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Abstract 

Ethanol policies have contributed to changes in the levels and the volatilities of revenues and costs 

facing ethanol firms. The implications of these policies for optimal investment behavior are 

investigated through an extension of the real options framework that allows for the consideration 

of volatility in both revenue and cost components, as well as the correlation between them. The 

effects of policy affecting plant revenues dominate the effects of those policies affecting 

production costs. In the absence of these policies, much of the recent expansionary periods would 

have not existed and market conditions in the late-1990s would have led to some plant closures. 

We also show that, regardless of plant size, national ethanol policy has narrowed the distance 

between the optimal entry and exit curves, implying a more narrow range of inactivity and a more 

volatile evolution for the industry than would have existed otherwise. 

 

 

Introduction 

Since 2005, the U.S. has witnessed a substantial increase in fuel ethanol production. This sizable 

growth has been due, at least in part, to the revision and/or creation of numerous federal, state, and 

local policies targeting both revenue enhancement and cost savings for ethanol producers (e.g., 

biofuels mandates, construction subsidies, tax credits, grants, loan guarantees).
2
 Over the same 

time period, these policies, coupled with other market effects that increased the demand for corn 

(e.g., favorable exchange rates, increasing incomes in importing countries) and reduced expected 

supplies (e.g., weather-induced yield shocks), have contributed to record-high and more volatile 

market prices for agricultural and energy commodities. 

More recently, continual changes in market conditions have tempered the expansion of 

corn-ethanol production. Large increases in the price of corn, coupled with falling crude oil prices 

in 2008 and the current economic downturn, have narrowed profit margins to corn-ethanol 

producers. In addition, the federal volumetric ethanol excise tax credit (VEETC or blender‟s 

credit) was reduced from 51 to 45 cents per gallon in the 2008 Farm Bill, and production and 

construction subsidies for corn-based ethanol facilities via the USDA Bioenergy Program have 

been reduced or eliminated.
3
 These factors have led to a number of either temporary or permanent 

ethanol plant closures, stalled construction intentions, or plant sales at reduced valuations. For 

                                                      
1
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2
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example, VeraSun Energy, the largest U.S. ethanol producer at the time, filed for bankruptcy in 

October 2008, halting construction plans on several sites and selling active plants to other ethanol 

producers or oil refiners (Energy Business Daily 2009). Overall, the rate of expansion in ethanol 

production capacity averaged less than 1% (0.6%) per month in 2009, compared with 4.6% growth 

between 2005 and the end of 2008 (O‟Brien and Woolverton 2009).  

Given the importance of U.S. biofuel production and the substantial risk on both the revenue and 

cost sides of ethanol production, the purpose of this article is to develop a better understanding of 

the effect of changing economic conditions and policy on investment decisions in ethanol 

production. In so doing, we make several important contributions to the literature. To begin, we 

extend the real options (RO) framework to better understand the investment behavior of firms. To 

date, the application of RO to agricultural and other risky investments of this type have been 

generally limited to models with a single random component, most often some measure of net 

return or profitability.
4
 However, these models ignore the stochastic details of the individual 

components that are particularly important for policy analysis. 

Our approach addresses this limitation directly. In particular, we extend the traditional RO 

approach to accommodate two stochastic variables, derive analytical solutions to the value 

functions, and then solve for the optimal entry and exit triggers. While the framework increases the 

computational burden relative to the traditional approach, we are now able to model revenue and 

cost separately and investigate the influence of individual variance and covariance effects on 

optimal switching conditions.  

Numerical approximation procedures are necessary to solve optimal switching problems when 

analytical solutions cannot be determined (e.g., Miranda and Fackler 2002; Fackler 2004; 

Nostbakken 2006). However, our derivation of analytical solutions to the value functions 

contributes to their empirical precision and avoids the use of these methods that are mostly ad hoc 

to approximate these functions (Dixit and Pindyck 1994, p. 209). Solutions to the final entry and 

exit trigger conditions still have no closed-form solution (as in the traditional approach) so a 

numerical approach is required at this stage of the solution, but now limited to solving a system of 

equations based on known value functions. To investigate the significance of our extensions to the 

standard RO model, we compare the new results to those from a traditional single-variable model 

specification.  

To facilitate policy analysis, we explicitly separate the effects of those financial incentives that 

affect revenue from those that affect cost. While considerable recent literature has evaluated more 

aggregate market or industry effects of ethanol policy, along with consequences for social welfare 

(see de Gorter and Just (2010) for a useful summary), less attention has been focused on the 

influence of policies on firm-level investment decisions.  

To conduct the policy analysis, we first adapt the procedures from de Gorter and Just (2008b) to 

estimate historical prices for ethanol, corn, and distillers dried grains with solubles (DDGS), a 

byproduct of ethanol production, that would have existed in the absence of ethanol policy. These 

alternative price series are then substituted into the two-variable RO model. The results from these 

                                                      
4
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Schmit, Luo, and Tauer (2009) use an ethanol gross margin in identifying triggers for entry and exit. 
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solutions are compared with those based on actual prices in order to identify the incidence of 

ethanol policy on optimal behavior and the entry and exits of firms. By using this two-variable 

model specification, we are also able to isolate the effects of policies that primarily affect cost from 

those that primarily affect revenue for ethanol producers. While our present empirical application 

focuses on ethanol production from corn, such a framework may well facilitate a similar 

understanding of the factors that will influence investments in cellulosic ethanol, once that 

technology is proven.  

We begin the remainder of the article by developing the conceptual model of optimal entry and 

exit for the case of two stochastic, potentially correlated, variables. This is followed by a 

discussion of the historical price series developed for ethanol and corn under alternative policy and 

no-policy scenarios, and the estimation of stochastic-process parameters. The empirical results 

follow, comparing optimal entry-exit curves under alternative RO models (i.e., one- and two- 

variable cases) and policy scenarios (i.e., with and without policy). We close with conclusions, 

considerations for policy development, and directions for future research. 

Conceptual Framework  

Following Dixit (1989), consider a fixed, linear, production technology transforming corn grain 

into ethanol, and a discount rate of δ > 0. An idle project can be activated with an initial sunk 

investment cost k, expressed in dollars per gallon of plant production capacity. For operating 

plants, there is an exit (or shut-down) cost per unit of output, l, to close it. While in operation, the 

plant produces a fixed outflow of product each year and, for ease of exposition, it is normalized to 

unity. The operating plant receives unit revenues of y and incurs unit operating costs of x per gallon 

of ethanol produced. In this application, y consists of sales of ethanol (ye) and byproducts (ybp), 

such that y = ye + ybp. Operating costs include corn feedstock costs (xc) and other operating costs 

(xoc) (e.g., labor, utilities), such that x = xc + xoc. Finally, define the firm‟s net returns as p = y – x. 

The stochchastic variables are assumed to evolve according to Geometric Brownian motion 

(GBM). For ease of exposition, we refer the reader to Schmit, Luo, and Tauer (2009) for the 

one-variable (p) model solution applied to corn-ethanol investment. Our focus below considers the 

extension to the two-variable case.
5
 Accordingly, the cost and revenue components are modeled 

as individual, potentially correlated, GBMs, or:  

(1)    

(2)    

where  ( ) is the drift rate of x (y),  ( ) is the standard deviation rate of x (y), and dzx (dzy) 

is the increment of a Wiener process with  ( ) and  and  

drawn from the standard normal distribution N(0,1). Further,  and  are potentially correlated 

with correlation coefficient , where 

                                                      
5
 Dixit and Pindyck (1994, pp 207-211) provide a similar framework with both price and cost uncertainty. However, 

they consider investment cost, rather than operating cost, as stochastic. This special case can be solved by reducing the 

problem to a one-state variable problem since once the investment is made, further uncertainty in the evolution of 

investment costs is irrelevant. This approach can be seen as a restrictive form of the more general framework we 

propose that, to the authors‟ knowledge, has not been previously developed within this setting. 
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.  

Bellman Equations 

A dynamic programming approach is used to determine the value of the project (active or idle). 

With an infinite time horizon and all parameters fixed (i.e., k, l, δ, , , , , and ), the 

value of the project will only depend on the values of x and y. An idle project does not generate any 

revenue or incur any cost. However, it could, under favorable future prices, become active and 

generate revenue. As a result, an idle project does have value.  

Following the framework of the one-variable case (Dixit 1989), denote the value function of an 

idle project as V0(x,y), or simply V0. An active plant receives (stochastic) net returns y − x in each 

period and has the option of shutting down; its value function is represented as V1(x,y), or simply 

V1. Given the time increment dt, and the ranges of (x, y) where it is optimal for a project to stay in 

its previous states (either idle or active), the changes in value functions (i.e., dV0 and dV1) must 

satisfy the following Bellman Equations for equilibrium in the asset market: 

(3)    

(4)   

where E is the expectation operator at time t. In the case of the idle state (3), the left-hand-side 

represents the return if the option to invest is sold, while the right-hand-side represents the 

expected capital gain from holding the option to invest. In the case of the active state (4), the 

left-hand-side is the return if the plant was sold and the proceeds invested at δ, while the 

right-hand-side is the expected capital gain of the active project plus instantaneous net revenue. 

From Itô's lemma, we know for a function , twice differentiable in potentially 

correlated Itô processes , and once in time , that the total differential of  is given by:  

(5)   

Applying (5) to  and , substituting in (1) and (2), and noting that , 

, and the higher order terms , , or  vanish in the limit as dt → 0, 

results in: 

(6) 

  

(7) 

, 
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where . 

Finally, substituting (6) and (7) into (3) and (4), and noting that , the asset 

equilibrium conditions can be expressed as: 

(8)    

(9)   

General Solution 

Equations (8) and (9) represent second-order partial differential equations (PDE) that, in present 

form, have no well-known solution. However, using methods defined in O‟Neil (2008) and Hanna 

and Rowland (1990), one can apply a change of variables to transform (8) and (9) into standard 

linear constant-coefficient second-order PDEs, with known analytical solutions. Specifically, 

consider the tranformation V(x, y) = u(t(x), s(y)) where  and . The partial 

derivatives of V are: , , , , and 

. Substituting these expressions into (8) and simplifying implies:  

(10)   

where (10) is the desired constant-coefficient PDE. Now, let a proposed solution to (10) be:  

(11)   , 

where  and  are constant real numbers to be determined. Substituting the partial derivatives of 

(11) with respect to t and s and rearranging yields:  

(12)   

Solving (12) for  provides two solutions (roots):  

(13)    

       

Given that  and  are functions of , the general solution to (10) can be expressed 

as:  

(14)   

where  and  are unknown constants to be determined. Finally, substituting the expressions 

for  and  into (14) we have:  
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(15)    

An idle plant does not generate any income, so  consists only of the value to enter, i.e., a real 

call option, which is nonnegative. It follows then that  and  must both be nonnegative. 

Given that  is decreasing in  ( ), we need , which is to be determined. Also, 

since  is increasing in  ( ) and ,  for the solution to hold on the whole 

domain. Letting  and , the general solution to (8) becomes:  

(16)   

where  and  are parameters to be determined. 

The same change of variables procedure is applied to (9) yielding:  

(17)  

Noting that the homogeneous part of (17) is the same as (10), they share a common general 

solution given by (14). To determine the general solution of (17), one must define a particular 

solution that satisfies (17) and then combine it with the homogenous solution. Let a particular 

solution to (17) be: 

(18)   

where  and  are parameters to be determined. For (18) to satsify (17), substitute the partial 

derivatives of (18) with respect to t and s (i.e., , , and ) 

into (17) and solve for a and b. After simplifying, the result becomes: 

(19)   

which holds for  and . Combining the homogenous and particular solutions 

defines the general solution to (17) as:   

(20)   

where , ,  are parameters to be determined. Finally, substituting the expressions for  and 

 back into (20) we have:  

(21)   

In (21),  is the expected net present value of the net returns from operating the plant 

forever, and  is the value of the option to exit. It follows that  and 

 must both be nonnegative. Given the value of the option to exit is increasing in , we need 

, which is to be determined. Also, since the value of the option to exit is decreasing in  and 

, this implies  for the solution to hold on the whole domain. Letting  and 
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, the general solution to (9) becomes:  

(22)   

where  and  are parameters to be determined. 

Switching Conditions 

To identify the conditions for x and y where it is optimal to switch states (idle or active) we must 

define the value-matching conditions and smooth-pasting conditions for the value functions 

above. Consider the cost-revenue combinations  and  that trigger entry and exit, 

respectively. In the two-variable model, the level of  (  that triggers entry (exit) is dependent 

on the existing level of x, defined as  ( ). As such, in determining the solution to the 

two-variable problem, we interpret  and  as functions of  and , respectively.
6
 Unlike 

the one-variable case where the switching conditions are defined at single threshold prices (  

and ), the two-variable model defines switching conditions in the nonnegative quadrant of the 

-  plane, which are now referred to as trigger curves. When the cost-revenue combination  

hits the entry trigger , an idle project should be activated, whereas when the cost-revenue 

combination  hits the exit trigger , an active project should be terminated. 

Given this, the value-matching conditions follow similarly to the one-variable case, but now must 

be satisfied at the coordinate pairs of trigger conditions  and . When 

, the project commits sunk cost k to switch from idle to active (value-matching 

equation 23 When , the project commits sunk cost l to switch from active to 

idle (value matching equation 24). Similarly, the tangency requirements of the value functions V0 

and V1 under the smooth-pasting conditions must be satisfied with respect to both x and y at the 

entry and exit trigger pairs (equations 25 through 28). Collectively, these conditions may be 

written as:  

(23)   

(24)   

(25)   

(26)   

(27)    

(28)   

To obtain the optimal trigger curves, a series of values for  and  must be given and the 

six-equation system (23-28) is solved over these values for the six unknowns ( , , , , , 

and ). Once , and  are determined, the optimal trigger pairs  and  can be 

plotted to illustrate the estimated trigger curves. 

                                                      
6
 The argument can be equivalently stated where  and  are functions of  and , respectively. 
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To better understand the shapes of the trigger curves, substitute (16) and (22) into either (23) or 

(24) and totally differentiate with respect to x and y. After rearranging, the slope of the trigger 

curves can be expressed as:  

(29)   . 

From (29), the slopes of the nonlinear trigger curves are functions of the levels of x and y; i.e., 

 or , and the parameters ( , , , , and ) via the nonlinear expressions 

in (13). While the individual component effects cannot be disentangled, we describe some of the 

general movements of the trigger curves in the empirical application below. In contrast, for the one 

variable case where p = y – x, the slopes of the trigger curves in (x, y) space are necessarily 

restricted to unity (i.e., from y – x = p, dy – dx = 0, or dy/dx=1). 

Data 

For the empirical application, we must provide estimates of the entry (k) and exit (l) costs and the 

parameters , , , , and . The parameters, in turn, depend on the historical time series 

data on unit revenues (ye and ybp) and feedstock and other operating costs (xc and xoc). Furthermore, 

to evaluate investment behavior in the absence of ethanol policy (np), alternative price series are 

needed for unit revenues (  and ) and feedstock costs ( ). 

Plant Investment and Operating Costs 

Average investment and operating costs for dry-grind corn-based ethanol plants are taken from 

Schmit, Luo and Tauer (2009), where data were collected from existing literature (Table 1). The 

data are grouped by plant size to assess differences in investment decisions when accounting for 

changes in costs. Plant sizes were categorized as either small, medium, or large, with average plant 

sizes by category reported in Table 1. While numerous small- and medium-sized plants are still in 

operation, more recent industry entrants have been primarily large plants with nameplate 

capacities of 100 mgpy or higher. 

Capital investment costs (k) include construction costs (e.g., equipment, engineering, installation) 

and non-construction costs (e.g., land, start-up inventories, working capital). As expected, average 

capital costs decrease from $1.95/gal to $1.22/gal for small and large plants, respectively (Table 

1). Exit costs depend on the liquidation value of assets. If residual asset value upon exit exists, 

overall exit costs can be less than zero; however, these estimates are not available in the literature. 

Given that land holds its value and production facilities might be retrofitted for alternative uses, we 

follow Schmit, Luo, and Tauer (2009) and assume a conservative 10% liquidation value (i.e., l = 

-0.1k). 

Non-corn operating costs (xoc) include chemicals, energy and utilities, depreciation, labor and 

other miscellaneous costs.
7
 Average operating costs are $0.74, $0.69, and $0.70 per gallon for the 

small, medium, and large plant classes, respectively (Table 1). Economies of size in production are 

expected; however, the limited number of observations used in each category (see Schmit, Luo, 

and Tauer 2009) may not fully represent these costs. For the application that follows, we assume 

that other operating costs are $0.70/gal for all firm sizes. Since these costs are included in total unit 

                                                      
7
 We assume that depreciated capital is replaced to maintain the initial capital stock. 
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costs (i.e., x = xc + xoc) from which stochastic parameters are estimated ( , , ), other 

operating costs were converted to current month-year equivalents by the Petroleum and Coal 

Products Producer Price Index (USDL 2010). Finally, an annual discount rate ( ) of 8% is 

assumed. 

Price, Tax, and Production Data 

Monthly prices were collected for the time period January 1997 through March 2010. Corn (xc) 

and DDGS (ybp) prices were obtained from the Feed Grains Database (USDA 2010), representing 

market prices for No. 2 yellow corn (Chicago, IL) and wholesale DDGS prices (Lawrenceburg, 

IN), respectively. Ethanol prices were obtained from the Nebraska Energy Office (NEO 2010), 

representing average rack (wholesale) prices (FOB Omaha, NE). In contrast to daily or weekly 

prices, monthly prices were used to eliminate short-term fluctuations in prices more pertinent to 

short-term holdings rather than long-term investments.  

Following Bothast and Schlicher (2005), conversion rates of 2.80 gal of ethanol and 17 lb of 

DDGS produced per bushel of corn were used to convert all prices to dollars per gallon, and unit 

revenues (y = ye + ybp), unit costs (x = xc + xoc), and net returns (p = y – x) were computed. Corn 

feedstock costs have represented the majority of total operating costs (around 70%); however, 

volatility in other costs, particularly energy and utility costs, remain important. Similarly, ethanol 

sales have represented the largest portion of total plant sales (around 80%); but the growing use of 

DDGS in livestock production should also be considered given the inherent price linkages to corn 

prices and other agricultural commodities. As shown in Figure 1, positive trends in unit revenues 

and costs are apparent; albeit dampened considerably beginning in 2009.  

To estimate the influence of ethanol policy on ethanol, corn, and DDGS prices, additional data are 

required, including gasoline prices, fuel taxes, ethanol tax credits, federal commodity loan rates, 

and estimates of corn production and disposition. Average monthly unleaded wholesale (rack) 

gasoline prices (FOB Omaha, NE) were obtained from NEO (2010). Feed Yearbook tables 

available in USDA (2010) were used to obtain market-year loan rates for corn and estimates of 

U.S. corn production and corn sold for domestic nonethanol consumption, nonethanol exports, and 

domestic ethanol production.
8
 Finally, annual federal and state-average fuel tax rates were 

obtained from the Federal Highway Administration (USDT 2010), and federal tax credits for 

ethanol (excluding individual state estimates) were obtained from USDE (2010). 

Effects of Ethanol Policy on Prices 

At the beginning of the sample period (1997), a federal motor fuels excise tax credit for blending 

ethanol with gasoline existed, as did an ethanol import tariff (both equivalent to $0.54/gal of 

ethanol). An additional $0.10/gal tax credit (up to 15 mgal) existed for small ethanol producers 

(less than 30 mgal/yr). The tax credits provide an incentive for refiners and blenders to bid up the 

price of ethanol above that of gasoline by the amount of the tax credit (de Gorter and Just 2008a, 

2008b, 2009a). The Transportation Efficiency Act in 1998 extended the subsidies through 2007, 

but mandated the excise tax credit to be reduced to $0.51/gal by 2005.  

Beginning in 2000, the U.S. Environmental Protection Agency recommended a nation-wide ban 

                                                      
8
 Due to lack of available data, all US corn exports reported (around 13% of total supply in 2008/09) were assumed for 

nonethanol use. 
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on the use of methyl tert-butyl ether (MTBE) as an oxygenator in gasoline. As such, numerous 

states began adopting this ban (notably California in 2003/2004), which increased the demand for 

ethanol (a substitute for MTBE). Ethanol price premiums can be equally affected by these types of 

environmental regulations and ethanol‟s additive value as an oxygenator or octane enhancer, 

acting as de facto mandates that can push ethanol premiums above the level of the tax credit (de 

Gorter and Just 2008b, 2010). 

Following the initial Renewable Fuels Standard (RFS1), established by the Energy Policy Act of 

2005, ethanol prices rose more than proportionally to input costs, with net returns reaching 

$2.25/gal by mid-2006 (Figure 1). In addition, the threshold for which small ethanol producers 

qualified for additional tax credits of $0.10/gal (up to 15 mgal) was increased to 60 mgal/year. 

While the incidence of the tax credit is such that ethanol producers derive most of the benefit, 

when a mandate (real or de facto) is binding, the price of ethanol will be determined by the point on 

the ethanol supply curve that satisfies the required level of production and a higher premium may 

be realized (de Gorter and Just 2008b). 

Combined with other market adjustments increasing the demand for corn (e.g., growing export 

demand), strong growth in corn prices in late-2006 and 2007 resulted in large reductions in net 

returns for ethanol producers. Net returns stabilizied somewhat in early 2007, notably at a time 

coincident with the implementation of a higher Renewable Fuel Standard (RFS2) by the Energy 

Indepence and Security Act of 2007, although the mandate for corn-based ethanol was more 

limited relative to advanced biofuels.
9
 In 2008, the blenders credit was reduced to $0.45/gal via 

the 2008 U.S. Farm Bill, and since then estimated net returns have generally been below $0.50/gal, 

and for some months negative (Figure 1). 

It is difficult to determine a priori whether the ethanol tax credit or mandates (explicit or de facto) 

are more influential on ethanol price premiums; however, the market effects of a tax credit have 

been shown to negligble if a mandate is binding (de Gorter and Just 2009b). In addition, while corn 

prices can be highly sensitive to changes to ethanol policy, the tax credit (or ethanol price premium 

due to the mandate) can only impact corn prices to the extent that it exceeds the level of “water” in 

the tax credit; i.e., the amount the intercept of the supply curve for ethanol is above the price of oil. 

The relative uncompetitiveness of the U.S. ethanol industry in the absence of government policy 

indicates that positive levels of “water” have historically been the case (de Gorter and Just 2008b). 

It is not our intention here to estimate the relative impacts of the various ethanol policies, but, 

instead, how the combined influence of existing ethanol policies has affected firm-level 

investment behavior over time. To better understand this, we use actual (policy) and estimated (no 

policy) price data to conduct “what if” analyses under alternative ethanol premium assumptions.  

Our approach is adapted from de Gorter and Just (2008b) to estimate prices for ethanol, corn, and 

DDGS in the absence of policy. In addition, estimated policy premiums are based on alternative 

assumptions regarding the form of consumer response to fuel prices. In the first case (called the 

Mix model), consumers do not adjust fuel purchases to take into account the share of ethanol and 

the reduced mileage impacts of ethanol relative to gasoline due to its lower energy value (i.e., 

around 70%). This is arguably the case for U.S. consumers in the past. In this case, the premium to 

                                                      
9
 Advanced biofuels are those derived from renewable biomass, other than corn kernel starch (e.g., cellulose, lignin, 

sugar, and crop residues) 
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ethanol prices ( ) can be computed by simply subtracting the gasoline price ( ) from the 

ethanol price ( ), or: 

(30)   . 

If the difference is equal to the tax credit, then the tax credit determines the market price of ethanol 

and the mandate is dormant, if the difference is greater than the value of the tax credit then the 

mandate is binding, and if the difference is less than the tax credit then the market is in 

disequilibrium (de Gorter and Just 2008b).  

Alternatively, in what is referred to as the Flex model, consumers purchase ethanol on the basis of 

contribution to mileage (as has been the case in Brazil). Here, the price premium is more 

complicated since mileage differences must be considered as well as the penalty on ethanol due to 

the fuel tax (t) being levied on a volume basis (de Gorter and Just 2008b). Letting  be the 

differential mileage rate, the premium to ethanol prices ( ) can be expressed as:   

(31)  . 

Ethanol premiums were computed under each assumption to derive ethanol price estimates in the 

absence of historical policy; i.e.,  and . 

To investigate the cost-side consequences of ethanol policy, we consider what corn prices would 

have been if there was no ethanol production ( ). According to de Gorter and Just (2008b, p. 

406),  depends on current prices, the disposition of corn to alternative uses (ethanol or 

nonethanol) and locations (domestic or export), and elasticities of supply and demand. They 

characterize this relationship in the following way: 

(32)   

where  is the loan rate,  is U.S. corn production,  is the quantity of corn sold for 

domestic nonethanol consumption,  is the quantity of corn sold for nonethanol export, 

 is the proportion of nonethanol corn consumed domestically, and  is the amount 

of corn sold for ethanol production. Assuming, as they do, that = 0.4, = -0.2, and = -1.0 

are the price elasticities for corn supply, domestic demand for nonethanol, and export demand for 

nonethanol, respectively, we solve (32) numerically for . The policy premium to corn prices 

( ) can then be expressed as:  

(33)  . 

Since  must be computed on a market year basis, the corn price premium is assumed to be 

the same for all months during each market year. The adjusted unit revenue from byproduct sales 

in the case of no policy ( ) is computed by multiplying the estimated corn price  by the 

ratio of actual byproduct and corn prices, or: 
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(34)  . 

Finally, the estimated price series for unit revenues,  and 

, and unit costs, , were computed. The price series are 

shown in Figures 2 and 3 and summarized in columns one through three of Table 2. The estimated 

policy premiums per gallon on unit revenues were, on average, $0.38 and $0.87 for the Mix and 

Flex models, respectively, over the entire 1997-2009 time period (Table 2). However, premiums 

reached as high as $1.36 and $2.14, respectively, in 2006 (Figure 2). The average price premium in 

the Mix model is below the average tax credit over the same time period (approximately $0.51) 

and is due to some observations where the estimated premium was negative and indicative of a 

temporary market disequilibrium (de Gorter and Just 2008b). However, if consumers had adjusted 

demand based on mileage performance factors (the Flex model), ethanol prices (and unit revenues) 

would have been consistently below actual historical conditions (Figure 2).  

As expected, the policy premiums to corn prices show lower differential effects for much of the 

sample, and result in an average premium of approximately $0.13/gal, or $0.38/bu. The average is 

higher than de Gorter and Just‟s estimate of $0.13/bu (2008b), and Elobeid and Tokdoz‟s estimate 

of $0.05 (2008), however these studies do not include more recent data (i.e., since 2007), where the 

estimated premiums have exceeded $1 per bushel. In addition, the average premium represents 

about 14% of corn prices over this time period, an estimate consistent with McPhail and Babcock 

(2008) who estimate a 14.5% corn price premium due to the mandate, tax credit, and import tariff. 

Much of the relatively small premium effects were prior to 2004 when RFS mandates were not yet 

in effect and few states had implemented MTBE bans. Consistent with de Gorter and Just (2010), 

only when oil prices increased sharply more recently did the ethanol premiums due to policy have 

a measurable impact on corn prices.  

Stochastic Parameters 

In this section, we estimate the stochastic parameters. From above, GBM is assumed for the 

stochastic variables; however, GBM cannot be used in the presence of negative values. This is not 

an issue in the two-variable case since by definition x and y are strictly nonnegative. However, as 

shown in Figure 1, net returns have been negative for some months. To minimize the problems 

associated with this, we utilize an alternative gross margin measure (p
*
 = y - xc) for the 

one-variable model where xoc is assumed fixed and accounted for separately. This does not 

completely eliminate the problem, however, as p
*
 is still less than zero some months in scenarios 

when policy premiums have been removed. To account for this, we subsequently vertically shift p
*
 

by $0.50 for all scenarios and all t.
10

  

For ease of exposition, we use x in describing the estimation procedure; however, the approach is 

identical for the other stochastic variables. To begin, if x follows a GBM, then lnx follows 

Brownian motion with parameters  and , or: 

(35)   , 

                                                      
10

 Shifting the data is a common approach to remedy this issue; however, this is necessarily ad hoc and the estimation 

results are not invariant to the level of the shift. We argue that this provides more reason to support the 

two-stochastic-variable approach for these types of analysis. 
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where .  

GBM requires  to have a unit root. While price theory suggests agricultural commodity prices 

should be stationary, the literature has frequently implied the opposite empirically (Wang and 

Tomek 2007). In addition, crude oil prices have been shown to reasonably follow GMB and are 

strongly correlated with ethanol prices (Postali and Pichcetti 2006). 

While not shown (available in online appendix), augmented Dickey-Fuller (ADF) tests were 

conducted to test for unit roots, with the results demonstrating only weak arguments against the 

presence of unit roots (once differenced, the time series , , and  all show 

stationarity).
11

 Accordingly, the stochastic parameters were estimated by regressing  on a 

constant term and lagged values  using ordinary least squares (OLS), or:  

(36)   

where sufficient lag terms (n-1) added until  becomes white noise; and 

. The deviation rate, , is read directly from the root mean 

square error (RMSE) estimation results. Finally, the correlation parameter, , is determined by 

the correlation coefficient of the residuals from the  and  fitted equations.
12

 Given we 

are considering annual production, the estimated monthly parameters were converted to annual 

equivalents based on the fact that the drift rate and variance of the increments of a Brownian 

motion are both linear in time. The complete set of estimation and test results are available in a 

supplementary appendix online for the interested reader. 

Due to lack of statistical significance, all drift rate parameters ( , , ) were set to zero; the 

estimated deviation rate parameters and correlation estimates for the actual (policy) and derived 

(no policy) price series are shown in Table 2, columns (4), (5), (6), and (7). As indicated, both the 

deviation rates of x and y, as well as the correlation between them, increase in the absence of 

policy. A reduction in the correlation is reasonable, since ethanol policy has no (or a limited) effect 

on oil prices, while oil prices are increasingly linked to changes in ethanol and corn prices. When 

policy perturbs ethanol prices (and to a lesser extent corn prices), the ethanol-oil correlation is 

reduced implying a reduction in the ethanol-corn correlation as well. The smaller change exibited 

in the deviation rate for x is consistent with the derived data that showed relatively less policy 

effects (Figure 3). The implications of these results will be presented next when considering the 

alternative policy scenarios on plant investment behavior. 

Empirical Results 

To generate empirical results from the applications of this two-variable RO model, we chose a 

                                                      
11

 Only for lnp were specification tests for a unit root consistently rejected; thus, providing further support for the 

two-variable model application. The empirical results for lnx and lny that could not reject unit roots are important to 

the application of the two-variable model, since otherwise other forms of stochastic behavior would be necessary (e.g., 

mean-reverting, jump-diffusion processes) that do not have analytical solutions to the value functions and require 

numerical methods to approximate (see for example Fackler and Livingston 2002; Kim and Brorsen 2008; Hillard and 

Reis 1999; and Martzoukos and Trigeorgis 2002). 
12

 The regression and correlation estimates were determined using the PROC REG and PROC CORR procedures, 

respectively, in SAS, v. 9.2. 
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series of values of  and  to cover a wide interval x may take over time; i.e.,  [0.50, 

0.60, …, 4.50, 4.60] and  [0.40, 0.50, …, 4.40, 4.50]. They are paired in such a way that 

, where  is necessary to solve (25) through (30).
13

 The values of  and 

 are input into the system, along with the entry and exit costs from Table 1; unless otherwise 

indicated, the results that follow assume investment and exit costs for the medium-size plant.  

As discussed below, the stochastic parameters for the base case differ from those for the several 

policy scenarios (Table 2). For each policy scenario, the appropriate set of parameters are used to 

solve for the y-coordinate pairs,  and , along with the other parameters ( , , , ).
14

 

The empirical results are discussed in three distinct sections below. The first section contains a 

discussion of the baseline results -- the solution to the two-variable RO model based on actual 

prices. The second section contains a comparison of the baseline results with the results from the 

one-variable RO model, also based on actual prices. This section highlights the additional 

information obtained through the modeling of revenue and costs separately.  

The third section contains the policy analysis. The impacts of policy on firm investment decisions 

are measured relative to the results of the base case. To conduct the policy analysis we begin by 

removing policy effects on both unit costs and revenues (scenario II), followed by simulations 

removing the policy effects on revenues (scenario III) and costs (scenario IV) in isolation. When 

revenue effects are considered, we also analyze two sub-cases where the alternative forms of 

consumer response are modeled (i.e., Mix or Flex). Finally, we consider the effects of alternative 

levels of investment costs in the two-variable setting, juxtaposed with the policy effects on 

revenues and costs. 

Baseline Results 

The estimated trigger curves for the baseline (scenario I) are presented in Figure 4.
15

 The figure 

provides an intuitive way to identify for a given unit cost ( ), what level of unit revenue ( ) is 

required for an idle firm to become active and for an active firm to exit. Ignoring the one-variable 

trigger lines for now, quadrant one of the  plane is divided into three parts by the 

two-variable trigger curves. If  is in the upper left portion above the  trigger curve, idle 

projects should enter. Alternatively, if  is in the lower right portion below the  trigger 

curve, currently active plants should exit. If neither is the case, idle projects should stay idle and 

active plants should stay active. For example, for x = $2.00/gal, idle projects would enter when 

total expected revenues exceed $2.92/gal, while existing firms would exit when expected revenues 

drop below $1.45/gal. 

One way to judge the performance of this model is to determine how the actual monthly data 

points on revenue and cost (x, y) are positioned relative to the trigger curves. In Figure 4, the data 

points that lie above the two-variable entry trigger curve ( ) generally represent months during 

the years of 2001, 2005, and 2006. Thus, the two-variable model does predict plant entry activity 

during the three highest levels of annual plant expansion over the time period evaluated.
16

 

                                                      
13

 The results are robust to the choice of Δ, where in testing Δ from 0.01 to 30, the trigger curves are virtually identical. 
14

 The system of equations was programmed in Matlab (ver 7.10) and solved using the fsolve function. 
15

 Full sets of the estimated parameters for each scenario, including A, B, , and , are available in a supplementary 

online appendix. 
16

 Given the large number of data points included in the figures, individual points were not labeled by date. For the 

interested reader, the complete data series for the policy and no-policy scenarios are available in a supplementary 
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Specifically, the annual percentage changes in plant numbers (either in operation or under 

construction) immediately subsequent to these periods were 21.3%, 29.9%, and 47.6%, 

respectively (RFA 2010). The next highest annual increase in plant numbers was in 2005, with an 

11.5% increase from 2004 (indeed, a more limited number of 2004 observations are also above the 

two-variable entry trigger curve).  

On the exit side, no actual data points were located in the exit region delineated by the two-variable 

model results. Total annual plant numbers did drop in 2009 by small amount (6 or -3.0%) from 

2008 (RFA 2010), but this was largely the result of a loss of plants under construction (a drop of 37 

plants), some of which may not have yet invested fully in the project and left, while the balance 

completed construction and moved on to active status.  

Some firms, not necessarily plants, have exited since 2008, but this has been commonly associated 

with devaluations of assets and plant sales often through bankruptcy proceedings to other firms at 

reduced plant values, and implying lower investment costs per gallon of output. For example, a 

$200 million investment in a 114 mgy plant in Volney, NY by Northeast Biofuels, LLC began 

construction in 2006 (a $1.75/gal investment cost). Limited-scale production was initiated in 2008, 

but design problems prevented the plant from ever reaching full capacity. Under a bankruptcy 

filing in 2009, the plant was sold to Sunoco at a sales price of $8.5 million (Little 2009). Even with 

expected repair costs of $11 million, the per unit investment cost by Sunoco was only $0.17/gal. 

The model presented here generally assumes decisions made by “first owners”, and the estimated 

trigger curves assume a constant investment cost (here, $1.39/gal). However, as will be discussed 

later, lower capital investment costs do shift the entry trigger curve down. 

Comparison of Baseline with One-Variable Model 

The solution to the model assigning only one random variable (net returns) is also plotted in Figure 

4, where the trigger lines are derived by transforming the one-variable solution (i.e., = $1.40 

and = $0.44 in this case) into equivalent  pairs via the equation  

for i = H, L. The one-variable model, by definition, is more restrictive since it defines a range of 

inactivity (i.e., the distance between the entry and exit trigger lines) that is constant. The 

two-variable model relaxes this restriction by considering individual component variability and 

the correlation between components, resulting in a range of inactivity that changes with x (i.e., 

 and ).  

The underlying reason for this fundamental difference in the two models is in the nature of the 

stochastic processes. Since x follows GBM, the deviation in x is proportional to its current level 

(i.e., ). A higher level of x is simply riskier for investors, so it makes sense to be more 

cautious.
17

 The same logic applies to y. While the deviation in p is also proportional to its current 

level (i.e., ), when defined in (x, y) space, net returns are measured linearly. 

In either case, higher deviation rates expand the range of inactivity; the  trigger curve shifts up 

                                                                                                                                                                           
online appendix. 
17

 For example, suppose xt=0 increases by 20% to xt=1 and then decreases by 20% to xt=2, then xt=2 = 0.96xt=0. Since  

in dzx is drawn from the standard normal without serial correlation, the two events have the same probability, 

regardless of the level of x. Suppose xt=0 = $1/gal, when x evolves to xt=2, net returns decrease by 4¢; if xt=0 = $2/gal, 

however, net returns decrease by 8¢, a larger drop in absolute terms at higher prices of x.  
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and the  trigger curve shifts down. Higher volatility in prices causes firms to wait longer before 

entering and, once active, will wait longer before exiting. However, if a concurrent increase in the 

correlation between unit revenues and costs occurs (indistinguishable in the one-variable model), 

the range of inactivity will shrink and offset some, all, or more of the increasing variance effects, 

depending on the relative magnitudes of the individual components. This makes sense; i.e., for a 

given level of x and a higher correlation with y, firms will enter (exit) sooner in the face of 

increasing (decreasing) unit revenues since the proportional changes in y are expected to be higher.  

The one-variable model reveals similar entry results at lower cost levels when compared with the 

actual data. However, several observations in 2007 are also above the one-variable entry trigger; in 

a region where the two-variable entry trigger curve is increasingly above the one-variable result. In 

this case, the one-variable result is likely indicative of a larger expansion in plant numbers than 

that represented by the actual change in plant numbers showing only a modest increase of 7.5%, 

including a decrease of 15 plants under construction (RFA 2010). On the exit side, the results 

between the two models are more similar. In fact, only in June 2008, when costs reached a record 

high of $3.61/gal, did the one-variable model indicate it was optimal to exit. 

The empirical results indicate that the two-variable model better predicts past expansionary 

behavior, particularly at higher levels of prices. This would seem particularly important given 

policy interests towards industry expansion. The exit side is arguably more difficult to 

accommodate given the multitude of other factors likely influencing firm decisions (e.g., lender 

relations, equity capital interests, etc.). In addition, the two-variable model is necessary to evaluate 

the incidence of policy effects relative to revenues and costs; an area we turn to next.  

Policy Analysis 

The plant entry and exit environment changes considerably when policy effects are removed. To 

understand this, one must consider both the revised data series (to reflect changes in the levels of 

prices) and the revised trigger curves (to reflect changes in the variance and covariance 

components.  

Combined Effects of Policies Affecting Revenues and Costs 

Initially, we consider Scenario II where policy effects are removed from both the revenue and cost 

price series (Figure 5). In the Mix model case (i.e., where consumers do not adjust fuel purchases 

to account for differential impacts on mileage between ethanol and gasoline), the number of time 

periods supporting new plant investment is severely curtailed when policy-induced revenue and 

cost effects are removed, relative to the baseline, and limited to only a few months in late-2005 and 

early-2006 (Figure 5, panel II-Mix). In particular, none of the historical 2001 expansion would 

have been optimal in the absence of policy. Furthermore, some plant exits would be supported in 

late-1998. 

If, alternatively, consumers responded according to the Flex model case (i.e., consumers purchase 

ethanol on the basis of mileage factors), no optimal expansionary periods are indicated at all 

(Figure 5, panel II-Flex). Furthermore, market conditions in much of the late-1990s (1997-1999) 

would have signaled considerable plant exits. 

Separate Effects of Policies Affecting Revenues and Costs 

Figure 6 and Figure 7 show the „what if‟ scenarios when only policy-induced revenue or cost 
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effects are included in the simulations, respectively. By comparing the two figures, it is clear that 

most of the effect of ethanol policy on plant decisions has been due to revenue-side influences. 

Indeed, under the Mix model, the no-policy effects are relatively similar between Figure 5 (II-Mix) 

and Figure 6 (III-Mix). However, when revenue effects are removed under the Flex model in the 

presence of higher (policy-induced) unit costs, even more monthly periods would signal plant exits 

(Figure 6, III-Flex). In particular, much of mid- to late-1998, 2001, 2002, and early-2009 would 

exhibit conditions supporting plant exit.  

As expected, removing the policy effects on unit costs (i.e., lower corn prices), while retaining 

higher policy-induced revenues would favor more expansionary periods with no cases for plant 

exit throughout the time period evaluated (Figure 7). In particular, additional entry support is 

evident in more of 2004 and some months of 2007.  

Effects of Investment Costs 

As discussed above, the range of inactivity in the two-variable RO model is increasing in prices. 

The level of this range is computed by subtracting  from  at each level of x. The results 

considering large and small plant entry and exit costs (Table 1), and under the policy (I) and no 

policy (II-Mix, II-Flex) scenarios are shown in Figure 8. Since higher unit investment costs 

increase entry triggers and lower exit, it was expected to see higher levels of inactivity for the 

smaller plant size. However, plants associated with higher ranges of inactivity can also be thought 

of as more stable market participants. From the perspective of the current ethanol situation, further 

entry by smaller plants will be inhibited by their higher costs, but those already in operation will 

stay in longer than larger-sized plants through periods of low returns. 

Importantly, this downward shift in the inactivity curves between the small and large plants can 

also be viewed in the context of ethanol policies aimed at decreasing investment costs for firms 

through various direct subsidies such as grants, low interest loans, and loan guarantees. As such, 

investment cost subsidies cause firms to enter sooner (at lower unit revenues) than would 

otherwise be the case. However, under these conditions, a lower range of inactivity also implies a 

more volatile entry/exit environment for those firms, and contributing to more industry volatility. 

Indeed, many of the plants sold recently via bankruptcy proceedings (under construciton or 

operational) have been larger, more recent entrants (Energy Business Daily 2009). 

Another important implication from Figure 8 is with respect to the differences in ranges of 

inactivity between the policy and no policy cases. Regardless of plant size, ethanol policy has 

lowered the ranges of inactivity implying the development of a more volatile industry regarding 

firm investment decisions. For our particular application, this is due to the fact that under policy, 

changes in the variance effects (i.e., lower  and ) dominate the change in the correlation (i.e., 

lower ) 

Conclusions 
Existing ethanol policies have clearly affected market conditions, prices, and expansion of the 

industry. Policies such as blending mandates and tax credits have fostered stronger linkages 

between agricultural and energy commodity markets resulting in price effects on both cost and 

revenue dimensions for ethanol producers. An extended RO framework is developed that allows 

for the consideration of volatility in both revenue and cost components, as well as the correlation 

between them.  
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Analytical solutions for the two-variable value functions are derived and used to estimate the 

influence of ethanol policy of firm-level investment decisions. Through the empircal application 

we derive entry-exit trigger curves signaling the conditions (in revenue-cost space) when it is 

optimal to change states. The empirical results based on prices resulting from actual policies are 

consistent with historical expansionary behavior and increases in new plant investment, with 

improved performance of the two-variable model relative to the traditioanl one-variable 

framework. Importantly, by examining the influence of policy on revenues and costs separately, 

we show that most expansion was induced by the revenue-enhancing effects of policy. A result 

indistinguishable in the one-variable net return approach. 

When the estimated effects of policy on revenues and costs are removed, and consumers do not 

take into account the differential mileage rates of ethanol and gasoline, the optimal entry/exit 

environment changes considerably. Not only would much of the actual expansion have never 

taken place, but additional plant exits would have been optimal in the late-1990s.  

The case is even worse if consumers would have responded to fuel prices based on the changes in 

mileage (like they have done in Brazil for some time). Indeed, no optimal expansionary periods are 

indicated at all since 1997, and market conditions in much of late-1990s (1997-1999) would have 

signaled considerable plant exits. If the utiliziation of ethanol within the domestic fuel industry 

continues to expand (with corn or other advanced feedstocks), it can be expected that U.S. 

consumers will increasingly react to appropriate market signals in making fuel purchase decisions. 

If so, these results would indicate an increasing need for alternative policy designs or other 

incentives relative to historical experience to prevent increased consolidation in the US ethanol 

industry and large reductions in industry output (if that, indeed, is the intention). In other words, 

the size of policy contributions would need to grow over time. 

Regardless of plant size, we show that ethanol policy has narrowed the distance between the 

optimal entry and exit curves, implying a more narrow range of inaction and supporting more 

volatile industry development. This has occurred for two reasons. First, for our particular 

application, lower ranges of inaction occur since the reduction in variance effects under policy 

dominate the lower covariance effect. Second, lower unit investment costs due either to firm 

investment incentives or economies of scale in production contribute to a narrowing of the range of 

inaction.  

As policy incentives are increasingly promoting the development and expansion of advanced 

biofuels production (i.e., fuel derived from renewable biomass other than corn kernel starch), 

adaptions of the two-variable model presented in this article will be useful for future policy 

analysis. In particular, given the development and expanded production of cellulosic feedstocks 

for bioenergy production (e.g., switchgrass, myscanthus), the predicted price levels and volatilities 

of these feedstocks is relatively uncertain. Sensitivity analyses on a range of feedstock volatilities 

and investment costs will be important to consider in the development of this industry. In addition, 

the ability of current corn-based ethanol facilities to retrofit their operations to accommodate 

alternative feedstocks may have particular relevance to changes in optimal industry entry and exit 

for firms. We leave these considerations to future research. 
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Table 1. Average Capital and Operating costs (excluding corn feedstock) for 

Dry-Grind Corn-Ethanol Plants 

   Operating Costs 

 

Category 

Average 

Size
a
 

Capital 

Cost 

Chemical Energy & 

Utilities 

Depre-

ciation 

Labor & 

Other 

Total 

Small 18.7 1.95 0.13 0.27 0.17 0.17 0.74 

Medium 40.0 1.39 0.13 0.31 0.12 0.12 0.68 

Large 100.0 1.22 0.11 0.29 0.12 0.17 0.69 
Note: Adapted from Schmit, Luo, and Tauer (2009). All costs are in 2006 U.S. dollars per gallon. 
a
 Size is reported in million gallons per year, generally defined as nameplate capacity.  
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Table 2. Average Prices and Estimated Stochastic Parameters by Scenario, Consumer Response, and Real Options 

Model  

  

Average Prices 

 

One-Var. Model 

 

Two-Variable Model 

  

1997 - 2010 

 

Deviation Rate 

 

Deviation 

Rate Corr. 

Scenarios Case Description p
*
 x y   p

*
   x y x,y 

  

(1) (2) (3) 

 

(4) 

 

(5) (6) (7) 

I 
Base case: actual prices reflecting 

ethanol policy. 
0.94 1.45 1.92 

 
0.371 

 
0.189 0.275 0.220 

II Remove policy price effects on both y 

and x: 

         

      Mix model 0.70 1.32 1.54  0.437  0.221 0.348 0.455 

      Flex model 0.20 1.32 1.05  0.642  0.221 0.375 0.441 

III Remove policy price effects on y only:          

 

     Mix model 0.56 1.45 1.54  0.505  0.189 0.348 0.426 

 

     Flex model 0.06 1.45 1.05  0.875  0.189 0.375 0.406 

IV Remove policy price effects on x only:          

       Mix or Flex model 0.38 1.32 1.92   0.333   0.221 0.275 0.296 

Note: All prices are measured in dollars per gallon of ethanol; y = unit revenue, including ethanol and byproduct sales; x = unit cost, including corn and 

other operating costs; p
*
 = unit revenue less corn feedstock cost, other operating costs assumed fixed and accounted for separately. All p

*
 data series are 

scaled up by $0.50/gal to avoid negative values in the no-policy scenarios. In the Mix model consumers do not distinguish ethanol and gasoline mileage 

performance, while in the Flex model consumers distinguish mileage and tax consequences between ethanol and gasoline. All drift rate parameters are 

assumed equal to zero (not statistically different from zero at 95% significance level). 
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Figure 1. Historical corn-ethanol unit revenues, costs, and net returns, 1997-2010 
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Figure 2. Actual and derived (no policy) ethanol plant revenues, with mix model and flex 

model consumer assumptions.
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Figure 3. Actual and derived (no policy) ethanol plant costs. 
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Figure 4. Estimated investment trigger curves under actual 

policy (scenario I), medium-size plant investment costs. 
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Historical Data, No Policy x and y, Mix Model
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Figure 5. Estimated investment trigger curves with no policy effects on cost and revenue (scenario II), by consumer response 

type, medium-size plant investment costs. 
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 No policy on y, Mix Model (III-Mix) No policy on y, Flex Model (III-Flex) 
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Historical Data, No Policy y, Mix Model
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Figure 6. Estimated investment trigger curves with no policy effects on revenue (scenario III), by consumer type, medium-size 

plant investment costs. 
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 No policy on x (IV) 
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Figure 7. Estimated investment trigger curves with no policy 

effects on cost (scenario IV), medium-size plant investment costs. 
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Figure 8. Levels of the range of inactivity, by policy level and plant size. 




