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Meeting multiple policy objectives under GHG emissions reduction targets 

Abstract 

Since many countries already pursue a range of environmental objectives for agriculture, in 
particular the supply of positive externalities or public goods (e.g., wildlife habitat, water supply 
management, provision of landscape amenities) as well as the reduction of negative externalities, 
such as soil erosion or water pollution, efforts to reduce GHG emissions may have to be 
balanced against other environmental objectives. We examine this problem by considering an 
agricultural sector that supplies a positive environmental attribute (landscape amenity) as well as 
two negative attributes (GHG emissions and nutrient contamination of ground and surface 
water). The sector can also engage in production activities that contribute to reductions in the 
concentration of carbon in the atmosphere (carbon sequestration activities). In our model this 
involves devoting agricultural land to growing trees (agro-forestry).  
 
We use the model to examine policy choices designed to increase the positive domestic 
environmental contribution of agriculture, while at the same time reducing its negative 
contribution. We also use the model to examine the implications for achieving domestic 
environmental objectives of the imposition of an internationally determined GHG emission 
reduction requirement on agriculture. In the case where the socially optimal level of GHG 
emissions from agriculture based on the national social damage function for GHG emissions is 
below the global command and control target for the country, the levels of subsidies and taxes on 
inputs needed to maximize domestic social welfare lead to GHG reductions in excess of the 
global target. In contrast, the national social value assigned to the domestic damage due to GHG 
emissions could be at odds with the global social value of the damage implicit in the command 
and control target level of emission reductions assigned to the country and applied by that 
country to agriculture.  In this case, domestic social welfare could be improved by allowing for 
an additional unit of GHG emissions by the sector. Thus, from a domestic point of view, the 
global command and control target level of reductions assigned to the country is too high. 
 
We also argue that the most practical way to achieve multiple environmental objectives, 
including GHG mitigation in agriculture is to focus on inputs – specifically how land is used and 
what inputs are applied to that land. In this way negative externalities can be reduced and the 
supply of positive externalities and public goods can be increased. Since it is unlikely to prove 
politically acceptable to use explicit taxes on inputs to correct for negative externalities in 
agriculture, a more likely approach is one based on payments for environmental services 
designed specifically to translate the non-market values of the environment services into 
financial incentives for local actors to provide such services. 
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Meeting multiple policy objectives under GHG emissions reduction targets 

By 
 

Richard N. Boisvert and David Blandford 
Introduction 

Despite the failure of the 2009 U.N. Climate Conference in Copenhagen, efforts continue to 

reach agreement on binding global commitments for reductions in greenhouse gas (GHG) 

emissions. Any such future agreement will likely involve the agricultural sector, which 

heretofore has been exempted from most national initiatives to reduce carbon emissions.  

Many countries already pursue a range of environmental objectives for agriculture, in 

particular the promotion of the supply of positive externalities or public goods (e.g., wildlife 

habitat, water supply management, provision of landscape amenities) as well as the reduction of 

negative externalities, such as soil erosion or water pollution. The aim of reducing GHG 

emissions may therefore have to be balanced against other environmental objectives. Policies 

will have to be designed to address multiple environmental outcomes.  

In this paper we examine this problem by considering an agricultural sector that supplies 

a positive environmental attribute (landscape amenity) as well as two negative attributes (GHG 

emissions and nutrient contamination of ground and surface water). The sector can also engage 

in production activities that contribute to reductions in the concentration of carbon in the 

atmosphere (carbon sequestration activities). In our model this involves devoting agricultural 

land to growing trees (agro-forestry). We use the model to examine policy choices designed to 

increase the positive domestic environmental contribution of agriculture, while at the same time 

reducing its negative contribution. We also use the model to examine the implications for 

achieving domestic environmental objectives of the imposition of an internationally determined 

GHG emission reduction requirement on agriculture. Our focus is solely on the achievement of 
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environmental objectives and we do not include any other objectives, such as a redistribution of 

income from consumers to farmers. 

The Model 

Our model of agricultural production contains the essential components for analyzing the 

situation in which agricultural producers adjust to domestic policies designed to promote national 

environmental objectives. We then examine the incorporation of the internationally determined 

environmental objective. In the model, aggregate agricultural output, Y, depends on three inputs, 

land and two input bundles composed of differing aggregates of other factors of production. The 

well-behaved production function is given by:  

(1)      , , , 

where Ly and Ky are inputs of land and other inputs, respectively, used to produce agricultural 

goods, and, as discussed below,  Ka are inputs used in the production of landscape amenities. 

These inputs are different from those used solely to produce agricultural output, but are assumed 

to affect the level of that output. In what follows we shall refer to the category  K as non-land 

inputs, but their composition is allowed to differ in the production of commodity and non-

commodity outputs from agriculture. 

In addition to generating agricultural commodities, land that is committed to agricultural 

production is assumed to generate environmental public goods (e.g. landscape amenities). These 

are produced according to: 

(2)  , , . 

The aggregate of other inputs, Ka, is also included as an argument in the production function for 

landscape because amenity value (often referred to as the “cultural landscape”) depends on how 
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land is managed, 1 and cultural landscape is assumed to improve with the intensity of 

management, as measured by Ka/Ly.
2 Thus, the composition of the non-land input bundle Ka that 

is specifically oriented to the production of amenities, will likely differ (e.g., the mix of labor, 

capital and purchased inputs) from that devoted to agricultural production, Ky.However, Ky is 

also assumed to affect the production of landscape amenities, either negatively or positively. As 

agricultural production becomes more non-land input intensive, ceteris paribus, the quality of 

landscape amenities may well decline, but there could be cases in which the reverse might 

apply.3 

 The production of agricultural commodities also generates two forms of pollution: GHG 

emissions and nutrient contamination of ground and surface water. These respective pollutants 

are produced according to the functions: 

(3)     , , and  

(3’)    , . 

                                                            
1 Existing studies suggest that there are several attributes that enhance the value of the landscape such as 
biodiversity, variation, grazing animals, openness and environmental benefits, and that cultural landscape is a spatial 
public/externality good (e.g., Drake, 1992 and Dillman and Bergstrom, 1991). 
2 This formulation does not imply that landscape amenities are produced in fixed proportions with agricultural 
output or even land committed to agricultural production. Farmers can increase or decrease the amenity value of 
land in agriculture independently from the volume of agricultural output. For example, the amenity function may be 
similar to the semi-logarithmic function used by Chang, et al. (2005) to model a similar non-commodity output from 

agriculture. If we let  λlog  , where a given level of Ky is assumed to be included in the 

constant term λ. The expression in { } can be rewritten as .This highlights the fact that the intensity 

of application of non-land inputs per unit land area affects landscape amenities, as does the increase in the overall 
amount of land in agriculture. This latter assumption implies that production of landscape is not proportional to 
agricultural output although there is a linkage between agricultural activity and the supply of amenities by virtue of 
the land allocated to agricultural production.  
3It is important to note that in our model, both agricultural production and landscape depend on both Ka and Ky, and 
that the relationships can be positive or negative.  It could well be the case, for example, that the collections of 
machinery and buildings, odor, manure disposal facilities, etc. related to large scale animal agriculture could well 
diminish the value of the nearby landscape. Alternatively, attractive fields made possible by the application of 
nutrients to certain crops may add to the quality of the cultural landscape, similarly some of the investment in 
maintaining field boundaries designed to enhance the landscape may provide a better habitat for honey bees and add 
to agricultural crop output through more effective pollination. 
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The production of these two forms of pollution depends on the land committed to agricultural 

production and the application of the particular non-land inputs that contribute to agricultural 

output.4 

We also assume that farmers can devote land and an aggregate bundle of non-land inputs 

to agro-forestry rather than to the production of agricultural output. The well-behaved forestry 

production function is: 

(4)    , . 

As in the other functions above, the composition of the non-land bundle of inputs can differ from 

those used in the production of agricultural commodities or landscape amenities. Agro-forestry 

will generate woody biomass that can be sold in the market (for timber, fuel wood, etc.). In 

addition, land committed to forestry also serves to sequester carbon, according to the function: 

(5)    , . 

While the level of carbon sequestration is a function of the level of forestry production (e.g. land 

in forestry), it is also assumed to be affected by the type of forestry (e.g., short- versus long-

rotation, use of tree species with different growth patterns), which, for our purposes, could also 

be reflected in the non-land input intensity of production, / .5  

Classification of Inputs and Joint Production 

Before proceeding, it is important for the policy discussion to understand how the two market 

goods (agricultural output and agro-forestry output) must each be viewed as being produced 

jointly along with their respective non-commodity outputs. The products can be linked in joint 

production through short-term constraints on allocable inputs and/or the existence of non-

                                                            
4 We exclude the use of specific input bundles designed to reduce negative externalities in this formulation. 
However, we note the implications of a more complex specification later in the paper.  
5 We assume that agro-forestry has a neutral effect on ground and surface water quality. Forestry can actually have a 
positive effect on the quantity and quality of water resources. 
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allocable factors of production (Beattie, et al., 2009 and Peterson, et al., 2002). An input is said 

to be non-allocable if one cannot distinguish between the units of the factor being used to 

produce one of the outputs from those being used in the production of any other (Beattie, et al., 

2009).  

For the purposes of understanding resource allocation decisions by farmers in response to 

agro-environmental policy, it is critical to recognize that land committed to the simultaneous and 

joint production of agricultural output, GHG emissions, nutrient pollution, and landscape 

amenities falls into the category of a non-allocable input. And, as is often the case in agriculture, 

some of the joint outputs are traded in organized markets, while others have public good 

attributes or are environmental externalities that are not traded in organized markets.   

Similar to land, the non-land composite input bundle, Ky, is non-allocable in the 

production of agricultural output, GHG emissions, and nutrient pollution. In contrast, the use of 

the non-land composite input bundle Ka is allocable between the production of landscape 

amenities and the other three joint outputs from agricultural production (i.e. Ky is distinct from 

Ka). Agro-forestry and the sequestration of carbon are also joint products because the inputs used 

for these are non-allocable between the two products.  

To complete the description of the model, we assume there are fixed market prices for 

agricultural and agro-forestry outputs of Py and Pf, respectively. 6 Furthermore, there is a fixed 

quantity of land,  L* = Ly + Lf .
 7 In contrast, the supplies of the distinct composite non-land 

inputs, (Ky, Ka, and Kf) are unconstrained and their market prices (Pky, Pka , and Pkf ) are also 

                                                            
6 We subsequently relax the assumption that the price of agricultural output is fixed. 
7 By introducing this land constraint into the model, there is yet another condition for jointness in production: a fixed 
availability of an allocable input. Both forestry and agricultural production compete for the fixed amount of land 
available, which is an (allocable) input between the two sets of production activities. With this land constraint, 
however, the joint nature of production is reflected by the fact that as more land is allocated to increase forestry 
output there must be a reduction both in land allocated to agricultural production, and in agricultural output 
(Boisvert, 2001). This cause for joint production would not exist if land could be purchased at a fixed price or if 
prices were determined in a competitive land market. 
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assumed to be exogenous.  Finally, in order to examine the producer’s resource allocation 

decisions, we assume that the marginal social values of GHG emissions, carbon sequestration, 

nutrient pollution, and landscape amenities are reflected through a set of fixed prices denoted by 

Pg, Ps, Pn, and Pa respectively.8  

The Producer’s Problem 

Given these parameters, the producer’s problem is to maximize profit (revenue minus costs), 

subject to the fixed prices for all relevant outputs and the land constraint:  

(6)  max , , , , , , ,  ,  ,

, ,  , . 

Assuming an interior solution, the first-order necessary conditions for a maximum are given by: 

(7)    0, 

(8)    0, 

(8a)   0, 

(9)    0,   

(10)   0, and 

(6a)   0. 

The subscripts on the terms Y, F, G, A, N, and S represent partial derivatives. The first-

order conditions underscore the effects of non-allocable inputs for jointly-produced goods on 

optimal input use when farmers account for the social value of public/externality outputs in their 

production decisions. The optimal level of each non-allocable input in the production of 

agricultural output occurs where the shadow price or market price of that input equals the sum of 

                                                            
8 These may be interpreted as a set of policy-determined subsidies/taxes for the environmental goods/bads that are 
known to producers. 
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the marginal value products of the respective inputs in the production of the agricultural 

commodity and public/externality goods (e.g. GHG emissions, nutrient pollution, and landscape 

amenities) jointly produced. Similarly, the optimal level of each non-allocable input in the 

production of the agro-forestry output occurs where the shadow price or market price of that 

input equals the sum of the marginal value products of the respective inputs in the production of 

the agro-forestry commodity and the public/externality good (e.g. carbon sequestration) that is 

jointly produced. 

In principle, as indicated above, the fact that the allocation of inputs in agricultural 

production is unaffected by the productivity of inputs in agro-forestry production [compare 

equations (7, 8, and 8a) with equations (9 and 10)] reflects the fact that the two inputs are 

allocable between these two sets of joint products. This would indeed be the case if farmers 

could buy land in the market, and there were no constraint on the amount purchased. However, 

the jointness in production due to the fixed input of land is reflected in the land constraint, 

equation (6a), and it is this constraint, along with the Lagrangian multiplier, µ, in equation (7) 

and (9), that links the remaining five equations and ultimately determines input allocation.   

If agricultural producers face zero social prices for the jointly produced public/externality 

outputs (e.g. Pg, Ps, Pn, and Pa = 0), then the social values of these products will not affect input 

allocation decisions. This is the competitive market solution, and input use will not be socially 

optimal. To help understand how the social values of these non-market externalities affect input 

use, we can examine each of the first-order conditions individually.9  

It is perhaps easiest to begin with equation (9). To do so we must first make reasonable 

assumptions about the nature of the functions F and S. We assume that the marginal product 

                                                            
9 While we gain important insights into the effects of these social values on the allocation of productive inputs 
through this approach, the final effects on input use and the production of the various outputs can only be 
determined through the simultaneous solution of this system of equations, including the land constraint.  
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(MP) of land in the production of forestry output is positive, but declining, and the marginal 

product of forestry in carbon sequestration is also positive, but also declining.  

Based on these assumptions, and the fact that Pf  > 0, and Ps > 0 (e.g. carbon 

sequestration has positive social value), the optimal amount of land committed to forestry will 

tend to be higher than under competitive market conditions in which there is no explicit 

recognition of the social value of this positive non-commodity externality.  The marginal social 

value of sequestration essentially drives a wedge between the shadow price of land and the 

marginal value of its use in forestry. Since µ can be assumed to be positive, and for any level of 

Lf, the value of the left-hand side of equation (9) is higher than it would be without accounting 

for the social value of sequestration. Thus, if both F and S are well-behaved, and the MP 

schedules of land are declining, more agricultural land must be committed to forestry production, 

relative to that for the competitive equilibrium, to reduce its marginal productivity and 

reestablish equilibrium.  

A similar line of reasoning applied to equation (10) would lead one to a similar 

conclusion. The optimal use of input Kf committed to forestry will tend to be higher than under 

competitive market conditions in which there is no explicit recognition of the social value of 

carbon sequestration.  

The situation in equation (7) is a bit more complex since landscape amenities are affected 

by the allocation of land to agricultural production, as are GHG emissions and nutrient pollution.  

Thus, the effect of explicit recognition of the social values of these three non-market 

commodities on optimal allocation of land in agriculture relative to that in the competitive 

market case depends on the marginal contribution of land to net social value. If the combined 

negative marginal contribution to social welfare due to production of GHG emissions and 
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nutrient pollution is larger in absolute value than the positive marginal contribution to social 

welfare due to the provision of landscape amenities (e.g. 0), one must 

reduce the use of land in agriculture in order to raise its marginal product and reestablish 

equilibrium. The reverse is the case if the net marginal contribution of the three non-market 

goods to social welfare is positive (e.g. 0). 

The examination of equation (8) is similar, but now two of the non-commodity outputs 

(GHG emissions and nutrient pollution) whose production levels are affected by Ky have 

negative social values (e.g. Pg < 0 and Pn < 0), while landscape amenities, also affected by Ky, 

have positive social value, Pa > 0.  It is reasonable to assume that Ky’s marginal product in the 

production of agricultural output, GHG emissions, and nutrient pollution are positive, but 

declining. Therefore, the marginal values of emissions and nutrient pollution drive a wedge 

between the price of the input and the marginal value of the agricultural output. Since Pky > 0, 

but Pg < 0 and Pn < 0. Under these conditions, the terms  would both be negative 

and the value of the left-hand side of equation (8) would be lower than it would be without 

accounting for the social cost of GHG emissions and nutrient pollution. Furthermore, if the 

marginal contribution of Ky to amenities is negative, the term would be negative as well, 

and to reestablish equilibrium one would have to reduce the use of input Ky, again relative to that 

under the competitive equilibrium, in order to raise its marginal product and restore 

equilibrium.10   

Similarly, the allocation of Ka to the production of landscape amenities affects the level 

of agricultural production. Thus, an examination of equation (8a) reveals that the optimal 

                                                            
10 In the event that the marginal contribution of Ky to amenities is positive, the term would be positive as well, 
partially or totally reversing the reduction in the use of Ky due to the the negative marginal social values of GHG 
emission and nutrient pollution. 
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allocation of the input Ka
* is where the value of the marginal product of Ka in producing 

landscape amenities (whose social value, Pa > 0) plus the value marginal product of Ka in 

producing agricultural output must equal the price, Pka. To the extent that the application of non-

land inputs to the production of landscape amenities reduces agricultural production, there would 

be a tendency for the level of Ka to be lower than in the competitive situation where farmers do 

not account for the social value of landscape. Under these conditions, there would be no 

incentive for farmers to allocate any of the variable input Ka to improve the quality of landscape. 

If, however, the marginal product of Ka in agriculture is positive, the level of Ka would be above 

that under competition, and even if farmers do not account for the social value of landscape, 

some “amenity-specific” non-land inputs would be applied in agricultural production. 

The Policy Framework 

Conceptually, a government could achieve efficiency in the production of both private goods and 

the public/externality goods in two ways: 1) by taxing or subsidizing them at their social values, 

or 2) by direct regulation of the quantities of these externalities at their socially optimal levels 

through a set of command and control policies. The former of these two approaches is reflected 

in the model above. The first strategy is the well-known Pigouvian solution (Spulber, 1985), and, 

as demonstrated, its properties can be identified theoretically through an indirect profit function 

that depends on the prices of all outputs.  Unfortunately, the implementation of such a policy 

approach is not of much help in practice. As Peterson, et al. (2002) point out, the difficulty in the 

case of agriculture is that landscape amenities, GHG emissions and nutrient pollution are almost 

always unobservable, not measurable in a traditional way, or measurable only at substantial cost. 

Thus, they can neither be priced nor regulated directly.  In this case, practical policies will act on 

observable outputs and inputs.  
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In what follows, we build on previous results from the trade and environmental 

economics literature. For this case of joint production in commodity and non-commodity 

outputs, we derive a policy scheme to internalize simultaneously the social benefits and costs of 

positive and negative externalities through taxes/subsidies on inputs.11  

We develop a set of optimal taxes and subsidies on productive inputs which yields results 

equivalent to the Pigouvian solution in which externalities are taxed or subsidized at their social 

values assigned at the national level. We go on to contrast this policy solution with one in which 

a GHG emissions reduction target (i.e. a constraint on the allowable level of GHG emissions) is 

imposed by an international agreement, which allows for the possibility that the target may not 

be consistent with national environmental policy goals.  

The Welfare Maximization Problem 

Social welfare can be represented as the sum of consumer and producer surplus.12 To maximize 

domestic social welfare, we must solve the following maximization problem, where the decision 

variables are the levels of land and/or non-land inputs used in agricultural production (Ly and Ky), 

in forest production (Ly and Ky), and to generate landscape amenities (Ka): 

11  
,

, , , , ,

,  , ,  ,

 

                                                            
11 As suggested by Peterson, et al. (2002) and Chang, et al. (2005), these results extend the results by Holtermann 
(1976) and Stevens (1988) who derive the optimal input taxes for a single externality. 
12 Casmatta, et al. (2011) examine optimal policy choice given joint production of agricultural goods and rural 
amenities where policymakers place differential weighting on the welfare of producers and consumers. The 
preferential treatment of farmers in many developed countries, including Norway, is not examined in this paper. 
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where  is the domestic demand function for the agricultural output, Dg(·) is the domestic 

social damage function for GHG emissions, Dn(·) is the domestic social damage function for 

nutrient pollution, Ba(·) is the domestic social benefit function for landscape amenities, and  Bs(·) 

is the domestic social benefit function for carbon sequestration.13 We assume that the marginal 

contribution of each argument in the benefit and cost functions is positive but declining. We also 

assume that agricultural producers are price takers in the forest products market and face an 

exogenous price of Pf, but that this is not necessarily the case for agriculture (i.e., we relax the 

assumption of a fixed price for agricultural output made earlier). Following Peterson, et al. 

(2002), we can write the equilibrium price of agricultural output as being determined by the 

equation:  

(12)    

where  is the net foreign demand function, which is positive, negative or zero, 

respectively, for net exporters, net importers, or countries with no trade.14 

The decision variables in this problem are again the levels of land and/or non-land inputs 

used in agricultural production (Ly and Ky), in forest production (Ly and Ky), and to generate 

landscape amenities (Ka). The first-order necessary conditions for a maximum are: 

(13)    · · · · 0, 

(14)    · · · · 0, 

                                                            
13 By design, we assume that the domestic social benefit function for carbon sequestration is not equal to the 
negative of the domestic social damage function for GHG. This reflects the fact that growing forests capture carbon 
at different rates over time. Furthermore, if these forests are used as biomass fuel, there is growing evidence that 
such fuels are not carbon neutral, a view generally held by many promoting the use of biomass fuels. Since the 
1990’s, research suggests that the atmospheric greenhouse gas implications of burning forest biomass for energy 
vary depending on the characteristics of the bioenergy combustion technology, the fossil fuel technology it replaces, 
and the biophysical and forest management characteristics of the forests from which the biomass is harvested 
(Walker, et al., 2010 and Rose and McCarl, 2010). 
14 The last case can apply to countries that protect their domestic agriculture from international competition through 
high tariffs or other trade restrictive measures. 
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(14a)  · 0, 

(15)   · 0,   

(16)   · 0, and 

(11a)  0. 

Solving for  in equation (12), substituting the result into equations (13) and (14), and 

rearranging, equations (13) through (16) become: 

(13’)   · · · , 

(14’)   · · · , 

(14a’)  · , 

(15’)   · ,  and 

(16’)   · . 

For large countries, the first terms in equation (13’) and (14’) are terms of trade effects 

due to the change in the value of imports/exports from any changes in domestic prices, and are 

analogous to optimal tariffs/export taxes (Peterson, et al., 2002); these terms are zero for small 

countries facing exogenous world prices. The remaining terms on the left-hand sides of all five 

equations are the marginal social benefits from producing each of the joint outputs.  Each of 

these conditions requires the marginal social benefits of an input to equal its marginal social 

costs. 

Optimal Policies for a Small Economy—using input taxes and subsidies  

Let us first consider a small economy with a set of taxes and subsidies on L and K, which are 

distinct for each land use and non-land input bundle used in the production of agricultural output, 

to improve the cultural landscape, and increase carbon sequestration from agroforestry:    
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(17)      max , , , , , ,

, 

where Py and Pf are the exogenous prices of agricultural and agro-forestry outputs, respectively; 

PK.  is the price of the associated input bundle K., and µ is the shadow price of land. Furthermore, 

sLy, and sLf are subsidies for land committed to agricultural and forestry production, respectively. 

Finally, tKy, tKf, and tKa, are the respective taxes on non-land inputs committed to: agricultural 

production (along with the production of GHG and water pollution); forestry production (along 

with carbon sequestration); and landscape amenities.15   

Assuming an interior solution, the first-order necessary conditions for a maximum are 

given by: 

(18)     , 

(19)     , 

(19a)   0, 

(20)     ,   

(21)  , and 

(17a)   0. 

To maximize social welfare, we require that the taxes and subsidies on inputs be 

consistent with equations (13’) through (16’). That is accomplished by substituting equations 

(13’) through (16’) into equations (18) through (21). Recalling that there are no terms of trade 

effects for this small country, we have: 

                                                            
15 Since these inputs are allocable between the two sets of joint products, there is a need to be able to differentially 
tax or subsidize their use. This is consistent with Tinbergen’s old, but well known principle that policy optimality 
requires at least as many policy instruments as there are objectives. If we are to achieve optimal social welfare 
through taxes or subsidies on inputs used to produce different joint products, we need one instrument for each input 
for each product.   
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(22)    · · · , 

(23)    · · · , 

(23a)   · , 

(24)     · ,  and 

(25)   · . 

After some rearranging, we have: 

(22’)  · · · , 

(23’)  · · · , 

(23a’) · , 

(24’)   · ,  and 

(25’)  · . 

It is evident from equations (22’) through (25’) that these input policies are a straightforward 

generalization of previous results in the literature for a single externality. Each input is rewarded 

by the net marginal value of its contribution to the several externalities.  

This implies, for example, that land committed to forestry will be subsidized at  

because of its marginal contribution to carbon sequestration. Similar reasoning suggests that 

will also be negative because the application of additional K to forestry also contributes to 

social welfare through the associated increase in carbon sequestration. In the event that the 

marginal contribution of Ka to agricultural production is positive, the additions to the private 

value of agricultural output add to the social benefits of improvements in landscape amenities 
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and   will be unambiguously negative (a subsidy).16 On the other hand, the amount of the 

subsidy due to enhanced social value of landscape would be reduced, or could be eliminated 

completely, if Ka’s marginal contribution to agricultural output is negative.   From equation 

(23’), we know that the tax on K applied to agricultural production, , will likely be positive 

because its use contributes to both reduced GHG emissions and nutrient contamination, and these 

effects can be quite large. In the event that these particular non-land inputs at the margin 

diminish the cultural landscape, the tax would be larger still, but it could be partially offset if 

these agricultural-specific non-land inputs at the margin serve to enhance the cultural 

landscape.17  

Since land committed to agricultural production affects landscape amenities while at the 

same time contributing to GHG emissions and nutrient pollution, the sign of  is also 

ambiguous. Only if the marginal social benefit of land in the production of landscape amenities 

is larger than the combined marginal social damage from GHG emissions and nutrient pollution 

                                                            
16 As noted earlier, we have not allowed for the use of input bundles in the functions 3 and 3’ that reduce GHG 
emissions and nutrient pollution. If such bundles exist, following the logic used here, it would be optimal to 
subsidize their use in order to enhance domestic social welfare. 
17 To reflect reality, we have throughout argued that the non-land input bundles used in the production of 
agricultural goods, forestry, and landscape amenities are distinct. Thus the prices, as well as the taxes or subsidies on 
these input bundles, are distinct as well. This presents no problems conceptually, but this does present certain 
complications in policy implementation. To administer the appropriate policy incentives, it is necessary to be able to 
target the taxes or subsidies on these non-land inputs to their end use. The problems in doing this would seem to be 
least serious in the case of agroforestry; one would only have to monitor input non-land input use on that land 
committed to forestry. On land in agricultural production, it would be easy to identify some of the non-land inputs 
used specifically in agricultural production (e.g. commercial fertilizer), and others used specifically to enhance the 
landscape. In contrast, it may be most difficult to target a subsidy to inputs such as labor, for example, because it can 
be a major input needed to improve the quality of the landscape, but it is also used on the same land for the 
production of agricultural output. Ultimately one would hope to be able to target the use of all inputs to particular 
tasks (say labor to maintain stone walls to enhance amenities), but an acceptable alternative may be to identify 
representative discrete bundles of inputs (e.g. enterprise budgets) needed to accomplish specific types of landscape 
improvements. This strategy would in fact bundle inputs for policy purposes similarly to what is done to simplify 
our model, and this may indeed reflect the likelihood that many farmers do make rather discrete decisions on the use 
of inputs in activities that promote the quality of landscape, etc. This also implies that the price of any particular 
input bundle is a linear function of the prices of the component inputs in the bundle. Peterson, et al. (1999) establish 
that this will lead to lower bound estimates of the required subsidies for the non-land inputs and upper bound 
estimates of the required taxes.     
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will land be subsidized. If the reverse is true, there will be a tax on land in agricultural 

production.   

Command and Control Regulation of GHG  

While this model accounts for the national social value of the reductions in GHG emissions, any 

future agreement by the global community is likely to come in the form of country quotas for 

reductions in GHG emissions. Accordingly, the policy challenge for individual countries will be 

to maximize domestic social welfare, given these emission reduction targets, along with 

implementing policies to deal with national environmental objectives related to agriculture.  

In this event, domestic social welfare must now be maximized subject to an additional 

condition, the GHG constraint, where GHG emissions can exceed the upper limit only to the 

extent that these excess emissions are offset by a discounted amount of carbon sequestration, 

0 1, through forest production. The constraint can be written as: 

         , , . 

The welfare maximization problem now becomes:  

26  
,

, , , , ,

,  , ,  ,

, ,  

The first-order necessary conditions for a maximum are given by: 

(27)  · · · · 0, 

(28)  · · · · 0, 
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(28a) · 0, 

(29)  · 0,   

(30)  · 0,  

(26a) 0, and  

(26b) , , 0 

Simplifying in a manner similar to that in constructing equations (13’) through (16’), we have:  

(27’)  · · · , 

(28’)  · · , 

(28a) · , 

(29’)  · ,  and 

(30’)  · . 

For the small country case, we can maximize domestic welfare simply by making the 

taxes and subsidies from equations (18) through (21) consistent with the conditions in equations 

(27’) through (30’). That is accomplished by substituting equations (27’) through (30’) into 

equation (18) through (21). Recalling that there are no terms of trade effects for the small 

country, we have: 

(31)  · · · , 

(32)  · · · , 

 (32a) · , 

(33)  · ,  and 

(34) · . 

After some rearranging, we have: 
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(31’)  · · · , 

(32’)  · · , 

(32a’) · , 

(33’)   · ,  and 

(34’) · . 

When compared with equation (22’-25’), each of these equations for socially optimal 

taxes and subsidies on inputs now includes an additional term that contains the Lagrange 

Multiplier, , on the GHG emissions constraint. Thus, the domestic welfare maximizing taxes 

and subsidies on inputs now depend on the contributions of the externality outputs to domestic 

social benefits and costs, as well as on the value of this Lagrange Multiplier – the “shadow price” 

of the GHG constraint. The interpretation of γ is straightforward. If the right-hand side of the 

internationally-imposed limit on GHG emissions GHG* were increased at the margin, domestic 

social welfare would increase by an amount γ. For positive values of γ there would be additional 

taxes levied on land and non-land inputs in agricultural production equal to γ multiplied by the 

marginal contributions of these respective inputs to GHG emissions. In contrast, the subsidies to 

land and non-land inputs would be increased by γ multiplied by the marginal contributions of 

these respective inputs to discounted carbon sequestration.  

For purposes of policy analysis, we must, however, consider two cases: 1) where 0 

and 2) where 0. 

Case 1: The Lagrange Multiplier, 0 

There are two circumstances in which  can be zero. The first is where the 

internationally-agreed GHG constraint is not binding on the agricultural sector. The second is 

where optimal taxes and subsidies on inputs required to maximize domestic social welfare are 
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those for which GHG emissions exactly coincide with the global command and control targets 

for emissions reduction. Although logically possible, this case is unlikely to apply in practice. 

The former, and more relevant, situation is where the socially optimal level of GHG 

emissions from agriculture based on the national social damage function for GHG emissions, is 

below the global command and control target for the country. Thus, the levels of subsidies and 

taxes on inputs needed to maximize domestic social welfare lead to GHG reductions in excess of 

the global target.  

The first factor influencing the relevance of this case is how a GHG reduction target 

applicable to total national emissions is allocated by sector. Countries could choose to treat 

agriculture more favorably that other sectors and seek to reduce their emissions by focusing on 

other sectors. One problem with this approach is that studies have shown that, in general, 

agricultural emissions in developed countries are very high relative to the sector’s contribution to 

GDP (Blandford and Josling, 2009). Allowing agriculture to opt-out of GHG reduction targets 

could impose a disproportionate burden on other sectors of the economy. Consequently, 

countries may well seek to ensure that agriculture bears its “fair share” of any emission 

reductions agreed at the international level. 

A second issue is that for a small country, whose own emissions are likely to make a 

small contribution to the global total, its contribution to any domestic damage from global 

warming will be small relative to the potential global damage from higher global temperatures. 

That case may be more relevant to a large country whose emissions are large and may contribute 

significantly to any domestic damage from global warming. In both cases, however, the situation 

is complicated by the fact that recent analysis of the impact of global climate change suggests 

that countries in the northern hemisphere may actually gain from higher global temperatures 
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through increased productivity in agriculture, at least over a range of higher projected 

temperatures (Parry et al., 2007). If that is so, the imposition of a globally mandated reduction in 

GHG emissions may well reduce domestic welfare if applied to agriculture in both small and 

large countries. 

Case 2: The Lagrange Multiplier, 0 

If Case 1 above were to obtain, political and other difficulties in implementing a globally 

mandated GHG reduction target at the national level would certainly be reduced, but on the basis 

of the discussion above we can concluded that the more interesting and relevant situation is 

where the Lagrange Multiplier, , is positive.  

Under these circumstances, the national social value assigned to the domestic damage 

due to GHG emissions is at odds with the global social value of the damage implicit in the 

command and control target level of emission reductions assigned to the country and applied by 

that country to agriculture.  Domestic social welfare could be improved by allowing for an 

additional unit of GHG emissions by the sector. Thus, from a domestic point of view, the global 

command and control target level of reductions assigned to the country is too high. As noted 

above, this is likely to apply to northern hemisphere countries in higher latitudes, such as 

Norway.18 When this case applies, the achievement of domestic agro-environmental policy 

objectives may be constrained by international obligations. In particular, while the international 

GHG constraint might dictate that land should be taken out of agricultural activities and devoted 

to agro-forestry, this could well constrain the supply of amenities associated with agriculture. In 

contrast it could reduce negative externalities associated with agricultural activities, such as 

pollution of water supplies. 

                                                            
18 Note, however, that Norwegian agriculture is heavily protected and its contribution to GHG emissions may 
therefore already be above either a domestic or internationally optimal level. This is not reflected in our analysis 
since we do not incorporate non-environmental objectives such as the redistribution of income to producers.  
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Implications for Program Design 

We have argued above that the most practical way to achieve multiple environmental objectives, 

including GHG mitigation in agriculture is to focus on inputs – specifically how land is used and 

what inputs are applied to that land. In this way negative externalities can be reduced and the 

supply of positive externalities and public goods can be increased. Since it is unlikely to prove 

politically acceptable to use explicit taxes on inputs to correct for negative externalities in 

agriculture, the approach that is likely to be taken is one based on payment for environmental 

services (PES). This approach attempts to “…translate external, non-market values of the 

environment into real financial incentives for local actors to provide such services” (Engel et al., 

2008, p. 664). Through PES producers can be rewarded for positive externalities and public 

goods as well as the reduction of negative externalities. The implementation of a PES approach 

requires that positive and negative environmental contributions be clearly identified and that 

payments be directed to achieving the maximum social benefit. In this part of the paper we 

consider the use of such an approach using the Conservation Reserve Program (CRP) as an 

example. 

The CRP program 

The CRP, which was originally introduced in the 1985 Farm Bill, is a voluntary program that 

pays agricultural landowners an annual rental payment and cost-sharing assistance to establish 

long-term, resource conserving practices on eligible land. Contracts lasting from 10 to 15 years 

typically involve planting and maintaining covers to control soil erosion, improve water and air 

quality, and enhance wildlife habitat. The aim of the program, therefore, is to change existing 

land use in order to increase the supply of environmental services. 
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The CRP involves a competitive bidding system. Farmers offer eligible acreage for 

enrollment in the program and specify the rental payment that they are prepared to accept. 

Applications are ranked on the basis of an Environmental Benefits Index (EBI) which assigns a 

point score based on an offer’s environmental characteristics. The factors incorporated into the 

EBI are known to farmers in advance of submitting their bids. Those used for the sign-up 

announced in January 2011 are summarized in Table 1. In addition to environmental criteria the 

costs of accepting particular parcels under the program are also taken into account in computing 

a final score since there are limits on the maximum acreage that can be enrolled in the program 

and on available funds. 

The design of the EBI reflects a judgment of which characteristics of land parcels and the 

practices applied to them would generate the highest environmental benefits, relative to costs, if 

an offer to enroll them in the program were to be accepted. Of the maximum possible point score 

(excluding the scoring for costs) of 400 points, 240 are unambiguously allocated to negative 

externalities of crop production (lower water and air quality and increased soil erosion), 110 are 

unambiguously allocated to promoting the supply of public goods (wildlife habitat and carbon 

sequestration). The remaining 50 points (enduring benefits) apply to increasing the probability of 

securing continued reduction in externalities and an enhanced supply of public goods beyond the 

period of enrollment in the program. 

The weightings attached to each of the factors, both the total points allocated to a 

particular characteristic (e.g., contribution to wildlife habitat, category N1, versus enhancement 

of water quality N2) and the allocation of points within these characteristics (e.g. aspects of the 

contribution to wildlife habitat within N1) reflect a particular set of preferences for the range of 

possible outcomes. Most of the characteristics that are rated are based on scientific judgments, 
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although science may offer only limited guidance as to how those should be weighted. Some of 

the preferences for characteristics are based on an absolute threshold, i.e., no points are awarded 

unless a particular characteristic is present or a threshold value for that characteristic is met (e.g., 

N2a). Other factors (e.g., N1a) are continuous over a given range. For those variables it is 

possible to determine implied trade-offs among characteristics at the margin. This is not possible 

for the discontinuously rated factors. Even in the former case, the interpretation of marginal 

valuations among factors is not straightforward due to differences in metrics. In this context, the 

scaling of individual factors is critical (e.g., the construction of the indices used for leaching and 

sedimentation in N2) and the factors themselves may not be comparable. For example, it would 

be difficult to determine what a marginal change in the measure of cover benefits (N1a) relative 

to a marginal change in the erodability index (N3) across parcels would actually mean in terms 

of overall environmental quality. 

Despite these limitations, the index approach used in the EBI seems to hold considerable 

promise for developing a structured approach to designing a payment scheme to enhance the 

supply of environmental goods and to reduce the supply of environmental bads (Cattaneo et al., 

2006). In particular, it has the following advantages: 

1. There is an explicit identification of the environmental factors that are valued by 
policymakers and the relative weights that are placed on them. 

2. The factors are known to producers in advance, such that they are in a position to judge 
whether it would be worthwhile for them to participate in the program. 

3. A competitive bidding process provides an opportunity for taxpayers to get the best value 
for money in terms of improving environmental quality – producers will place bids that 
are in line with private costs of meeting the contract requirements and these may be 
below the social costs or benefits involved.  

 

In contrast, there are a number of disadvantages: 

1. The way that the index is constructed (factors included, the way these are measured and 
the points allocated to them) may not produce the most desirable or efficient outcome in 
terms of enhanced environmental quality. In short, the EBI may be poorly constructed. 
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2. There may be learning by doing over time or implicit collusion among producers such 
that bids tend to converge around the maximum rental rate that the policymakers are 
prepared to offer under the program. 

3. The use of the index may involve relatively high transactions costs in terms of the 
preparation of bids by producers, evaluation of the bids by policymakers, and monitoring 
of compliance under contracts. 

 

Application of the EBI approach in the context of climate change mitigation in Norway 

Norway already has in place a set of environmental programs for agriculture, involving national, 

regional and local components. At the regional (county) level priorities center on the protection 

of the cultural landscape (e.g., maintenance of grazing systems to preserve open space) and 

pollution prevention. Local authorities are allowed to prioritize the use of resources provided by 

central government both in terms of the balance between the two principal objectives and the 

spatial allocation of funds (Huso, 2010). The elements of a framework are already in place, 

therefore, to develop a targeted approach to the use of payments to achieve a range of 

environmental objectives, including climate change mitigation objectives. In what follows, we 

shall consider how to design an approach for meeting the externally imposed GHG mitigation 

objective (along the lines of that specified in our model) while also taking into account other 

environmental objectives. 

As in our earlier model, we assume that a target has been established for reducing GHG 

emissions in agriculture and that carbon sequestration in the sector can be used to help meet that 

goal. We assume that farmers will be offered a payment to encourage them to divert land from 

agricultural production to agro-forestry in addition to payments for achieving other 

environmental objectives.19 The diversion payment might cover the establishment costs for forest 

                                                            
19 Investments in some mitigation activities that are not directly linked to the use of land, such as the use of methane 
digesters for animal waste, could also be targeted through the use of incentive payments.  Cost sharing is used as the 
primary approach for promoting investments that improve environmental quality in the United States, for example, 
in the Environmental Quality Incentives Program (EQIP). 
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plantings and compensation for net income foregone over the life of the planting, either through 

a series of fixed annual payments or a lump sum based on a discounted stream of future 

income.20 If cost were the only consideration diversion payments would be targeted to regions 

where the opportunity costs of agro-forestry are low and where the sequestration potential from 

forestry is high. However, since there are multiple environmental objectives, the determination 

of how to allocate diversion payments based on the use an EBI would seem to be more 

appropriate since GHG mitigation would have to be balanced against these in selecting which 

land parcels to include in the diversion program. The EBI has more general applicability since it 

can also be used to identify where the values of other environmental services are high and where 

payments for those should be directed. 

As for the CRP the application of an EBI for Norway would need to be focused at an 

appropriate geographical scale. Given the mix of environmental attributes across farms and 

locations, it would not be feasible (or efficient in terms or outcomes) to provide a single 

undifferentiated payment to farmers for supplying categories of attributes. Payments would need 

to be spatially differentiated to reflect differences in the ability of farmers to supply those 

attributes. The current county-based approach used for agri-environmental programs in Norway 

provides a framework for this. 

In the Norwegian case, the public good component would have to be expanded beyond 

the enhancement of wildlife habitat under the CRP to include other aspects of landscape 

amenities. This factor is already reflected at the local level in Norwegian agri-environmental 

program. Different weightings would need to be developed for other factors. For example, in the 

                                                            
20 This would satisfy the conditions for inclusion of environmental payments in the so-called ‘green box’ category of 
support under the Agreement on Agriculture in the WTO. Note, however, that the high level of protection provided 
to Norwegian agriculture would increase the magnitude of these payments since presumably they would be linked to 
domestic prices for agricultural products rather than world prices. 
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CRP EBI very little weight is given to carbon sequestration, whereas this would be a much more 

significant element in a Norwegian EBI that had the promotion of carbon sequestration as a 

primary goal.  

It is an open question as to whether a bidding process should be used. This has a number 

of advantages and disadvantages as outlined above. A major reason for using that approach in the 

US has been to try to achieve the maximum environmental effects given a constraint on the area 

that can be enrolled in the scheme, and the amount of available funding. Norwegian 

policymakers may not face the same imperatives. In the Norwegian case, a major function of the 

EBI might be to provide transparency in the determination of payments to particular parcels of 

land that are brought under environmental programs that have multiple objectives. 
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Table 1. Summary of factors and point scores in the 2011 EBI for the US Conservation Reserve 
Program 

Factor Characteristics  Point score 
N1 Wildlife  Max = 100 

N1a Cover benefits Different planting mixtures rated in terms of 
benefits to wildlife 

0-50 

N2a Enhancement Specific practices judged to enhance 
wildlife habitat, e.g., establishment of 
pollinator habitat 

0, 5, 20 

N3a Priority zones Locations designated as high priority for 
wildlife improvement 

0 or 30 

N2 Water quality  Max = 100 
N2a Location Locations designated as high priority for 

water quality improvement 
0 or 30 

N2b Groundwater Leaching index weighted by population 
using groundwater 

0-25 

N3c Surface water Sedimentation index weighted by 
population using surface water 

0-45 

N3 Erosion Erodability index Max = 100 
N4 Enduring Benefits Likelihood that practices will remain in 

place, e.g., conversion of land to woodland 
Max = 50 

N5 Air Quality  From reduction in wind erosion Max = 50 
N5a Wind erosion impacts Potential for wind erosion damage weighted 

by population potentially affected 
0-25 

N5b Wind erosion soils Particular soils that are highly erodible 0 or 5 
N5c Air quality zones Location in zone not meeting standards 0 or 5 
N5d Carbon sequestration Weighted average of carbon sequestration 

from certain practices 
3-10  

N6 Cost Cost of environmental benefits per dollar of 
expenditure 

Max = ? 

N6a Cost Point value determined after sign-up based 
on actual offer data – weights offers with 
rental rates more highly 

 

N6b Offers below 
maximum payment rate 

Points for percentage that offer is below 
maximum rate 

0-25 

Source: Based on FSA, USDA (2011). 
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