
 

 
 

  

  WP 2011-19 
 November 29, 2011 

 
 
 

Working Paper 
 
Dyson School of Applied Economics and Management 
Cornell University, Ithaca, New York 14853-7801 USA 

 
 
 

Factors Influencing Adoption of Integrated Pest Management in Northeast 

Greenhouse and Nursery Production  

 
Jie Li, Miguel I. Gómez, Bradley J. Rickard and Margaret Skinner

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is the policy of Cornell University actively to support equality of educational 

and employment opportunity.  No person shall be denied admission to any 

educational program or activity or be denied employment on the basis of any 

legally prohibited discrimination involving, but not limited to, such factors as 

race, color, creed, religion, national or ethnic origin, sex, age or handicap.  

The University is committed to the maintenance of affirmative action 

programs which will assure the continuation of such equality of opportunity. 



Factors Influencing Adoption of Integrated Pest Management in Northeast Greenhouse 

and Nursery Production  

 

Jie Li 

Research Assistant 

Charles H. Dyson School of Applied Economics and Management 

Cornell University 

Ithaca, NY 14853 

607-280-8926 

jl2522@cornell.edu 

 

Miguel I. Gómez 

Assistant Professor 

Charles H. Dyson School of Applied Economics and Management 

Cornell University 

321 Warren Hall 

Ithaca, NY 14853 

607-255-8159 

mig7@cornell.edu 

 

Bradley J. Rickard 

Assistant Professor 

Charles H. Dyson School of Applied Economics and Management 

Cornell University 

339 Warren Hall 

Ithaca, NY 14853 

607-255-7417 

bjr83@cornell.edu 
 

Margaret Skinner 

Research Professor 

University of Vermont Entomology Research Laboratory 

661 Spear Street, 

 Burlington, VT 05405-0105 

802-656-5440 

mskinner@uvm.edu 

 

November 2011 

 

The authors thank Elizabeth M. Lamb, Ornamental IPM Coordinator of the New York State 

Integrated Pest Management Program, for providing advice on approaches to the 

measurement of IPM adoption in Ornamental Crops. The authors also thank Professor Nelson 

Bills for comments on earlier drafts of the manuscript. This work was supported in part by 

grants from the USDA: Hatch (VT-HO1408, Regional Project S-1024) and the Specialty 

Crops Research Initiative (Project # 2008-51180-04886). 

mailto:jl2522@cornell.edu
mailto:bjr83@cornell.edu
mailto:mskinner@uvm.edu


1 
 

Factors Influencing Adoption of Integrated Pest Management in Northeast Greenhouse 

and Nursery Production  

 

Abstract 

We surveyed 94 greenhouse and nursery growers in three Northeastern states to examine 

factors that influence integrated pest management adoption. We constructed four alternative 

dependent variables describing the extent of IPM adoption, and employ Logit, Ordered Logit 

and Tobit models to identify factors affecting IPM adoption. We find that IPM adoption is 

more likely to occur on large farms that hire more full-time workers, and have more 

diversified crops. Greenhouse and nursery operations that face disease problems are less 

likely to adopt IPM, and availability of biological control agents limits IPM adoption. Our 

analysis also highlights differences between the self-reported and more objective IPM 

measures. 

Keywords: Greenhouse and Nursery Production, Integrated Pest Management, Northeast 

United States, Technology Adoption 

JEL Codes: O33, Q13, Q16 
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Introduction 

The income-generating potential of greenhouse and nursery products far exceeds that of most 

traditional crops in New England and the greater Northeast region. The 2009 Census of 

Horticulture Specialties counts 1,472 operations in the six New England states of the 

Northeast, a decrease of 218 operations since the 1998 Census of Horticulture Specialties. 

The total retail value of horticultural crops exceeded $431 million, an increase of 53.1 percent 

over this period (Census of Horticulture Specialties 1998 and 2009). The total area of 

greenhouse horticultural production has already reached 55.9 million square feet. About 20 

percent of the operations in this region produce almost 50 percent of the revenue, with the 

majority of producers managing comparatively small operations, which are endemic in the 

Northeastern agricultural economy. This industry is thus critical to the health, expansion and 

sustainability of the rural economy in the Northeast. 

Ornamentals are grown for their aesthetic value to consumers who have minimal 

tolerance for pest and disease damage. For this reason, chemical pesticides are used 

repeatedly to control many persistent pests and diseases, yet greenhouse and nursery growers’ 

heavy reliance on chemical pesticides may not be sustainable. In fact, recent studies report 

increased resistance to pesticides in various herbivores and diseases, and chemical 

approaches to control are becoming ineffective (Mariyono 2008). The Environment 

Protection Agency pointed out that integrated pest management (IPM) is an effective and 

environmentally sensitive approach to pest control that can reduce growers’ reliance on a 

chemical-based approach. IPM is not a single pest control method but rather employs a broad 

range of management practices including setting action thresholds, monitoring and 
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identifying pests, practicing prevention, and implementing appropriate controls e.g., 

biological controls and bio-rational pesticides) and the judicious use of chemical pesticides 

when needed (Environment Protection Agency 2011).  

Although greenhouse/nursery growers in the Northeast have expressed interest in IPM, 

little is known about the extent of IPM adoption in the region or the factors that facilitate or 

limit adoption. Thus, a systematic analysis of the factors affecting IPM implementation by 

growers of greenhouse and nursery crops in the Northeast is important to private and public 

decision makers interested in expanding IPM adoption. 

We hypothesize that a variety of factors (e.g., size of greenhouse/nursery, growers’ 

knowledge about and confidence in IPM, and the type of production problems a grower faces) 

influence adoption of IPM among greenhouse/nursery growers in three Northeastern states 

we surveyed. To test this, we surveyed 94 greenhouse/nursery growers in Maine, Vermont 

and New Hampshire. We then develop alternative measures of IPM adoption and employ 

discrete choice econometric models to assess factors influencing the likelihood of adopting 

IPM.  

Our survey results show that Northeastern growers believe that IPM works better to 

control arthropod pests than diseases, and they are less likely to use IPM if they have serious 

disease problems. The unavailability of biological control agents and other IPM supplies 

limits growers’ ability to adopt IPM. In addition, IPM adoption increases when the head 

grower makes the pest management decisions. We also find that larger operations which grow 

both ornamentals and vegetables are more likely to be IPM adopters. 
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Literature Review 

IPM has received considerable attention in the agricultural economics literature. Many 

diverse aspects about IPM programs have been studied, including positive impacts of IPM on 

the environment (Dasgupta et al. 2007; Fernandez-Cornejo1996; Williams et al. 2005; Mullen 

et al. 1997; Trumble et al. 1997; Burkness et al. 2008; Bentley 2009) and on grower 

profitability (Trumble et al. 1997; Burkness et al. 2008; Fernandez-Cornejo1996; Dasgupta et 

al. 2007), positive consumers’ attitudes toward IPM grown products (Govindasamy and Italia 

1998, 2001; Florax et al. 2005), increased government support and investment in IPM 

programs (Templeton et al. 2010; Castle and Naranjo 2009), and efforts of extension 

programs to promote IPM adoption (White and Wetzstein 1995; Castle and Naranjo 2009; 

Mauceri et al. 2007; Ricker-Gilbert et al. 2008). Here we extend this literature by looking at 

the determinants of and approaches to measure IPM adoption applied in a non-food sector. 

A few studies have examined how grower characteristics influence the decision to adopt 

IPM. Govindasamy (1998) demonstrates that risk-averse growers are less likely to adopt IPM. 

Other researchers have studied additional factors that influence growers’ adoption of IPM. 

For example, Mahmoud and Shively (2004) argue that both access to IPM technology and 

IPM availability increase growers’ adoption. Moreover, several studies show that such factors 

as farm size, gross sales, market destination, adopters’ perceptions of IPM performance, and 

availability of labor are important determinants of IPM adoption (Fernandez-Cornejo et al. 

1992). 

Measuring adoption of IPM is not simple, and agricultural economists have employed 

several approaches for measurement. Earlier studies employed self-reported measures of IPM 



5 
 

adoption and binary variables to distinguish conventional growers from those who use IPM. 

For example, Fernandez-Cornejo et al. (1992) classify growers as IPM when they use one or 

more IPM techniques. Dasgupta et al. (2007) characterize IPM growers as those practicing at 

least one method among biological control, light traps, organic production, crop rotation, 

manual clearing, and natural parasites. Other studies employ more elaborate measures of IPM 

adoption in which growers are classified into one of several categories depending on their 

usage of IPM tactics. Rickert-Gilbert et al. (2008), for instance, identify several IPM adoption 

levels for rice in Bangladesh and assign IPM growers into ‘simple’ (e.g., using disease 

resistant varieties), ‘intermediate’ (e.g., using trap systems) or ‘complex’ (e.g., using 

beneficial insects) categories.  

The U.S Department of Agriculture’s (USDA) Economic Research Service (ERS) 

released a set of guidelines in 1994 with the goal of establishing a baseline estimate of IPM 

adoption and for monitoring progress toward policy adoption goals related to the expansion 

of sustainable production practices (Vandeman et al. 1994). These guidelines recognize that 

there is no universal definition of IPM. The report explains that IPM systems are highly 

variable, depending on the crop produced. IPM practices range from chemical- to 

biological-based along a continuum. The USDA approach divides growers into four 

categories, including “No IPM”, and three levels of adoption (Low, Medium and High), 

according to the number of practices considered under the umbrella of IPM methods. For 

example, in the USDA approach, a “low” level IPM grower scouts and applies pesticides 

according to thresholds for pests; a “medium” level IPM grower conducts “low” level 

activities plus one or two additional activities indicative of IPM; and a “high” level IPM 
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grower employs additional IPM tactics more than their medium-level counterparts. 

In summary, the literature suggests that IPM can increase profitability for some growers 

and reduce dependence on agrichemicals. Additionally, IPM requires important public 

investments in extension support and grower education, but in return is valued by consumers, 

and yields definable environmental benefits. In spite of strong public support to increase IPM 

adoption among ornamental industries in the Northeast, and growers’ interest in the use of 

IPM, little is known about the extent of IPM adoption in the region among growers of 

non-food, high value greenhouse or nursery grown ornamentals or the factors that facilitate or 

limit adoption. To help fill this knowledge gap, we develop an empirical model and a set of 

hypotheses to study the factors that influence IPM adoption among this group of growers in 

three Northeastern states. We also extend the literature with some novel measures of IPM 

adoption. Most previous studies employed binary and categorical variables to measure IPM 

adoption. We extend those early models by employing a self-reported measure and a set of 

objective measures (binary, continuous and categorical) of IPM adoption. 

 

The Survey Instrument  

We developed a survey questionnaire to collect pertinent information regarding factors that 

facilitate (or hinder) adoption of IPM among greenhouse/nursery growers in Vermont, New 

Hampshire and Maine. We requested that the survey instrument be completed by the person 

responsible for making the pest management decisions for the greenhouse/nursery operation. 

Growers were asked to describe their greenhouse/nursery operations; rate the importance of 

various pest and disease problems in their crops; identify the management practices used; 



7 
 

select the kind of production system that best describes their operations (conventional versus 

IPM); assess the performance of IPM methods relative to conventional practices; and list the 

challenges that limit greater IPM adoption, including the use of biological control agents. 

Earlier attempts to solicit information from growers indicate that they are weary of 

filling out surveys especially if there is no immediate direct benefit for them. To boost 

response rate, we used multiple methods for collecting data. Surveys were sent out to all 

greenhouse/ nursery growers on the Tri-state Greenhouse and Nursery IPM mailing list. 

Additionally, growers who attended IPM workshops held in the three target states in January 

2009 (about 40 growers per state) are included in the survey list frame. Growers received 

incentives for attending the workshop and completing the survey, including a complimentary 

copy of the Greenhouse/Nursery Managers Guide to IPM in Northern New England, 

pesticide credits towards their pesticide applicator license, and the chance to win one of 

several door prizes donated by corporate sponsors. Finally, surveys were distributed at annual 

State Farm Shows, the New England Greenhouse Conference and during site visits to 

growers by Extension specialists and State Agriculture personnel. 

 

Empirical Model 

We employ four alternative strategies to measure IPM adoption. One is subjective 

(self-reported measure) and three were measures objective (binary, censored IPM score, and 

three-tiered). We employ these measures to identify factors that influence IPM adoption. 

These factors include the degree to which pests and diseases challenge the growers; the level 

of confidence growers have in IPM compared to conventional practices; growers’ knowledge 
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about IPM; the availability of biological control agents in the market; the diversity of the 

crops produced; the size of operation; the respondent’s position; and the location of the 

operations. In general from, the empirical model is: 

 

(1) IPM ADOPTION= F [Pest Problems, Disease Problems, Grower Confidence, Grower 
Knowledge, Availability of Biological Control Agents, Revenue Source, Size of 
Operation, Position of Respondent, Location of Operation] .  

 

Dependent Variables: Measures of IPM Adoption 

Based on information collected in the survey, we constructed four dependent variables 

to measure IPM adoption. The first is a self-reported indicator of IPM adoption (subjective 

measure). In the survey, we asked respondents whether IPM or “conventional control” best 

described the strategy to control for pests and diseases in the operation. We denote 

Y_selfreport as the subjective dependent variable, which is a dichotomous variable equal to 

one if the respondent states that he/she is an IPM grower and zero for those who consider 

themselves as users of conventional control technologies. 

Objective measures, for their part, are based on a set of questions asking respondents 

which management practices describe the operation. Based on expert opinion (Lamb 2011) 

and borrowing from the principles of IPM described by the U.S. Environmental Protection 

Agency (EPA 2011), 36 IPM tactics from our survey questions could be classified into four 

types of activities: monitoring, pest identification, prevention and control (Figure 1).  

[Figure 1 Here] 

The first objective dependent variable, denoted as Y_binary, is a dichotomous variable 

which equals one for IPM growers, and zero otherwise. To be classified as an IPM grower, a 
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respondent had to report using at least one activity from the “monitoring” list, one from the 

“pest identification” list, four from the “prevention” list and three from the “control” list 

(Lamb 2011). The other two objective measures of dependent variables are created on the 

basis of the above information. 

The second objective dependent variable, denoted as Y_IPMScore, is a 

limited-continuous variable using IPM scores to represent grower’s degree of IPM adoption. 

Non-IPM growers have a score of zero, as defined by the binary variables above. For IPM 

growers, each respondent has an IPM score based on how many activities they use for 

“prevention” and “control”.  According to Lamb (2011), “prevention” activities are twice as 

important as “control” activities, giving “prevention” a weight of 2/3, compared to “control” 

activities which are weighted 1/3. As shown in equation (2), the IPM score is calculated as 

2/3 times the number of “prevention” activities plus 1/3 times the number of “control” 

activities. The higher the number of “prevention” and “control” activities, the higher the IPM 

scores. Thus, if a respondent is a conventional grower (i.e., when Y_binary = 0), then his/her 

IPM score is zero. To illustrate, if a respondent is an IPM grower and he/she uses eight 

activities from the “prevention” list and six from the “control” list, their IPM score is 

2/3*8+1/3*6=7.33. 

The third objective measure of IPM adoption divides respondents into three levels 

(Non-IPM grower, Low-IPM grower, High-IPM grower). This objective dependent variable, 

denoted as Y_IPMlevel, includes three levels: “0” for Non-IPM growers; “1”for Low-IPM 

growers; and “2” for High-IPM growers. Non-IPM growers are identified in the same way as 

for the binary objective measure. For IPM growers, according to their IPM scores calculated 
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in the second objective measure, an IPM grower with a score below 9.3 is a Low-IPM grower, 

those above that score are High-IPM growers. We use 9.3 as the cutoff score between 

Low-IPM and High-IPM growers. This threshold corresponds to the score in which a grower 

practices at least two-thirds of the “prevention” and “control” activities. Growers with scores 

above 9.3 can be considered to have achieved a sufficiently high level of IPM adoption. Thus, 

a respondent with a score of 0 is a Non-IPM grower; one with a score of 6.3 (from the second 

objective measure) is classified as a Low-IPM grower; and one with a score of 10.3 is 

considered a High-IPM grower. 

Explanatory Variables 

The survey included questions pertaining to factors that influence IPM adoption as well 

as a number of relevant controls. We constructed three categories of explanatory variables, 

which take into account 1) the type of production problems, 2) the limitations or challenges 

for IPM adoption, and 3) the greenhouse/nursery characteristics. 

In the survey, we asked 38 questions covering a wide range of diseases and pests (e.g., 

problems in greenhouse/nursery production). Respondents used three levels to rate the 

relevance of each problem as ‘1’ (low importance), ‘2’ (moderate importance) and ‘3’ (high 

importance). Based on these responses, we created two variables to represent the relative 

importance of disease and pest problems: DiseaseAvg is the average rating of the 19 questions 

related to disease problems (e.g., anthracnoses, botrytis blight and crown gall), and PestAvg 

equals the average of the 19 questions related to insect and mite problems (e.g., aphids, black 

vine weevil, mealy bugs and fungus gnats). We hypothesize that greenhouse/nursery 

operations with more pest problems are less likely to adopt IPM than those with more disease 
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problems. See the Appendix for the complete list of disease and pest problems. 

We created three dichotomous variables to examine factors that may limit IPM adoption. 

The first variable, called Unavailability, captures the availability of IPM supplies, including 

biocontrol agents. Unavailability equals one if lack of availability of IPM supplies is a 

limiting factor for IPM adoption and zero otherwise. The second variable is Unreliability, 

which captures the degree of confidence in IPM to control pests, diseases and weeds. It 

equals one if IPM is considered unreliable and zero otherwise. The third variable is 

Knowlimit, which measures the level of IPM knowledge (e.g., pest biology and use of 

biological controls) and equals one if lack of knowledge is a limitation for IPM adoption, 

zero otherwise. 

We control for greenhouse/nursery characteristics that may influence IPM adoption. We 

control for the size of operation using the number of full time workers (Fullworker).
1

We note that area under cultivation is not a good measure of size because greenhouse/nursery 

operations often combine areas under protection and in the open, each with very different 

cultivation density. We also control for the production crop mix of the greenhouse/nursery 

operation. In particular, we create a variable reflecting the share of vegetable crops in total 

operation revenues (PercentVeg). One expects that a greater share of vegetables crops in total 

revenues is associated with higher IPM adoption, given that the literature suggest that 

consumers are willing to pay price premiums for IPM vegetables (e.g., Govindasamy and 

Italia 2001; Florax et al. 2005). We construct state dummies for New Hampshire (NH) and 

Maine (ME) to control for state differences. Finally, we construct a dichotomous variable 

called headgrower, which equals one if the survey respondent was the head grower and zero 
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otherwise (e.g., owner, worker). This is intended to control for the possibility that head 

growers may be more knowledgeable about the greenhouse/nursery operation, therefore 

providing more accurate survey responses.  

Econometric Specifications 

The empirical model consists of the following vector of explanatory variables and their 

corresponding coefficients: 

(2) 𝑿𝒊𝜷 =  β0 + β1𝑃𝑒𝑠𝑡𝐴𝑣𝑔𝑖 + β2𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝐴𝑣𝑔𝑖 + β3𝑈𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 + β4𝑈𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 

                      +β5𝐾𝑛𝑜𝑤𝑙𝑖𝑚𝑖𝑡𝑖 + β6𝐻𝑒𝑎𝑑𝑔𝑟𝑜𝑤𝑒𝑟𝑖 + β7𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑉𝑒𝑔𝑖 + β8𝐹𝑢𝑙𝑙𝑤𝑜𝑟𝑘𝑒𝑟𝑖 +

                      β9𝑁𝐻𝑖, 

where i is the greenhouse/nursery operation. We employ four measures of IPM adoption, as 

explained above. Two of these measures, Y_selfreport and Y_binary, are dichotomous. 

Therefore, we obtain Logit parameter estimates using Xiβ on the right hand side: 

(3)  Yi
*
=Xiβ + ε1i, 

where ε1i is the i.i.d. error term and Yi = 1 if Yi
* 
≥ 0 and zero otherwise. Using the parameter 

estimates, the probability of being an IPM greenhouse/nursery operation is given by Pr(Y=1) 

= 𝑒𝑥𝑝 (𝑥𝛽) 1 + 𝑒𝑥𝑝 (𝑥𝛽)⁄ . We employ a Tobit model to estimate the regression with 

Y_IPMScore as dependent variable, given that this is a continuous dependent variable 

censored at zero. In mathematical notation, the Tobit model is specified as: 

(4) Y_IPMScorei
*
=Xiβ + ε2i, 

where ε2i is the i.i.d. error term and Y_IPMScorei = Xiβ if Y_IPMScorei
*
≥ 0 and zero 

otherwise. Finally, we specify an Ordered Logit model for the specification with Y_IPMlevel 

as dependent variable. In mathematical notation:  
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(5) Y_IPMleveli
*
=Xiβ + ε3i, 

where ε3i is the i.i.d. error term, Y_IPMleveli = 0 if Y_IPMleveli
*
≤0, Y_IPMleveli = 1 if 

0≤Y_IPMleveli
*
≤9.3, and Y_IPMleveli = 2 if Y_IPMleveli

*
≥9.3. The probabilities of being in a 

particular IPM level of adoption are 1 ⁄ (1 + 𝑒𝑥𝑝 (𝑥𝛽   ) ), 1 ⁄ (1 + 𝑒𝑥𝑝 (𝑥𝛽     ) )  

1 ⁄ (1 + 𝑒𝑥𝑝 (𝑥𝛽   ) ) and 1  (1 + 𝑒𝑥𝑝(𝑥𝛽     )) for Y_IPMleveli = 0, 1 and 2, 

respectively. 

 

Data 

A total of 96 responses were received, of which 94 useable responses were obtained. The 

descriptive statistics of the four dependent variables and the nine explanatory variables are 

presented in Table 1. The variable Y_selfreport has a mean of 0.58, as 54 of the 94 

respondents reported that they have adopted IPM, the others considered themselves as 

conventional growers. The variable Y_binary has a mean of 0.62 which is slightly larger than 

the mean of Y_selfreport. According to this measure, 58 out of 94 respondents can be 

classified as “IPM growers”, while others are “Non-IPM growers”. The variable Y_IPMlevel 

has three categories, and the highest level is assigned a value 2. The mean of Y_IPMlevel is 

0.71, which suggests that most respondents fall into the categories of Non-IPM and Low-IPM 

growers. For the continuous variable Y_IPMScore, the mean score is 4.41, and the maximum 

sample score is 11.30 (Table 1). 

 [Table 1 here]  

We also present the definition of the explanatory variables and their descriptive 

statistics in Table 1. Production problems are likely to influence IPM adoption. The average 
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score of pest-related problems is 0.85 and 0.75, for disease-related problems. The minimum 

score for the average pest problem is 0.05, showing that all the greenhouses/nurseries studied 

face pest problems to some degree. Among the three dummy variables describing growers’ 

opinion about IPM, Unreliability (i.e., growers’ lacking of confidence on the effectiveness 

IPM) has a larger sample mean in comparison to Unavailability and Knowlimit. This result 

suggests that, on average, growers may not be confident about the effectiveness of IPM. The 

greenhouses/nurseries in our sample derived, on average, 15.7 percent of their income from 

vegetable crops and employed three to four full-time workers. Just over a third of the 

respondents were in charge of decisions on IPM, and 19.2 percent of the greenhouse/nursery 

operations were located in New Hampshire. 

 

Results 

In Table 2 and 3 we present regression results for the models with Y_binary, Y_IPMScore, 

Y_selfreport and Y_IPMlevel as dependent variables, including the estimated coefficients and 

their marginal effects. We discuss the parameter estimates of each model below. 

Regression 1: IPM Binary Measure—Logistic Model 

The Wald test indicates that the model is overall significant and the pseudo R-squared 

suggests that the model explains about a third of the variability in the dependent variable. 

Columns 1 and 2 in Table 2 present the estimated coefficients and marginal effects of the 

explanatory variables for Y_binary. Regarding the nature of production problems, the 

coefficient of DiseaseAvg is positive and significant, suggesting that greenhouses/nurseries 

with more disease problems are less likely to adopt IPM. The marginal effect indicates that a 
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one-unit increase in DiseaseAvg decreases the probability of IPM adoption by 54.3 percent. 

The coefficient of PestAvg is positive, as expected, but statistically insignificant. 

[Table 2 Here] 

Next, we consider the types of limitations to IPM adoption. The coefficient of 

Unavailability is negative and significant, indicating that unavailability of biological control 

agents and other IPM supplies results in a 51.6 percent decrease in the probability of IPM 

adoption. The coefficient of Unreliability is negative, as expected, but statistically 

insignificant; and the coefficient of Knowlimit is statistically insignificant. 

The coefficient of PercentVeg is positive and statistically significant. Specifically, a one 

percentage point increase in the share of revenue derived from vegetables increases the 

probability of IPM adoption by 0.5 percent. This is expected, given that vegetable growers 

have more incentives to use IPM to grow vegetables, and this facilitates the transfer of skills 

to other crops. Our results also show that size of operation, measured as the number of 

full-time workers (Fullworker) has a significant effect on IPM adoption: a one-level increase 

in the number of full-time workers increases the probability of IPM adoption by 22.7 percent. 

Having a larger labor force seems to facilitate IPM adoption because this production system 

tends to be more labor intensive than conventional production. The coefficient for 

Headgrower is positive and significant. Head growers tend to be more familiar with the 

production practices, and the significant coefficient on Headgrower may reflect their ability 

to respond to the survey with more precision. The coefficient of NH is positive but 

statistically insignificant, indicating no differences in IPM adoption across the three states in 

the sample.
2
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Regression 2: IPM Scores Measure—Tobit model  

Columns 3 and 4 in Table 2 show the Tobit parameter estimates and their marginal 

effects using Y_IPMScore as the dependent variable. The F-test shows that the model is 

significant at the one percent level. In general, the parameter estimates are similar to those for 

the logit model discussed above, but the results are more robust in some cases. In particular, 

the positive, significant coefficient on PestAvg indicates that greenhouses/nurseries with more 

pest problems are more likely to adopt IPM. The marginal effect indicates that a one unit 

increase in pest problem score is associated with a 5.65 increase in the IPM score. As with the 

logit model results, the coefficient on DiseaseAvg is negative and significant; the results show 

that a one point increase in disease problem scores is associated with a 5.52 decrease in the 

IPM score. Our results for the factors that may limit IPM adoption are similar to those in the 

logit model (Regression 1) as well. That is, lack of availability of biological control agents 

and other IPM supplies is associated with a 3.45 decrease in IPM adoption scores; and the 

coefficient on Unreliability and Knowlimit are both statistically insignificant. 

The coefficient on PercentVeg is statistically significant and indicates that a one 

percentage point increase in the revenue derived from vegetable crops is associated with a 

0.034 increase in IPM adoption score. Similar to the logit case, the number of full time 

workers and the position of the respondent influence IPM adoption: a one-level increase in 

the number of full-time workers raises the IPM score by 1.80 points; and IPM adoption 

scores were 2.61 points higher when the respondent is the head grower. Finally, similar to the 

Logit specification, the coefficient of NH is positive, but significant in this model 

specification, suggesting that greenhouses/nurseries in New Hampshire have an average IPM 
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score 1.68 points higher than Maine and Vermont. 

Regression 3: IPM self-report Measure—Logistic Model 

Here we explore whether the results change when the dependent variable is a 

self-reported measure of IPM adoption. Because the dependent variable Y_selfreport is binary, 

we employ the logistic method for estimation (Table 2, Columns 5 and 6). The overall model 

is only significant at the 12 percent level (Prob>Chi
2
=0.12) and the pseudo R-squared 

suggests that this model explains about one fourth of the variability of the dependent variable. 

The two variables pertaining to the type of production problems (DiseaseAvg and 

PestAvg) become insignificant in this specification. Regarding the IPM adoption challenges, 

contrary to the models using objective measures of adoption, the coefficients of Unreliability 

and Knowlimit are negative and significant. The parameter estimates suggest that unreliability 

is associated with a 22.8 percent reduction in the probability of IPM adoption; limited 

knowledge results in a 62.8 percent decrease in adoption probability. In contrast, the 

coefficient estimated for Unavailability is not statistically significant. The estimated 

coefficients for PercentVeg and Fullworker are both positive but statistically insignificant. 

The coefficient of the state dummy, NH, is negative and significant; the marginal effect 

indicates that greenhouses/nurseries in New Hampshire have a 39.1 percent higher 

probability of adopting IPM than those in Vermont and Maine.      

Regression 4: Objective IPM Adoption in Levels 

In this regression the Y_IPMlevel takes three values: Non-IPM, Low-IPM and 

High-IPM. The Wald test indicates that the null hypothesis of all coefficients being equal to 

zero is rejected at the 1.5 percent level of significance. Table 3 presents the estimated 
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coefficients, log odd ratios and their corresponding marginal effects.  

[Table 3 Here] 

The coefficient of PestAvg has a positive effect on IPM adoption, and its log odds ratio 

is 49.72. This indicates that with a one unit increase in the average pest problem score, the 

odds of a greenhouse/nursery being in a higher IPM level is 49.72 times greater than being in 

a lower IPM level. Conversely, DiseaseAvg has a significant negative influence on IPM 

adoption. Its odds ratio is 0.03, indicating that a one unit increase in the average disease score 

decreases the odds of being in a higher level of IPM category by 97.1 percent. These results 

are similar to those in the models using objective measures of IPM adoption (Regressions 1 

and 2). 

The coefficient of Unavailability is negative and statistically significant. The odds ratio 

indicates that limited availability of IPM supplies and biological control agents increase the 

odds of being in a lower IPM level by 93.3 percent. However, the coefficients of Unreliability 

and Knowlimit are statistically insignificant. The coefficient of Fullworker exhibits a 

significant and positive effect on the level of IPM adoption. The log odds ratio indicates that 

with a one level increase in the number of full time workers, the odds of being in a higher 

IPM level category increases by 203 percent. The estimated coefficient of Headgrower is 

positive and statistically significant; its log odds ratio indicates that if a respondent is a head 

grower, then the greenhouse/nursery is 3.061 times more likely to move to a higher level of 

IPM.  

The marginal effects shown in Table 3 also contribute to our analysis of factors 

affecting IPM adoption. For example, a one unit increase in the number of full-time workers 



19 
 

decreases the probability of being in the Non-IPM level by 21.1 percent; and increases the 

probability of being in the Low-IPM and High-IPM levels by 18.1 and 3.0 percent, 

respectively. In addition, the results suggest that a one point increase in disease problem 

scores increases the probability of being in the Non-IPM level by 67.3 percent. At the same 

time this decreases the probability of being in the Low-IPM and High-IPM level by 57.7 

percent and 9.6 percent respectively.   

As discussed above, the effects of changes for average pest problems are opposite to 

those associated with changes in disease problems. A one point increase in pest problem 

scores decreases the probability of being in the Non-IPM level by 74.5 percent, increases the 

probability of being in the Low-IPM level by 63.9 percent, and increases the probability of 

being in the High-IPM level by 10.7 percent. These marginal effects are consistent with our 

odds ratios discussion, but provide an additional level of detail regarding the factors that 

influence IPM adoption. 

Summary of results 

Our results suggest that disease and pest problems influence IPM adoption. 

Greenhouse/nursery operations facing significant disease problems are less likely to adopt 

IPM, whereas those with serious pest problems are more likely to use IPM. On the other hand, 

our results suggest that a lack of availability of biological control agents and other IPM 

supplies dampens IPM adoption among Northeastern greenhouse/nursery growers. 

Greenhouse/nursery growers that also produce vegetables are more likely to adopt IPM than 

those growing only ornamentals. Furthermore larger greenhouse/nursery operations 

(measured as the number of full-time workers) exhibit higher levels of IPM adoption.  
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The models with objective measures as dependent variables (Y_binary, Y_IPMScore, and 

Y_IPMlevel) provide similar results regarding factors influencing IPM adoption. However, 

we identify substantial differences between these three models and the model that uses a 

self-reported adoption measure (Y_selfreport). The coefficient of Fullworker, DiseaseAvg and 

Unavailability all show significant effects on IPM adoption in the models using objective 

measures as dependent variables. In contrast, they become statistically insignificant when 

using the self-reported measure as the dependent variable. In addition, the coefficients of 

Unreliability and Knowlimit are not statistically significant in the models using objective 

measures, but are statistically significant when using the self-reported IPM adoption measure. 

 

Conclusion 

This study examined factors that limit or facilitate IPM adoption among growers of 

greenhouse/nursery products in the Northeast. Given the recent attention to IPM production 

methods favored by growers and the public with an interest in sustainability, the findings of 

this study may contribute to ongoing efforts to promote IPM adoption.    

The differences between self-reported and objective measures imply that 

greenhouse/nursery growers may require more knowledge about IPM. The university 

extension system can play a critical role here, and its specialists and educators can use the 

classification proposed in this study to develop training programs targeted at enhancing 

growers’ knowledge of IPM. Another important finding of our study is that larger, diversified 

greenhouses/nurseries are more likely to adopt IPM. This does not mean that extension 

programs should solely target larger operations to enhance IPM adoption. Instead, extension 
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programs should work with small and large operations alike to encourage IPM 

implementation. Smaller operations may require more help from extension specialists to 

make progress towards wider use of IPM; and larger operations can be used to demonstrate 

the benefits of IPM adoption because they tend to be early IPM adopters. IPM Extension 

specialists and educators should also expect to find that greenhouses/nurseries which face 

serious disease problems are less likely to use the IPM methods, so those greenhouses/ 

nurseries are less likely to be IPM adopters. 

We also find that unavailability of biological control agents is an important limiting 

factor to IPM adoption. Suppliers of IPM technology have a role to play in addressing this 

limitation. They could widely broadcast their products to ensure growers can make informed 

decisions on acquisition of biological control agents and their suitability for dealing with 

specific pests. At the same time, lack of confidence in IPM controls for pests and disease 

could also limit IPM adoption. Therefore, IPM suppliers may also need to refine their 

technologies to enhance the reliability of IPM. Cooperation with Extension and research 

programs can be useful to IPM suppliers. Extension specialists interact frequently with large 

numbers of grower networks and can provide advice regarding appropriate information about 

where to get IPM supplies. In addition, cooperation with research universities could enhance 

the reliability of IPM; for example, alternative IPM tactics may be appropriate for different 

stages in the plant growth cycle. 

We find substantial differences between objective and self-reported measures of adoption. 

This suggests that growers and policy makers may think of IPM standards differently. 

Self-reported IPM measures could lack objectivity and, if this is true, it may lead to biased 



22 
 

impressions of IPM adopters; this may be due to financial incentive programs used by state 

governments to promote IPM adoption and to possible price premiums for IPM-labeled 

products. Regulators should maintain strict surveillance of products labeled as IPM. 

Surveillance, in turn, should include setting standards, monitoring production processes and 

establishing commodity traceability systems. At the same time, this may be costly and may 

raise concerns about the efficiency of financial incentives for IPM. 

While this study provides valuable insights on factors influencing IPM adoption, it has 

some limitations that require further investigation. For example, future research should 

conduct cost-benefit analyses of operations using IPM and conventional methods in the 

greenhouse/nursery sectors to conduct rigorous comparative studies. Another issue is that our 

sample of greenhouses/nurseries may suffer from selection bias, given that the surveys were 

mailed to growers that participated in an IPM workshop. These growers may be more 

interested in, or at least better informed on, IPM methods. Future survey-based research 

should address this issue by mailing the IPM survey randomly to all greenhouse/nursery 

operations, not just to the greenhouses and nurseries that expressed an interest in adopting 

IPM methods.  
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Figure 1. Four Key Components of an IPM Program 
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Source: U.S. Environmental Protection Agency (2011) 

 

Activities: 
Sticky cards  
Indicator plants  
Regular scouting  
Hire commercial scout  
Use deg. days to track pests  
Foliar testing 

Monitoring 

pest monitoring 

Activities: 
Screen vents  
Crop rotation  
Inspect new plant shipments  
Disinfect growing areas  
Sanitize pots or use new ones  
Sanitize soil or use new soil  
Reemay plant covering  
Culture indexed plants  
Fallow crop space  
Use DIF  
Cover floor with weed cloth  
Pest resistant varieties  
Drip irrigation  
Remove weeds  
Recycle water  
Soil testing  
Water testing  
 

Prevention 

manage the crop to prevent 

pests from becoming a threat 

Activities: 
Rotate pesticide classes  
Release predators, parasites, nematodes  
Spray insecticides on floor/benches  
Use pesticides less toxic to beneficial  
Use pesticides with short residual activity  
Use microbial biocontrol (fungi, bacteria)  
Preventative pesticide treatment 
Spot pesticide treatment  
Use chemical pesticides  
 

Control 

evaluate the proper control 

method so that appropriate 

method could be taken 

 

Pest Identification 

accurate pest identification 

Activities: 
Identify pests/diseases yourself  
Professional insect/disease ID  
Use disease test kits  
Send plants out for disease testing  
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Variables Description Mean StdDev Min Max 

Dependent Variables         

Y_selfreport Self-reported as IPM grower (yes=1, no=0) 0.575 0.497 0 1 

Y_binary Objective measure of IPM grower (yes=1, no=0) 0.617 0.489 0 1 

Y_IPMScore IPM score each grower could get 4.411 3.834 0 11.3 

Y_IPMlevel Three IPM levels each grower could rank  0.713 0.633 0 2 

Independent Variables         

Headgrower Position of respondent in the operation (yes=1, no=0) 0.34 0.476 0 1 

PercentVeg Percentage of total revenue from growing vegetables 15.691 25.331 0 100 

Fullworker Level of hired full-time worker in the operation 2.588 1.482 1 5 

NH Location of business in New Hampshire (yes=1, no=0) 0.192 0.396 0 1 

PestAvg Degree of pest challenges faced by greenhouse  

and nursery growers 

0.85 0.512 0.1 2.3 

          

DiseaseAvg Degree of disease challenges faced by greenhouse  

and nursery growers 

0.758 0.564 0 2.1 

          

Unavailability 1 if to order biological control agents is a great  

Hindrance; 0 otherwise 

0.128 0.336 0 1 

          

Unreliability 1 if lacking of confidence in the reliability of IPM 

is a great hindrance to implement them; 0 otherwise 

0.468 0.502 0 1 

          

Knowlimit 1 if knowledge limit of IPM measure is a great 

hindrance to implement them; 0 otherwise 

0.149 0.358 0 1 
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Table2. Regression Results for Objective Measure of IPM
a
 

              

Variables 

name 

Binary IPM Measure IPM Scores IPM Self-report  

Logit model Tobit model Logit model 

Coefficient Marginal 

Effect 

Coefficient Marginal 

Effect 

Coefficient Marginal 

Effect (std err) (std err) (std err) 

Constant -2.693***   -3.181*   1.271*   

  (1.506)   (1.952)   (0.857)   

PestAvg 2.704 0.575 

 

5.750** 5.654 -1.258 -0.173 

   (1.955) (3.021) 

 

(1.527) 

DiseaseAvg -2.551* -0.543 -5.613** -5.520 -1.786 0.246 

  (1.635) 

 

(2.730) 

 

(1.502) 

 Unavailability -2.351** -0.516 -3.446** -3.446 0.850 0.087 

  (1.246) 

 

(2.007) 

 

(1.397) 

 Unreliability -0.795 -0.188 -0.894 -0.894 -1.187*** -0.228 

  (0.58) 

 

(1.071) 

 

(0.595) 

 Knowlimit 1.128 0.181 2.297 2.297 -3.316** -0.628 

  (1.301) 

 

(2.135) 

 

(2.054) 

 Headgrower 1.469** 0.214 

 

2.614*** 2.614 -0.290 -0.044 

   (0.566) (1.009) 
 

(0.539) 

PercentVeg 0.024*** 0.005 0.035*** 0.034 0.0004 0.0005 

  (0.014) 

 

(0.016) 

 

(0.012) 

 Fullworker 1.068*** 0.227 1.831*** 1.801 0.024 0.003 

  (0.473) 

 

(0.411) 

 

(0.195) 

 NH 1.113 0.180 1.678* 1.678 -1.849*** -0.391 

  (0.821) 

 

(1.139) 

 

(0.715) 

           

  # Observations 72 72 72 

Log Pseudo 

likelihood -31.944 

19.84 

0.019 

0.313 

-152.088 

5.47 

0.000 

0.100 

-37.648 

14.01 Wald Chi2/F 

Prob> Chi2/F 0.122 

0.235 Pseudo R2 

       Note: *, **, ***denote coefficient estimates statistically significant at the 0.15, 0.10, and 0.05 level, 

respectively. Standard errors are presented in parentheses. Each variable is defined in Table 1. 
a
 the number of observations in those models is 72 instead of 94 because some values are missing 

when constructing the independent variables. 
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Table 3. Ordered Logistic Regression Results and its Marginal Probability Effects 

            

 Three IPM Levels
a
   

Variable name 
Coefficient 

(std err) 

Log odds 

Ratios 

Non-IPM grower Low-IPM grower High-IPM grower 

IPM Value=0 

(Marginal Effects) 

IPM Value=1 

(Marginal Effects) 

IPM Value=2 

(Marginal Effects) 

Constant -3.181*   

 

    

  (1.952)         

PestAvg 3.906* 49.716* -0.745** 0.639** 0.107 

  (2.390)   (-0.385) (0.351) (0.077) 

DiseaseAvg -3.530** 0.029** 0.673* -0.577* -0.096 

  (1.911)   (-0.300) (0.276) (0.067) 

Unavailability -2.697** 0.067** 0.587* -0.555* -0.032 

  (1.149)   (-0.186) (0.187) (0.022) 

Unreliability -0.393 0.675 0.075 -0.0649 -0.011*** 

  (0.543)   (-0.108) (0.094) (0.015) 

Knowlimit 1.634 5.125 -0.221** 0.136* 0.085 

  (1.463)   (-0.116) (0.059) (0.135) 

Headgrower 1.119*** 3.061*** -0.196** -0.160** 0.037 

  (0.513)   (-0.102) (-0.087) (0.027) 

PercentVeg 0.012 1.012 -0.002 -0.002 0.0003 

  (0.009)   (-0.002) (0.002) (0.000) 

Fullworker 1.109*** 3.030*** -0.211* 0.181* 0.030** 

  (0.396)   (-0.053) (0.057) (0.017) 

NH 0.707     2.209 -0.12 0.095 0.024 

 

(0.548)     (-0.090) (0.069) (0.026) 

# Observations 72       

Log Pseudo 

likelihood -45.814       

Wald Chi2/F 20.55       

Prob> Chi2/F 0.015       

Pseudo R2 0.289       

 

Note: *, **, ***denote coefficient estimates statistically significant at the 0.15, 0.10, and 0.05 level, 

respectively. Standard errors are presented in parentheses. Each variable is defined in Table 1. 

Marginal probability effects are estimated at sample means. 
a
Three levels of IPM growers include: (1) Non-IPM grower (value=0), (2) Low-IPM grower 

(value=1), (3) High-IPM grower (value=2). 
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Appendix 

Below is a list of 19 disease problems and 19 insect and mite problems from the survey. 
 

Disease Problems (19 questions): 

Anthracnoses 

Bacterial leaf spots or cankers 

Botrytis blight 

Canker diseases 

Crown gall 

Damping off 

Downy mildews 

Fungal leaf spots 

Fusarium wilt 

Phytophthora root, stem or crown rots 

Powdery mildew 

Pythium root, stem or crown rots 

Rhizoctonia root, stem rot or blight 

Rust diseases 

TSWV/INSV(thrips-vectored viruses) 

Verticillium wilt 

Black root rot – Thielaviopsis 

Other(specify) 

Other(specify) 

Pest Problems (19 questions)  

Aphids 

Black vine weevil 

Cyclamen mites 

Broad mites 

Fungus gnats 

Lace bugs 

Leaf feeding beetles 

Leaf feeding caterpillars 

Leafhoppers 

Leafminers 

Mealybugs 

Scales 

Shore flies 

Spider mites and other mites 

Thrips 

White grubs 

Whiteflies 

Other (specify) 

Other (specify) 
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1
 The survey includes five levels capturing labor use:‘1’is less than one full-time worker;‘2’, 

between 1 and 2 full-time workers;‘3’, between 3 and 4 full-time workers;‘4’, between 5 and 

6 full-time workers; and ‘5’, over 6 full time workers. 

2
 We dropped the state dummy for Maine (ME) because its coefficient is statistically 

insignificant in all models and because the need to preserve enough degrees of freedom given 

the small size of our sample. 
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