatic decreases in computational costs, agent-based modeling 

(ABM) has emerged as a tractable theoretical and experimental framework to study complex 
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adaptive systems (Miller and Page 2007). Disease diffusion systems can be treated as complex 

adaptive systems because they are composed of adaptive agents whose local interactions produce 

outcomes that cannot be wholly explained by breaking down the system into its individual parts 

(Miller and Page 2007; Teose et al. 2011).The bottom-up approach of ABMs allows the analyst 

to account for complex interactions between heterogeneous agents. However, a primary 

disadvantage is that the relatively easier model construction and validation of top-down 

aggregate models is lost (Osgood 2007). ABMs are also harder to parameterize and validate 

(Rahmandad and Sterman 2008). When used in epidemiological research, these two modeling 

paradigms have yielded results that are consistent in some cases (e.g. Schneckenreither et al 

2008), while divergent in their public policy implications in other cases (e.g. Rahmandad and 

Sterman 2008).  

This paper develops an agent-based computational bioeconomic model of disease 

diffusion and control to identify profit-maximizing strategies for GLRD diffusion control. The 

model allows for a full spatial-dynamic characterization of the disease diffusion. It relaxes the 

assumptions of homogeneity and perfect mixing. Instead, in the model, the choice of disease 

control strategy takes into account agent heterogeneity in location, virus detectability, age, own 

infection state, and infection states of vines in the neighborhood. We examine the impact of 

alternative disease control strategies on a distribution of bioeconomic outcomes and rank them 

based on the vineyard expected net present values they yield. We find that profit-maximizing 

strategies reflect important ecological and economic tradeoffs in the location, timing, and 

intensity of disease control. The results highlight the potential of novel, vine-level, spatial 

strategies in reducing the economic impacts of GLRD under imperfect information. In addition, 

our results can be generalized to address disease diffusion and control issues in other perennial 
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crops. We are not aware of previous work in agricultural and resource economics or agent-based 

computational economics that formulates an agent-based model of plant disease diffusion and 

control. 

 

Literature Review   

The unique characteristics of certain insect-transmitted plant diseases condition the choice of 

modeling approaches. In general, such diseases are controlled by reducing the population of 

disease vectors and minimizing secondary sources of infection by roguing (removing) infected 

plants and replacing them with healthy ones (Chan and Jeger 1994). In the case of GLRD, 

however, insect vectors can have a short infectivity retention period 1 and can spread disease 

rapidly, even if their population is kept at a low density (Tsai et al. 2008). This transmission 

characteristic renders vector control methods ineffective in the case of GLRD (Cabaleiro and 

Segura 2006, 2007) and limits the applicability of existing pest and damage control models 

(Babcock, Lichtenberg, and Zilberman 1992; Saphores 2000). 

Plant heterogeneity is the second characteristic of many diseases and suggests the need to 

develop plant-level models for optimal GLRD disease control. Specifically, individual vines that 

are infected but nonsymptomatic are heterogeneous in the time it takes for their virus population 

to be detectable (Cabaleiro and Segura 2007; Constable et al. 2012). An additional relevant 

plant-level characteristic results from the age-dependency in the latency period of the disease. In 

the case of GLRD, this latency period is decreasing with age causing younger vines to transition 

from the latent to the infective states faster than older ones (Pietersen 2006).  

A third characteristic of plant diseases is that they are simultaneously driven by 

integrated dynamic and spatial forces, rather than by dynamic processes alone. When diseased 
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plants are heterogeneously distributed in space and the physical environment includes spatial 

constraints on disease diffusion, the efficiency of disease control is affected by its location, 

timing, and intensity. Therefore, effective control has to simultaneously consider the spatial 

gradient of disease diffusion and the spatial gradient of revenues. Taken together, these three 

characteristics call for plant-level, spatial-dynamic models of disease diffusion and control. 

Aggregate Bioeconomic Models 

Research on the economics of agricultural disease control has increasingly moved away from 

pest threshold models (Hall and Norgaard 1973 and towards integrated epidemiological models 

(Beach et al. 2007; Fenichel and Horan 2007; Horan and Wolf 2005) that incorporate feedbacks 

between economic and disease diffusion components within the model. These models typically 

aggregate individuals into disease-state (e.g. Horan et al. 2010) or age-state (e.g. Tahvonen 2010) 

compartments, and employ differential or difference equations (DEs) to represent transition 

between states.  However, DEs assume within-compartment homogeneity and population perfect 

mixing (Brauer and Castillo-Chavez 2001). These assumptions are limiting in disease modeling, 

especially in the case of GLRD where (1) plants are heterogeneous in disease detectability, (2) 

population age-structure is critical to disease transmission, and (3) disease diffusion follows 

imperfect mixing processes (Pietersen 2006; Constable et al. 2012). The homogeneity 

assumption of aggregate models is particularly restrictive because it precludes the formulation 

and testing of disease control strategies targeting agents based on their heterogeneous, spatial-

dynamic attributes. These assumptions can be relaxed to represent distinct groups exhibiting 

preferential mixing or other important characteristics by increasing the number of subpopulations 

or dividing the subpopulations into smaller stocks (e.g. Medlock and Galvani 2009). This 

process, however, leads to an explosion in the number of state variables, equations, parameters, 
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and data requirements (Teose et al. 2011). Moreover, in aggregate bioeconomic models, disease 

transmission rates are imposed on agents exogenously in a top-down fashion depending on 

membership in a specific subpopulation. In reality, however, transmission rates are endogenously 

determined in a spatial-dynamic, bottom-up fashion as a result of local agent interaction and 

disease control strategies.  

Spatial Bioeconomic Models 

Spatial-dynamic processes have only recently been studied by economists and the bioeconomic 

literature on agricultural diseases and invasive species control is mostly nonspatial (Wilen 2007). 

Sanchirico and Wilen (1999, 2005) show that ignoring the spatial revenue gradient can lead to 

suboptimal managerial decisions. Space can be incorporated in bioeconomic disease models by 

specifying location-dependent, state-transition probabilities (e.g., Karl and Winter-Nelson 2007), 

or by using partial differential equations (Holmes et al. 1994). In such models, spatial 

heterogeneity is exogenous and fixed over time (see review in Smith, Sanchirico and Wilen 

2009). In reality, however, spatial heterogeneity can be endogenously determined by the 

diffusion process, and dynamically affected by the implementation of control strategies. The 

challenge of incorporating spatial feedbacks into state dynamics is a common thread in resource 

economics and not confined to disease dynamic models (Smith, Sanchirico and Wilen 2009). 

Moreover, spatial bioeconomic models often make restrictive assumptions such as linear growth 

and control to achieve tractability or to focus on steady state analysis in simple landscapes (see 

review in Epanchin-Niell and Wilen 2012). Relaxing such assumptions, however, precludes 

analytical solutions and calls for numerical methods in most applications (Wilen 2007; Smith, 

Sanchirico and Wilen 2005).  
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Agent-Based Models 

In contrast to aggregate models, agent-based models (ABMs), also called individual-based 

models (IBMs) in the ecology literature (Railsback and Grimm 2012), allow the study of a 

population of heterogeneous agents living in a spatial-dynamic world. These are computationally 

intensive simulation models where agents interact with their environment and each other 

according to rule-based algorithms and mathematical equations (Tesfatsion 2006). Agent 

interaction gives rise to a distribution of system-wide nonlinear outcomes which cannot usually 

be deduced from the rules faced by agents. ABMs are appropriate in high-resolution settings 

because they represent spatial agents with complex characteristics and they capture the 

interactive properties of natural and human systems as well as the complex outcomes that emerge 

from their interaction (White and Engelen 2000). They are also appealing because they offer a 

balance between flexibility (ability to capture a wide class of agent behavior) and precision 

(exact definition of model elements). Further, ABMs are inherently dynamic, scalable (number 

of agents), fully observable, and repeatable (table 1).   

The agent-based computational economics (ACE) literature has explored feedbacks 

between social and ecological systems with applications in fishery economics (e.g. BenDor, 

Scheffran, and Hannon 2009), industrial organization (e.g. Sun and Tesfatsion 2007), production 

economics (e.g. Akanle and Zhang 2008) and policy analysis (e.g. Rahimiyan and Mashhadi 

2010). Applications in agricultural economics are, however, less common (Berger 2001), and we 

are unaware of research using ABMs to model the bioeconomics of agricultural disease diffusion 

and control. Agent-based modeling is an appropriate framework to simulate the spatial-dynamic 

diffusion of an agricultural disease in a heterogeneous population and generate distributions of 

bioeconomic outcomes under alternative disease control strategies. Outputs can then be 
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statistically analyzed to evaluate policy implications (Fagiolo, Birchenhall and Windrum 2007). 

This modeling approach is well suited to model the diffusion of GLRD in a vineyard, because 

vines are heterogeneous in their location and dynamic attributes (age and infection states), and 

because a vine’s neighborhood state is endogenously determined by the disease diffusion process 

and the control strategies employed. In addition, multilevel heterogeneity can be exploited to 

devise and test novel disease control strategies.   

Applying agent-based computational economic models to agricultural disease 

management is timely because of the recent technological advancement in and adoption of 

precision agriculture. Precision agricultural technology, with its focus on management according 

to spatial variability, is relevant in agricultural systems where high within-farm variation in 

environmental factors affects the growth of individual plants (Hall et al. 2008). Precision 

viticulture applications to GLRD management include spectral reflectance2, a promising profit-

maximizing and nondestructive disease detection and control tool based on visual symptoms of 

individual vines (Naidu et al. 2009).  

 We contribute to the disease control bioeconomic literature by employing the modeling 

principles of agent-based computational economics and individual-based ecology to characterize 

a problem of agricultural disease diffusion and control. Using a cellular automaton, we offer a 

model that is inherently spatial and dynamic. We allow agents to be heterogeneous in their 

location and dynamic attributes and allow them to interact in a dynamic environment whose 

geometry and boundaries are explicitly defined. Disease is initialized following a random spatial 

distribution and stochastic agent interactions gives rise to disease diffusion. We generate 

distributions of bioeconomic outcomes for the baseline case of no control and under alternative 

disease control strategies.  
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Disease Diffusion Model 

We develop a stochastic agent-based model of disease diffusion and control that is discrete in 

both time and space. The model is spatially explicit and the population consists of agents that are 

heterogeneous in their location, age and infection states.  

Agents 

Plant viral diseases are systemic, meaning that the whole plant is infected, rendering it a suitable 

modeling unit (Chan and Jeger 1994). In our model, an agent is a grapevine. Agents are 

characterized by their states and relevant dynamic processes. They are endowed with static 

states, namely locations that define their local neighborhoods. Agents also have two dynamic 

states: age and infection. Agents are heterogeneous in age and infection states, as well as the age-

dependency of the infection latency period. The latter is defined as the interval of time after a 

vine gets infected and before it becomes infective. An agent’s infection and age states map into a 

third dynamic state variable: the agent’s economic value. Agents use processes, such as rule-

based algorithms, to perceive their environment (including agents in their neighborhood) and to 

send messages to other agents (Macal and North, 2010). In our model, one process gives 

infective agents the ability to perceive the location and infection status of neighboring vines and 

to send them a message according to certain rules. In each period, the message is sent by 

infective agents to their healthy within-column neighbors with a higher probability than it is to 

their across-column healthy neighbors. Once received by a healthy agent, a message triggers the 

agent’s transition to an infected state. We choose this neighborhood-based infection state 

transition process to reflect patterns of GLRD diffusion observed in spatial analyses where the 

disease is shown to spread preferentially along columns (Habili et al. 1995; Le Maguet et al. 

2012).  
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Agent environment: cellular automaton 

A cellular automaton is a dynamic model that operates in discrete space and time on a uniform 

and regular lattice of cells. Each cell is in one of a finite number of states that get updated 

according to mathematical functions and algorithms that constitute state transition rules. At each 

time step, a cell computes its new state given its old state and the states of its neighborhood 

according to the transition rules (Tesfatsion 2006; Wolfram 1986). When used in agent-based 

models, a cellular automaton provides agents with a rule-based, spatial-dynamic structure 

capable of modeling complex behavior based on simple, local state transition rules (White and 

Engelen 2000). The spatial-dynamic structure is especially relevant when the physical 

environment includes constraints on the agent’s spatial interaction, such as boundaries and 

geometry (Gilbert and Terna, 2000). Combining a cellular automaton with an agent-based model 

provides an adequate spatial-dynamic environment to simulate GLRD diffusion: the vineyard is 

represented by a grid where cells are occupied by agents (the grapevines) whose infection and 

age states, locations and interactions determine disease diffusion. In what follows, we describe 

the elements of the cellular automaton and the features of the agent-based model that integrates 

them: the cells and their states, the cell neighborhoods, and their states, the cell transition rules, 

and the time step.   

The cell and its state 𝑾𝒊,𝒋 
𝒕  

Cells are the units that make up the two-dimensional rectangular grid. The grid defines the 

spatial geometry and represents a vineyard plot with (I x J) cells where I and J are the number of 

rows and columns, respectively. In our model, there are 5,720 cells each holding only one agent 

representing a grapevine. Vineyard rows are oriented north to south with I=44 vines per row and 

J=130 vines per column. This configuration is considered representative of a typical vineyard in 
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the Northeastern United States3 (Wolf 2008). Each cell holds only one composite state in any 

period. The state of a cell located in row i and column j at time t+1 (𝑊𝑖,𝑗 
𝑡+1) can be represented as 

a function f of the cellular automaton’s elements at time t as follows (Ozah et al 2010): 

(1)    𝑊𝑖,𝑗 
𝑡+1 = 𝑓(𝑊𝑖,𝑗 

𝑡 , 𝑆𝑁𝑖,𝑗,𝑘 
𝑡 ,  𝑅𝑖,𝑗, ∆𝑡) 

where  𝑊𝑖,𝑗 
𝑡 is the age-infection state of cell (i ,j) at time t ; 𝑆𝑁𝑖,𝑗,𝑘 

𝑡 is the state of cell (i,j)’s 

neighborhood 𝑁𝑖,𝑗 
𝑡  that is of type k at time t;  𝑅𝑖,𝑗  is the state transition rule; and  ∆t the time step. 

 𝑊𝑖,𝑗 
𝑡  is an age-infection composite state defined as the combination of a vine’s age state 

𝐴𝑖,𝑗 
𝑡  and a vine’s infection state  𝑆𝑖,𝑗 

𝑡 . The infection state space 𝑆𝑖,𝑗 
𝑡 of a vine located at cell (i, j) is 

{H, Ed, Eu, Im, Ih}. H is the Healthy state that describes vines that are susceptible to infection. E 

is the Exposed or latent infection state, during which a vine is infected, nonsymptomatic, and not 

yet infective. E is a composite state made of two simple states: Exposed-undetectable and 

Exposed-detectable. The distinction between those two states is important given that GLRD does 

not reach detectable levels until a certain period after inoculation. Im (Infective-moderate) and Ih 

(Infective-high) represent the states of infective grapevines with moderate and high disease 

symptom severity, respectively. We refer to states H and E collectively as the composite state NI 

(Noninfective) in which a grapevine in noninfective. Similarly, we refer to states Im and Ih 

collectively as the composite state I (Infective) that denotes vines that have the ability to transmit 

the infection. The age state space of a vine, 𝐴𝑖,𝑗 
𝑡 , is {1, 2,…, Amax}. Combining the infection and 

age states into a space of composite age-infection states 𝑊𝑖,𝑗 
𝑡  allows modeling the fact that (1) 

younger vines have shorter latency periods (Pietersen 2006), i.e. they transition from E to Im 

faster than older vines; and (2) a vine’s economic value increases with the age state transition but 

decreases with the infection state transition. As a vine goes through the five infection states, its 

economic value decreases as its yield and grape juice quality are reduced. The age state acts in 
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the opposite direction: a vine is unproductive for three year after planting. Then, its economic 

value increases as it ages. We discretize the age space into Young (0 to 5 years), Mature (5-20 

years) and Old (20 years and above) age categories. We do so to allow the transition out of 

latency to be dependent on the vine age category. We also use these age categories to formulate 

age-structured disease control strategies.  

The cell neighborhood 𝑵𝒊,𝒋 
𝒕 and its state 𝑺𝑵𝒊,𝒋,𝒌 

𝒕  

Charles et al. (2009) observed that once GLRD is introduced through unsanitary vines at 

planting, leafroll-associated viruses are then transmitted through mealybugs which have limited 

mobility within columns through dispersal of infected mealybug crawlers. The virus is 

transmitted between columns, although to a lesser extent, either through human-assisted 

movement of mealybug crawlers or through aerial dispersal of infective mealybugs (Cabaleiro et 

al. 2008; Jooste et al. 2011).  

 Given the limited mobility of the grapevine leafroll disease vectors, we give the agents a 

von Neumann neighborhood type in which each agent has four neighbors in the four cardinal 

directions (north, south, east, west) (figure 1). This neighborhood type allows defining infection-

state transition rules that are different for within-column (i.e., north and south) and across-

columns (i.e., east and west) disease transmission. This allows us to model the observed 

preferential within-column spread of the disease (Habili et al 1995; Le Maguet et al 2012). For a 

vine Vi, j  located in cell (i, j), the neighborhood 𝑁𝑖,𝑗 
𝑡

 can be expressed as: 

(2)  𝑁𝑖,𝑗 
𝑡

 = { Vi,j-1 , Vi, j+1 , Vi-1,j , Vi+1, j }  

 (j-1) ∈ {1, J-1}; (j+1) ∈ {1, J-1}; (i-1) ∈ {1, I-1}; (i+1) ∈ {2, I} 

where the first two elements represent across-column neighbors to the west and to the east and 

the last two elements represent within-column neighbors to the north and south of vine Vi, j . The 
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intervals on the indices of vine (i, j)’s neighbors define the spatial boundary conditions on 

disease diffusion. 

[Insert figure 1 here] 

 The infectivity state of cell (i,j) ’s neighborhood at time t (𝑆𝑁𝑖,𝑗,𝑘 
𝑡 in Equation 1) is 

determined by the individual infectivity (Infective and Noninfective) states (𝑆𝑖−1,𝑗 
𝑡  𝑆𝑖+1,𝑗 

𝑡 , 𝑆𝑖,𝑗−1  
𝑡 , 

𝑆𝑖,𝑗+1 
𝑡 ) of the four neighboring cells (i-1, j), (i+1, j), (i,j-1), and (i, j+1), respectively. 𝑆𝑁𝑖,𝑗,𝑘 

𝑡  is 

therefore not fixed over time and is endogenously determined by disease diffusion and control 

strategies (e.g., roguing infected vines and replacing them with new, healthy ones). Given two 

possible infectivity states and four neighbors, 𝑆𝑁𝑖,𝑗,𝑘 
𝑡 can be one of 24 possible neighborhood 

infectivity states where k ∈ {1, 2, …, 16}: 

(3)  𝑆𝑁𝑖,𝑗,𝑘 
𝑡 ∈ { 𝑆𝑁𝑖,𝑗,1

𝑡  = (I, I, I, I), 𝑆𝑁𝑖,𝑗,2
𝑡 = (I, I, I, NI),…, 𝑆𝑁𝑖,𝑗,16

𝑡 = (NI, NI, NI, NI)} 

Cell transition rules 

The cell transition rules (𝑅𝑖,𝑗 in Equation 1) control the transitions within each of the age and 

infection state spaces. Given that age transitions are deterministic, we focus on the stochastic 

infection state transitions affecting the spatial-dynamic diffusion of the disease. We describe the 

stochastic initialization of the states; the stochastic neighborhood-dependent infection state 

transitions from Healthy to Exposed-undetectable 4; the stochastic infection state transition 

within the Exposed ( Eu to Ed) state; the stochastic age-dependent infection state transitions from 

Exposed to Infective; and the stochastic transition within the Infective state (Im to Ih). We finally 

represent the infection transition rules in a Markov chain model.  

Model Initial States 

At the beginning of a simulation, two percent of the agents, homogeneous in their age-infection 

states (𝑆𝑖,𝑗 
𝑡 = 𝐻 and 𝐴𝑖,𝑗 

𝑡 = 0), are chosen at random from a uniform distribution U (0, 5720) to 
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transition from Healthy to Exposed. This reflects findings in GLRD studies indicating that 

primary infection sources are randomly spatially distributed (Cabaleiro et al. 2008), and that 

initial disease prevalence is typically between 1 and 5 percent (Gómez et al 2010). Thereafter, 

GLRD spreads to uninfected vines according to rules that govern state transitions from Healthy 

to Exposed. 

Stochastic neighborhood-dependent Healthy (H) to Exposed-undetectable (Eu) state transition 

An infective vine transmits the virus to a neighboring healthy vine with a location-specific 

transmission rate. Following Constable et al. (2012), GLRD has a within-column preferential 

spread. We model this finding by letting infective vines transmit the disease to their within-

column neighbors at a higher rate than they transmit it to their across-column neighbors. The 

continuous-time transmission rates are assumed to follow a Poisson process. That is, the waiting 

time X  that it takes for a vine in the Healthy state to transition to the Exposed-undetectable state 

has an exponential distribution with parameter α for within-column transmission (X1 ~ α e- αX1) 

and β for across-column transmission (X2 ~ β e- β X2) with 0<β<α . Let B be the Healthy to 

Exposed-undetectable vector of transition probabilities conditional on previous own and 

neighborhood infection states. Mathematically, it can be expressed as  
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(4)           B =       

Pr (𝑆𝑖,𝑗 
𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 

𝑡 =  𝐻, 𝑆𝑁𝑖,𝑗,𝑘
𝑡 = 𝑆𝑁𝑖,𝑗,1 

𝑡 )  
Pr (𝑆𝑖,𝑗 

𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 
𝑡 =  𝐻,  𝑆𝑁𝑖,𝑗,𝑘

𝑡 = 𝑆𝑁𝑖,𝑗,2 
𝑡 )  

Pr (𝑆𝑖,𝑗 
𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 

𝑡 =  𝐻,  𝑆𝑁𝑖,𝑗,𝑘
𝑡 = 𝑆𝑁𝑖,𝑗,3 

𝑡 )  
Pr (𝑆𝑖,𝑗 

𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 
𝑡 =  𝐻,  𝑆𝑁𝑖,𝑗,𝑘

𝑡 = 𝑆𝑁𝑖,𝑗,4 
𝑡 )

                        .                              
            .                  

              .                    
              .                    

                 .                       
Pr (𝑆𝑖,𝑗 

𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 
𝑡 =  𝐻,  𝑆𝑁𝑖,𝑗,𝑘

𝑡 = 𝑆𝑁𝑖,𝑗,13 
𝑡 )

Pr (𝑆𝑖,𝑗 
𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 

𝑡 =  𝐻,  𝑆𝑁𝑖,𝑗,𝑘
𝑡 = 𝑆𝑁𝑖,𝑗,14 

𝑡 )  
Pr (𝑆𝑖,𝑗 

𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 
𝑡 =  𝐻,  𝑆𝑁𝑖,𝑗,𝑘

𝑡 = 𝑆𝑁𝑖,𝑗,15 
𝑡 )  

Pr (𝑆𝑖,𝑗 
𝑡+1 =  𝐸 | 𝑆𝑖,𝑗 

𝑡 =  𝐻, 𝑆𝑁𝑖,𝑗,𝑘
𝑡 = 𝑆𝑁𝑖,𝑗,16 

𝑡 )

      =      

1 − 𝑒−(2𝛼+2𝛽)

1 − 𝑒−(2𝛼+𝛽)

1 − 𝑒−(2𝛼+𝛽)

1 − 𝑒−2𝛼

1 − 𝑒−(𝛼+2𝛽)

1 − 𝑒−(𝛼+𝛽)

1 − 𝑒−(𝛼+𝛽)

1 − 𝑒−𝛼

1 − 𝑒−(𝛼+2𝛽)

1 − 𝑒−(𝛼+𝛽)

1 − 𝑒−(𝛼+𝛽)

1 − 𝑒−𝛼

1 − 𝑒−2𝛽

1 − 𝑒−𝛽

1 − 𝑒−𝛽

0

                      

where there are 24 possible neighborhood infectivity states, but only nine distinct conditional 

probabilities.5 The Healthy to Exposed-undetectable state transition probabilities are triggered in 

each time step by a random variable ut. Where ut is a random draw from U~ (0, 1), the disease is 

transmitted from one infective vine to another healthy vine in the same column at time t+1 if ut < 

α. Conversely, the disease is not transmitted if ut   ≥ α. Similarly, the disease is transmitted from 

one infective vine to another healthy vine in an adjacent column at time t+1 if ut < β and is not 

transmitted if ut   ≥ β. 

Stochastic Exposed-undetectable (Eu) to Exposed-detectable (Ed) state transition 

Before an infected grapevine develops visual symptoms, it is possible to reveal its infection state 

using virus testing techniques such as enzyme-linked immunosorbent assay (ELISA) or reverse 

transcription polymerase chain reaction (RT-PCR). The virus might, however, be below 

detectable levels until a year after infection, causing a risk of false-negative results. Cabaleiro 

and Segura (2007) and Constable et al. (2012) show that vines are heterogeneous in the time it 

takes their virus population to be high enough to test positive after infection. Those studies report 

a minimum, maximum and most common value for the period in which a vine is infected but 
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undetectable.  With no further knowledge on the distribution of this period, we model it as a 

random variable drawn from a triangular distribution with parameters a (minimum), b 

(maximum), and m (mode). Then, where X3 is the period it takes a vine to transition from Eu to 

Ed, the probability that the transition happens in less than x time units, or Pr (X3 < x), is  

(𝑥−𝑎)2

(𝑏−𝑎)(𝑚−𝑎)
 for a ≤ 𝑥 ≤ 𝑚. The probability is equal to 0 for x < a,  (1 − (𝑏−𝑥)2

(𝑏−𝑎)(𝑚−𝑎)) for m ≤ 𝑥 <

𝑏, and 1 for x > b (Kotz and Rene van Dorp 2004).   

Stochastic age-dependent Exposed-detectable (Ed) to Infective-moderate (Im) state transition 

In order to account for shorter latency periods in younger vines, we let the latency period vary 

for the three age categories considered. We assume that the latency periods for young (Ly), 

mature (Lm) and old (Lo) vines follow exponential distributions with fixed rate parameters λy, λm, 

λo:  Ly~ Exp(λy), Lm~ Exp(λm), Lo~Exp(λo) where  λy < λm <λo. The Exposed-detectable to 

Infective state transition probabilities conditional on age category can be represented 

mathematically in the vector C where:                                                     

(5)           C =       
Pr  �𝑆𝑖,𝑗 

𝑡+1 =  𝐼𝑚 � 𝑆𝑖,𝑗 
𝑡 =  𝐸, 𝐴𝑖,𝑗 

𝑡 = 𝑌𝑜𝑢𝑛𝑔)  
Pr  �𝑆𝑖,𝑗 

𝑡+1 =  𝐼𝑚 � 𝑆𝑖,𝑗 
𝑡 =  𝐸, 𝐴𝑖,𝑗 

𝑡 = 𝑀𝑎𝑡𝑢𝑟𝑒) 
Pr  �𝑆𝑖,𝑗 

𝑡+1 =  𝐼𝑚 � 𝑆𝑖,𝑗 
𝑡 =  𝐸, 𝐴𝑖,𝑗 

𝑡 = 𝑂𝑙𝑑)  
   =      

1 − 𝑒−𝜆𝑦

1 − 𝑒−𝜆𝑚

1 − 𝑒−𝜆𝑜

                      

Stochastic transition from Infective-moderate (Im) to Infective-high (Ih)  

Once a vine is infected at the moderate level, symptom severity increases over time and reaches 

a high level after a fixed amount of time, denoted by Inf. The period that a vine spends in state Im 

before it transitions to state Ih is exponentially distributed with fixed rate parameter φ: Inf~ Exp 

(φ). Thus, the probability that a vine transitions from Im to Ih in one time step is defined as  

Pr (Inf<1) = 1 - e- φ, or Pr  �𝑆𝑖,𝑗 
𝑡+1 =  𝐼ℎ � 𝑆𝑖,𝑗 

𝑡 =  𝐼𝑚) =  1 – 𝑒−𝜑 .  
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Markov Chain Model 

Agent state transitions are governed by a Markov chain model defined by a set of states and a set 

of transitions with associated conditional probabilities defining a distribution over the (t +1) 

possible states. Specifically, the model is a homogenous Markov chain assuming that the 

transition probabilities are unique, depend only on the current state and not on state history, and 

are time invariant. A homogenous Markov chain modeling agent state transition can be 

represented by  

(6) 𝑺𝒊,𝒋 
𝒕+𝟏 = 𝑷 𝑺𝒊,𝒋 

𝒕  

where 𝑺𝒊,𝒋 
𝒕 is the agent’s infection state vector at time t of dimension 5 x1. The vector holds a 1 

for the state that describes the agent’s infection status and zeros for the remaining four states. P 

is the transition probability matrix read from row (states H, Eu, Ed, Im, Ih  at time t) to column 

(states H, Eu, Ed, Im, Ih  at time t+1).                        

(7) P =  

(𝟏 − 𝑩)𝑇 𝑩𝑇 0 0 0

0 1 −  (𝑥−𝑎)2

(𝑏−𝑎)(𝑚−𝑎)
(𝑥−𝑎)2

(𝑏−𝑎)(𝑚−𝑎)
0 0

0 0 (𝟏 − 𝑪)𝑇 𝑪𝑇 0
0 0 0 𝑒−𝜑 (1 − 𝑒−𝜑  )
0 0 0 0 1

    

The infection state of cell (i, j) after n time steps is given by 

(8) 𝑺𝒊,𝒋 
𝒏 = 𝑷𝒏 𝑺𝒊,𝒋 

𝟎  

where 𝑺𝒊,𝒋 
𝟎  is the agent’s initial 5 x 1 infection state vector. Given that age is deterministic, the 

composite infection-age state of each cell (i, j) after n time steps is similarly given by 

(9) 𝑾𝒊,𝒋 
𝒏 = 𝑷𝒏 𝑾𝒊,𝒋 

𝟎  

where 𝑾𝒊,𝒋 
𝟎  is the agent’s initial 5 x 1 infection-age state vector. 
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Time is modeled in discrete monthly time steps. The simulation starts at t=0, representing 

the vineyard establishment and proceeds until t=600 (year 50). The cell age and infection states 

are updated after discrete time steps for all cells. So is the infection state of each vine’s 

neighborhood. A monthly time step is probably the most appropriate for a vineyard manager 

making disease control decisions. Disease diffusion parameters (α and β in table 1) are obtained 

from a calibration experiment that minimizes the difference in the number of infected vines over 

time between our simulation results and the results of Charles et al (2009). We choose the lower 

(0.01/day) and upper bounds (0.2/day) on the parameters in the calibration from transmission 

rates reported in Tsai et al (2008).6 We check that the simulated vineyard half-life, defined as the 

time until 50% disease prevalence, falls within ranges of temporal disease diffusion curves 

reported in the GLRD literature (Cabaleiro and Segura 2006, Cabaleiro et al. 2008). For other 

parameters, we choose values from ranges reported in the literature and by consulting experts 

(table 1).   

[Insert table 1 here] 

 

Economic model 

Disease diffusion outcomes are mapped into economic outcomes through the damages associated 

with the disease and the costs incurred when disease control strategies are implemented. The 

revenue 𝑟𝑤𝑖,𝑗,𝑡  from a vine located in cell (i,j) that has composite age-infection state 𝑊𝑖,𝑗 
𝑡  at time t 

depends on its infection status and age. A vine is unproductive for τmax time steps (36 months) 

from planting, after which it reaches its full yield potential. When a grapevine is infected, its 

yield declines as does the price paid for its grapes due to quality losses. 
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Disease damage and control 

A vineyard manager deciding whether to rogue and replace infected vines considers the costs of 

disease control relative to disease damages. Disease control costs are: (1) the costs of labor, 

machinery and material involved in roguing and replacing vines; (2) the opportunity cost of this 

control measure caused by the forgone revenues between the time control takes place and the 

time a newly planted vine bears fruit. Disease damages are: (1) the reduction in revenues of 

uncontrolled infected vines (𝑟𝑤𝑖,𝑗,𝑡); (2) the expected losses that those vines will generate by 

spreading the infection to uninfected vines. 

 Vine-level disease damage is modeled through a reduction in the per-vine revenue 𝑟𝑤𝑖,𝑗,𝑡  

that depends on the composite age-infection (𝑤𝑖,𝑗,𝑡) of a vine located at cell (i, j) at time t. We 

choose revenue values (table 2) that build on GLRD literature and interviews with vineyard 

managers in New York State (Gómez et al 2010; Atallah et al. 2012). For the infection states of 

Susceptible, Exposed, Infective-moderate and Infective-high, yield reductions are 0, 30, 50, and 

75 percent, respectively. Quality reduction is reflected in a ten percent reduction in price paid for 

grapes, regardless of the infection state.  Once a grapevine is infected, it transitions through the 

infection states and remains infected unless rogued and replaced. If rogued and replaced, the age-

infection state of a vine is reset to its initial values (𝑆𝑖,𝑗 
𝑡 = 𝐻 and 𝐴𝑖,𝑗

𝑡 =0). Roguing and replacing 

a grapevine involves a unit cost 𝑐𝑢𝑖,𝑗  and testing for the virus involves a unit cost 𝑐𝑣𝑖,𝑗. The 

vineyard-level revenues and costs at each point in time are the sum of the revenues and costs 

from each individual grapevine.   

[Insert table 2 here] 
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Vineyard expected net present value 

A vineyard manager maximizes the vineyard expected net present value by choosing an optimal 

disease control strategy from a set of alternatives. Candidate strategies consist of choosing 

whether to test and/or rogue and replace a vine based on its location and/or infection-age state 

𝑊𝑖,𝑗,𝑡. The optimal strategy is the one that allocates disease control effort over space and time so 

as to yield the highest vineyard expected net present value among the alternative strategies and 

the baseline of no control: 7 

(10) 

 � 𝜌𝑡

𝑡∈𝑇,𝑡≥0

∗ { �  � [𝑟𝑤𝑖,𝑗,𝑡

𝑤𝑖,𝑗∈𝑆(𝑖,𝑗)∈C

∗ (1 − � 𝑢𝑤𝑖,𝑗,𝑡−𝜏

𝜏𝑚𝑎𝑥

τ=0

) − � (𝑢𝑤𝑖,𝑗,𝑡−𝜏 ∗ 𝑐𝑢𝑖,𝑗 )
𝜏𝑚𝑎𝑥

τ=0

− (𝑣𝑤𝑖,𝑗,𝑡 ∗ 𝑐𝑣𝑖,𝑗)]}    

subject to (9), and: 

(11)  𝑟𝑤𝑖,𝑗,0 = 0  ; 𝑢𝑤𝑖,𝑗,0 = 0; 𝑣𝑤𝑖,𝑗,0 = 0 for all (i ,j) 

where 

𝜌𝑡 is the discount factor at time t (t>0), 𝜌𝑡 = 1/(1+r)t and r is the discount rate  

t ∈ T indexes time, where T={0,1,2,…,Tmax} 

τ ∈  {1,2…, τmax } where τmax is the amount of time it takes a newly planted vine to become 

productive; 

(i,j) ∈ C indexes cells in row i and column j of the cellular automaton grid, and C is the set of all 

cells in the grid; 

𝑢𝑤𝑖,𝑗,𝑡 ∈ {0, 1} is a binary-choice variable equal to one if infected vine in cell (i,j) and state 𝑊𝑖,𝑗 is 

rogued (removed) and replaced at time t and zero otherwise ; 

𝑣𝑤𝑖,𝑗,𝑡 ∈ {0, 1} is a binary-choice variable equal to one if infected vine in cell (i,j) and state 𝑊𝑖,𝑗 is 

tested for the virus at time t and zero otherwise ; 
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𝑟𝑤𝑖,𝑗,𝑡  ∈ R𝑤𝑖,𝑗,𝑡   is the revenue of a vine in cell (i, j) that has age-infection state 𝑊𝑖,𝑗 at time t; 𝑅𝑤𝑖,𝑗,𝑡    

is the space of possible revenues for all states; 

𝑐𝑢𝑖,𝑗  is the unit cost associated with control variable 𝑢𝑤𝑖,𝑗,𝑡 (removing a vine in cell (i, j) and 

replacing it with a healthy vine); 

𝑐𝑣𝑖,𝑗 is the unit cost associated with control variable 𝑣𝑤𝑖,𝑗,𝑡 (testing a vine in cell (i, j) for the 

virus);   

If a vine in state 𝑊𝑖,𝑗,𝑡  is rogued and replaced at time τ, then 𝑢𝑤𝑖,𝑗,𝑡−𝜏 =1 and the first term in 

the squared brackets equals zero (i.e. vines that have been planted in the previous τ time units are 

still unproductive), and the second term takes the value of the roguing and replacement cost. 

If a vine in state 𝑊𝑖,𝑗,𝑡 is not rogued and replaced at time τ, then 𝑢𝑤𝑖,𝑗,𝑡−𝜏 =0 for all τ  between 0 and 

τmax, and the first term in the squared brackets takes the value of a vine’s revenue, which depends 

on its age-infection state, and the second term equals zero. 

 

Experimental Design  

We design and implement Monte Carlo experiments to evaluate nonspatial and spatial disease 

control strategies by comparing their bioeconomic outcomes to those under the baseline of no 

control. Below, we describe the disease control strategies that differ under each Monte Carlo 

experiment and the bioeconomic outcomes measured. 

Disease control strategies      

We formulate and evaluate two sets of disease control strategies. The first set is nonspatial and 

consists of roguing vines based on their symptomatic infection state and their age. The second set 

takes advantage of the disease diffusion’s spatial nature and performs a virus test on 
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nonsymptomatic vines that are located in the neighborhood of symptomatic ones and then rogues 

them if they test positive.  

We base the set of nonspatial roguing strategies on the six composite age-infection states 

obtained by interacting the latency-defined age categories (Young: 0-5; Mature: 6-19; Old: 20 

and above) with the symptomatic infection categories (Im and Ih).The strategies are compared to a 

baseline case of no control. The infection-age control strategies are then: no disease control 

(baseline case); roguing and replacing vines that are Infective-moderate and Young (strategy 

ImY); Infective-moderate and Mature (strategy ImM); Infective-moderate and Old (strategy ImO); 

Infective-high and Mature (strategy IhM); and, Infective-high and Old (strategy IhO). 8 Finally, 

we include three additional disease control scenarios that target grapevines in one of the three 

infection states regardless of age. We do so to examine the impact of age-structured control 

strategies on disease diffusion and control cost-effectiveness, compared to their nonage-

structured counterparts.  

 Among the set of spatial strategies, one consists in roguing and replacing symptomatic 

vines Vi,j  in addition to testing their two within-column neighbors (vines Vi-1,j and Vi+1,j in figure 

1.a) and roguing them if they test positive (strategy ImNS). The other strategy also rogues and 

replaces symptomatic vines Vi,j but it tests four within-column neighbors (Vi-2,j , Vi-1,j, Vi+1,j , Vi+2,j 

in figure 1.b.) and two across-column neighbors (Vi,j-1 and Vi,j+1 in figure 1.b.) and rogues them if 

they test positive (strategy ImNS2EW).  There is a unit testing cost, 𝑐𝑣𝑖,𝑗, associated with the labor 

and material used in testing vines for a grapevine leafroll-associated virus (table 2). Given that 

Exposed vines become detectible by a virus test (i.e. they transition from Eu to Ed) only after a 

certain undetectability period (with minimum a, maximum b and mode m, table 2), vines in state 
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Eu will falsely test negative, creating a situation of imperfect information in disease control that 

precludes disease eradication.  

Monte Carlo experiments 

Each experiment consists of a set of 1,000 simulation runs, over 600 months, on a vineyard of 

5,720 grapevines. Experiments differ in the disease control strategies they employ. Outcome 

realizations for a run within an experiment differ due to random spatial initialization, and random 

spatial disease diffusion.  Data collected over simulation runs are the probability density 

functions of the bioeconomic outcomes under each strategy.  

Bioeconomic outcomes measured and ranking of control strategies  

In order to analyze the impact of strategies on disease diffusion, we use the vineyard expected 

half-life. The latter is defined as the expected period it takes for the total number of healthy vines 

to decrease by half, or the time it takes for the disease to reach 50% prevalence. From the 

biological part of the model, the desired disease control strategies are those that increase the half-

life the most, compared to the baseline case of no control. In order to find the optimal disease 

control among those considered, we employ the objective function (Equation 10) to rank the 

vineyard net present value distributions under the alternative strategies using a first-order 

stochastic dominance test.9 The objective function takes into account the total amount of control 

realized under each strategy to achieve the half-life increase but also the timing, intensity and 

location of that control. In addition, we collect data on the expected average vineyard age and the 

distribution of the cumulative number of grapevines rogued and replaced, for each of the two 

spatial strategies considered. 
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Results and Discussion 

We find that, when virus testing is not employed to uncover the state of nonsymptomatic vines, 

the nonspatial strategy of roguing young moderately infected vines yields the highest vineyard 

expected net present value. However, if virus testing is used, the spatial strategy that involves 

testing-and-roguing two within-column neighbors of a symptomatic vine maximizes the vineyard 

expected net present value compared to all other disease control strategies and the baseline. 

Nonspatial strategies 

Our age-structured simulations indicate that the vineyard’s expected net present values over a 

50-year period are greatest when young, moderately infected vines are targeted.  The ImY roguing 

strategy achieves an economic improvement of 5% over the baseline (table 3). This improvement 

is statistically significant at the 1% level. The ImM strategy’s ENPV is, however, only marginally 

higher than the baseline. Targeting moderately infected vines at a young age delays vineyard 

half-life by 41 months over the baseline. Waiting until a vine is mature before removing it 

reduces that benefit to 25 months which in turn decreases the economic benefit to less than 1% 

over the baseline. The temporal disease diffusion curves in figure 2 illustrate why targeting 

young vines (ImY) achieves higher vineyard half-life than targeting mature vines10. Disease 

control, visible as dips in the red curve and peaks in the green curve in figures 2b and 2c, occurs 

more frequently under the ImY strategy than under the ImM strategy. With the latter strategy, 

disease control is delayed until newly infected vines mature (5 to 20 years). Figure 3 illustrates 

how more frequent roguing and replacement under the ImY strategy (panel b) compares to the 

ImM strategy (panel c): the ImY strategy achieves lower disease prevalence (more Healthy vines 

in dark green).  

[Insert table 3 here] 

 [Insert figure 2 here] 

27



[Insert figure 3 here] 

Although a vineyard manager might be inclined to wait until a productive vine is more 

infected and/or older before roguing and replacing it in order to reap greater grape production, 

doing so reduces the ENPV of the vineyard and is only a marginal improvement over no control 

at all. Strategies targeting old and/or highly infected vines (strategies ImO, IhM, IhO) all yield 

ENPVs that are lower than the baseline (table 3). In fact, any strategy consisting of roguing old 

vines is unsuccessful at extending the vineyard’s expected half-life relative to the baseline, 

regardless of the infection states targeted. Moreover, strategies targeting heavily infected vines 

do not delay disease spread by more than 5 or 9 months. Such strategies have the drawback of 

waiting longer to control disease diffusion because of the time period (parameter Inf in table 2) it 

takes a vine to transition from state Im to state Ih and/or the time it takes vines to reach the Old 

state. The results suggest that, no matter the cost of disease control, roguing and replacing old 

and/or heavily infected vines alone is not recommended given that they yield little or no increase 

in vineyard half-life.  

Simulations of the strategy that targets all age categories yield an expected net present 

value that is 11.7% lower than the baseline, in spite of being the best in extending the half-life of 

the vineyard (42% increase in expected half-life, table 3). This finding highlights the importance 

of age-structuring disease control strategies. By focusing on young, moderately infected vines, a 

more effective disease control policy involving less roguing leads to a better economic outcome 

when compared to a strategy that does not discriminate based on age.  

Spatial strategies   

The vineyard expected net present values under the spatial strategies are greater than those 

obtained under their nonspatial counterparts. Economic improvements over the baseline are of 
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the order of 24% and 39% (table 3) for the ImNS2EW and ImNS strategies, respectively. These 

improvements underscore the superiority of spatial over nonspatial, age-structured disease 

control. These spatial strategies increase ENPV by uncovering the infection state of 

nonsymptomatic grapevines situated in the neighborhood of a symptomatic grapevine. They 

delay the vineyard half-life to years beyond the maximum model time Tmax (figures 2d and 2f). 

The vineyard half-life is not reached until after around 1,600 simulation months (approximately 

133 years) for the ImNS2EW strategy (figure 2g) and 2,000 simulations months (approximately 

167 years) for the ImNS strategy (figure 2e). The Infected-high state is never reached (see the 

temporal disease diffusion curves in figures 2d-2f and the spatial disease diffusion snapshots in 

figures 3d and 3e). Both strategies control the disease within similar upper and lower bounds and 

the oscillations do not dampen in the long run under either strategy (figures 2e and 2g). 

Surprisingly, the strategy that tests only the two within-column neighbors of a moderately 

infected vine, strategy ImNS (figure 2d), is better at controlling the disease than the strategy that 

tests the four within-column neighbors and two across-column neighbors,  strategy ImNS2EW 

(figure 2f). This is counterintuitive since one would expect that the identification of more 

infected, nonsymptomatic vines (Exposed) and their removal before they become Infective would 

slow disease diffusion further. However, grapevine roguing and replacement implies replacing 

infected grapevines with younger healthy ones that have short latency periods. That is, once 

newly planted young vines get infected, they become infectious in a relatively short period, and 

contribute to further disease diffusion.  

To test if this explanation is consistent with the experimental data, we compare the 

expected vineyard age and the expected total number of grapevines removed and replaced under 

the two strategies.  We find that the ImNS2EW strategy, by scouting farther along columns for 
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Exposed nonsymptomatic vines and including across-column neighbors in the search, causes the 

final amount of roguing to be almost twice as large as it is under the ImNS strategy (figure 4). In 

their analytical model of roguing and replanting, Chan and Jeger (1994) also found that higher 

replanting rates made the disease more difficult to eradicate, suggesting a tradeoff between 

roguing and replanting in designing optimal disease management strategies. We find that this 

larger level of roguing and replanting causes the vineyard’s average age to be lower under the 

ImNS2EW strategy than under the ImNS strategy. The expected difference in age is 3.1 (±0.03) 

years by the 300th simulation month (i.e., by the 25th year). This expected age difference 

increases over time and reaches 7.3 (± 0.16) years by the 600th month (i.e., by year 50).  

[Insert figure 4 here] 

 The cumulative density function (CDF) plots in figure 5 show that, among the disease 

control strategies considered, roguing and replacing symptomatic vines while testing and roguing 

their within-column neighbors (ImYNS) is optimal. This strategy first-order stochastically 

dominates all the others. Both spatial test-and-rogue strategies (ImYNS2EW, ImYNS) first-order 

stochastically dominate age-structured strategies (ImY and ImM). Among the age-structured 

strategies, the one targeting moderately infected and young vines (ImY) dominates the strategy of 

roguing moderately infected and mature vines (ImM). The latter strategy does not dominate the 

baseline as can be seen by the intersection of their CDFs.  

[Insert figure 5 here] 

 Disease control strategies yield different results through their different allocation of 

disease control effort over time and space. A manager deciding when and where to control 

GLRD (i.e., what age, infection, and location states to target) faces tradeoffs between the 

ecological benefits and drawbacks of controlling earlier and more frequently. The superiority of 
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ImNS over ImNS2EW indicates that testing and roguing the two more distant within-column 

neighbors and two across-column direct neighbors will reduce the ENPV and actually speed the 

GLRD diffusion through a younger vineyard. The economic determinants of disease control 

allocation over space and time are the direct control costs, the opportunity cost of disease 

control, the reduced production and quality of grapes, and the manager’s discount rate. Disease 

control decisions involve economic tradeoffs among these determinants.  Two types of costs 

incentivize a vineyard manager to postpone roguing depending on her discount rate. Those are 

the direct control costs, labor, machinery and material costs involved in testing, roguing and 

replacing vines (𝑐𝑢𝑖,𝑗 and 𝑐𝑣𝑖,𝑗 ), and the opportunity cost of roguing an infected but still-

productive vine. The latter cost consists of the forgone revenues during the time newly planted 

vines are still unproductive. Postponing those costs has to be balanced with two types of ensuing 

damages: one is the continued reduction in revenues of uncontrolled infected vines (𝑟𝑤𝑖,𝑗,,𝑡) and 

the other is the expected economic losses that those vines generate by spreading the infection to 

uninfected vines. The results under the parameters considered in this article show that, for the 

strategies evaluated, it is worthwhile to incur the costs of disease control earlier in order to avoid 

future damages and to reap the benefits of a longer vineyard life later. That is, for nonspatial 

strategies, it is better to target younger vines in their earlier infection stages than older vines. For 

spatial strategies, testing the neighborhood of symptomatic vines reduces the amount of 

uncertainty by revealing the state of neighboring nonsymptomatic vines. Incurring the virus 

testing costs is justified by a higher ENPV over the lifetime of the vineyard. Sensitivity analyses 

of the model to the unit virus test cost show that even if the cost were $30 (instead of $2.6), the 

winning spatial strategy (ImNS) remains optimal, achieving an economic improvement of 29% 

over the baseline (table 4), much ahead of the winning nonspatial strategy ImY (5%) (table 3). At 
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a testing cost of $30 per vine, the ImYNS2EW strategy is no longer cost-effective. Its ENPV is 3% 

lower than the baseline. Optimality of the winning strategy is not sensitive to a threefold-increase 

in the cost of roguing and replanting. Both spatial control strategies retain their stochastic 

dominance over the nonspatial strategies.  

[Insert table 4 here] 

 

Conclusions and Directions for Future Research  

There is growing interest in research dealing with the economics of integrated spatial-dynamic 

processes. This article features a computational bioeconomic model of disease diffusion and 

control. This approach addresses some of the limiting assumptions in previous work by allowing 

for agent heterogeneity and fully characterizing disease spatial-dynamic processes. We apply this 

model to grapevine leafroll disease and evaluate alternative disease control strategies using 

stochastic dominance tests. The simulation results are valuable for vineyard managers, 

suggesting that roguing and replanting is not cost-effective if mature or old vines are targeted. 

Most importantly, the simulation results show that the spatial strategy of roguing symptomatic 

vines and testing-and-roguing their two within-column neighbors, dominates all other disease 

control strategies. It does so by uncovering the infection state of a proportion of nonsymptomatic 

grapevines situated in the neighborhood of symptomatic vines.  

The results show a general feature of spatial-dynamic processes: optimal policy 

interventions are those that achieve the temporally, spatially, and quantitatively optimal 

allocation of inputs. In this model, optimal timing for roguing and replacing individual 

grapevines is determined by their young age and moderate levels of infection. Optimal spatial 

allocation of disease control involves testing-and-roguing the two within-column neighbors of 
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young, moderately infected vines. However, we found that expanding the spatial allocation of 

disease control to four within-column neighbors and two across-column neighbors cause the 

amount of disease control to reach a threshold that causes the vineyard average age to decrease. 

This, in turn, increases the rate of disease diffusion due to the lower latency period of young 

replants. The model results highlight the temporal, spatial, and quantitative tradeoffs between 

and within the ecological and economic components of spatial-dynamic complex adaptive 

systems in general and disease systems in particular.  

 This model can be adapted to disease management in other high-value horticultural crops 

that are characterized by within-farm variation in physical, chemical or biological factors 

affecting individual plant growth and health. This variability justifies agent-based management. 

Such crops include citrus trees, where precision agriculture has been employed to detect diseases 

(Pydipati, Burks, and Lee 2006), and other fruit tree crops, where reflectance imaging has been 

employed to detect insect infestations (Wang et al. 2011).  

 This work does not model negative spatial externalities such as the ones that would occur 

due to the flow of vectors from neighboring infected vineyards left uncontrolled. Further 

research should model such situations, formulate and evaluate spatial strategies that are able to 

control the disease diffusion not only within the vineyard but also across vineyards. We expect 

this situation to yield strategies that alter the spatial configuration of the vineyard in a way that 

slows down disease diffusion. Establishing “fire breaks” from an adjacent, infected vineyard may 

result in losses in yields that will need to be measured against the value of lower disease 

damages in the future. If cost-efficient, these designs might be recommended for the 

establishment of more disease-resistant vineyards and orchards with higher ENPV.  
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Table 1. Aggregate and Agent-Based Models  

Aggregate models Agent-Based models 
Top-down Bottom-up 
Precise Precise and flexible 
Focus on equilibrium states Equilibrium and out-of-equilibrium states 
1, 2, or infinite number of agents 1, 2, …, N agents 
Nonspatial or partially-spatial Fully spatial 
Homogenous agents Heterogeneous agents 

Adapted from Arthur (2006) and Miller and Page (2007) 
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Table 2. Model Parameters 
Parameter Description Value Unit Sources 

α within-column rate of transition from H to Eu 4.2* month -1 Model calibration to data in  
Charles et al (2009) with validation 
using data in  Cabaleiro and Segura 
(2006) and Cabaleiro et al (2008);  

β across-column rate of transition from H to Eu 0.014* month -1 

     
     

Ly latency period for young vines  24 months Age-specific latency periods 
constructed based on latency 
period in Jooste, Pietersen, and 
Burger (2011)  

Lm latency period for mature vines 48 months 
Lo latency period for old vines 72 months 

     
a Minimum of virus undetectability period 4 months Cabaleiro and Segura 2007; 

Constable et al. (2012) b Maximum of virus undetectability period 18 months 
m Mode of virus undetectability period 12 months 
     

Inf period spent in state Im before a vine 
transitions to state Ih 

36 months M. Fuchs, personal 
communication, April 9, 2012 

     
τmax period from planting until productivity 36 months White (2008) 

Tmax ,Amax maximum model time, maximum vine age  600 months White (2008) 

𝜌 discount factor 0.9959 month -1 Assumed. Equivalent to an annual 
discount rate of 5% 

     
𝑐𝑢𝑖,𝑗  unit cost of vine roguing (removal) and 

replacement 
7.25 $/vine Based on White (2010) and Atallah 

(2012) 
𝑐𝑣𝑖,𝑗  unit cost of vine virus testing 2.61 $/vine AC Diagnostics (2012) for the 

material cost based on 1,000 
samples; Luminex (2010) for the 
labor time  

     
𝑟𝑤𝑖,𝑗,,𝑡 revenue of a vine in age-infection state    Vine revenue is based on vine 

value for Cabernet franc (White 
2008) and vine value reduction 
(Atallah 2012 and references 
therein). 

  𝐴𝑖,𝑗 
𝑡 ≤ 3 0 $/vine 

  𝐴𝑖,𝑗 
𝑡 ≥ 4 and  𝑆𝑖,𝑗 

𝑡 = H 5.12 $/vine 
 𝐴𝑖,𝑗 

𝑡 ≥ 4 and  𝑆𝑖,𝑗 
𝑡 = E 3.22 $/vine 

 𝐴𝑖,𝑗 
𝑡 ≥ 4 and  𝑆𝑖,𝑗 

𝑡 =  Im 2.30 $/vine 
 𝐴𝑖,𝑗 

𝑡 ≥ 4 and  𝑆𝑖,𝑗 
𝑡 = Ih 1.15 $/vine 

* Transition rates are constant for a particular location over the 50 year period of study. This excludes 
for instance situations where new insect vector species are introduced and contribute to an increase in 
transmission rates. 
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Table 3 Disease Control Strategies: Expected Vineyard Half-life and Expected Net Present Value 
    Expected half-life a Expected net present value a   
Disease Control Strategies  Value Improvement 

over baselineb  
Value Improvement 

over baseline  
    months months % million $ 1,000 $ % 
Baseline,  no control   188 (8)c -  3.336 (0.053) - - 
         
Nonspatial strategies        
   Age-structured         
 Symptoms severity  Age Acronym       
 Moderate Young ImY 229 (7) 41*** 22 3.517 (0.046) 181*** 5 

Moderate  Mature ImM 213 (8) 25 *** 13 3.345 (0.053)   9*** 0 
Moderate  Old ImO 188 (8)     0 0 3.283 (0.054) -53*** -2 

         
      High Mature IhM 193 (10)  5 *** 3 3.243 (0.052) -92*** -3 
      High Old IhO 188 (08)     0 0 3.321 (0.054) -15*** 0 

    Not-age-structured        
 Moderate All Im 267 (8) 79*** 42 2.945 (0.064) -391*** -12 

      High All Ih 197 (11) 9*** 5 3.194 (0.058) -141*** -4 
       
Spatial (neighborhood-based) strategies       
 Two within-column 

neighbors 
NS 2,533 (222) 2,345*** 1,249 4.650 (0.050) 1,314 *** 39 

 Four within-column and two 
across-column neighbors 

NS2EW 1,639 (146) 1,452*** 773 4.153 (0.044)   817 *** 24 

a Expectations are obtained from 1,000 simulations; b Improvement = mean (scenario)-mean (baseline); c 
Standard deviations in parentheses; *** Difference is significant at the 1% level using estimations with 
robust standard errors. 
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Table 4. Sensitivity of the Expected Net Present Value to the Unit Virus-Test Cost 
   Expected net present value a 
Spatial strategies Acronym Virus-test unit cost 𝑐𝑣𝑖,𝑗  Value Improvement 

over baseline b 
  $/vine million $ million $ % 
Within-column neighbors  NS 2.6 4.650 (0.050)c 1.314 *** 39 

 30 4.294 (0.075) 0.958 *** 29 
      
Within and across-
column neighbors  

NS2EW 2.6 4.153 (0.044) 0.817 *** 24 
 30 3.221 (0.074) -0.115 *** -3 

a Expectations are obtained from 1,000 simulation; b Improvement = mean (scenario)-  mean 
(baseline); c Standard deviations in parentheses; *** Difference is significant at the 1% level using 
estimations with robust standard errors. 
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Figure 1:  Types of grapevine neighborhood 

 

 Vi-1,j  

Vi,j-1 Vi, j Vi, j+1 

 Vi+1, j  

Figure 1a: von Neumann neighborhood of vine Vi, j 

 

 Vi-2,j  

 Vi-1,j  

Vi,j-1 Vi, j Vi, j+1 

 Vi+1, j  

 Vi+2, j  

Figure 1b: Vines in the neighborhood of vine Vi, j that are targeted under the ImNS2EW strategy 
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Figure 2: Single realizations of temporal disease diffusion  

Figure 2a: Baseline case 

Figure 2b: ImY control strategy Figure 2c: ImM control strategy 

Months Months 

Months 

Number of grapevines  

Number of grapevines  Number of grapevines  
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Figure 2d: ImNS control strategy Figure 2e: ImNS control strategy in the long run 

Figure 2f: ImNS2EW  control strategy     Figure 2g. ImNS2EW  strategy in the long run 

 
Legend: 

Months Months 

Months Months 
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Figure 3: Single realizations of the spatial disease diffusion in a vineyard at t=200 months  
Figure 3a: Baseline case  Figure 3b: ImY strategy Figure 3c: ImM strategy 

Figure 3d:  ImNS  strategy Legend 

 
 
 
 
 

Figure 3e:  ImNS2EW   strategy 
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Figure 4: Two-dimensional histogram of the cumulative number of grapevines removed 
and replaced (y-axis) over time (x-axis). Darker color indicates higher frequency. 
 

  
 

Figure 4a: ImNS  control strategy 
 

Figure 4b:  ImNS2EW control strategy 
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Figure 5: First-order stochastic dominance test of net present values (million $) over 50 
years: baseline, age-structured (ImM, ImY) and spatial (ImNS, ImNS2EW) disease control strategies 
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Endnotes 

                                                           
1 Defined as the period in which insect vectors retain the virus and remain infective (Tsai et al. 

2008). 

2 By comparing leaf reflectance measurements in the visible and near-infrared between healthy 

and infected leaves, the spectral reflectance technique can identify the health status of a plant.  

3 The represented vineyard dimensions are 350’ x 650’with an area of 227,500 ft2 or 5.22 acres. 

Vine and column spacing are 5 and 8 feet, respectively.  

4 Recall that the Exposed state is one where a vine is infected, nonsymptomatic, and noninfective 

5 An infective agent to the north (east) of a healthy agent transmits the disease with the same 

probability as the neighbor to the south (west) does.   

6 Although the authors report transmission rates as high as 60%, we limit the upper bound to 

20% to account for the fact that transmission rates are lower in the field than in the laboratory. 

7 We do not include costs other than disease control costs because they are unchanged under the 

different disease control strategies. 

8 We exclude the strategy of roguing and replacing Infective-high and Young (IhY) because this 

age-infection combination cannot be reached; it takes a vine more than 5 years to transition to the 

Infective-high state. 

9 In a First Order Stochastic Dominance test,  for two cumulative distribution functions FA  and 

FB,  FA dominates FB if FA (y) ≤ FB (y), ∀ y ∈ ℝ 

10 Figure 2 shows one single realization of the disease diffusion process. Therefore, the realized 

half-life (read at the intersection of the red and dark green curves) does not correspond to the 

mean expected half-lives in table 3. 
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