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Abstract 
 
We show how leakage differs, depending on the biofuel policy and market conditions. 
Carbon leakage is shown to have two components: a market leakage effect and an emissions 
savings effect. We also distinguish domestic and international leakage. International leakage 
is always positive, but domestic leakage can be negative. The magnitude of market leakage 
depends on the domestic and foreign gasoline supply and fuel demand elasticities, and on 
consumption and production shares of world oil markets for the country introducing the 
biofuel policy. Being a small country in world oil markets does not automatically imply that 
leakage is 100 percent or above that of a large country. We show leakage due to a tax credit is 
always greater than that of a mandate, while the combination of a mandate and subsidy 
generates greater leakage than a mandate alone. In general, one gallon of ethanol is found to 
replace only 0.35 gallons of gasoline – not one gallon as assumed by life-cycle accounting. 
For the United States, this translates into one (gasoline-equivalent) gallon of ethanol emitting 
1.13 times more carbon than a gallon of gasoline if indirect land use change (iLUC) is not 
included in the estimated emissions savings effect and 1.43 times more when iLUC is 
included.  
 
 

Key words: biofuels, market leakage, indirect output use change, carbon leakage, emissions 
savings, domestic leakage, tax credit, mandate 
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The Implications of Alternative Biofuel Policies on Carbon Leakage 
 

1. Introduction 
 

The issue of carbon leakage – where emissions reductions by an environmental policy 

are partially or more than offset because of market effects – is often raised as an issue that 

will undermine environmental policies.1 Leakage has been extensively studied in the cases of 

cap and trade policies (e.g., Frankel 2009),2 reduced deforestation and land degradation - 

REDD (e.g., Murray et al. 2004, 2009; Murray 2008) and indirect land use change (iLUC) 

generated from biofuels policies (e.g., Searchinger et al. 2008; Hertel et al. 2010; Tyner et al. 

2010).3 Each source of leakage has created its own controversy. For cap and trade, green 

tariffs and producer rebates have been studied extensively as remedial measures,4 while the 

Kyoto Protocol has been reluctant to include REDD because of concerns over leakage and 

additionality (Murray 2008). In the case of biofuels, the issue has been whether or not 

biofuels fulfill a sustainability threshold (e.g., a 20 percent reduction in carbon emissions for 

U.S. corn-ethanol relative to gasoline it is assumed to replace). However, leakage has also 

been a criterion to determine the eligibility of biofuels for carbon offsets in the Clean 

Development Mechanism of the Kyoto Protocol.5 

What has not been studied to date is the indirect output use change (iOUC) in the fuel 

market itself where the addition of biofuels always causes a reduction in world gasoline 

market prices.6,7 This paper develops a formal analytical framework to analyze the carbon 

leakage due to alternative biofuel policies, namely biofuel consumption subsidies (like the 

U.S. blender’s tax credit or a fuel tax exemption at the retail pump in many other countries) 

and mandates, and the combination of a subsidy and a mandate.8 In so doing, we identify two 

components of carbon leakage: the “market leakage effect” (also referred to as iOUC) and the 

“emissions savings effect”. The former refers to the resulting market effect of biofuels in 

displacing gasoline and other oil (domestic non-transportation and international oil) 
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consumption,9 while the latter refers to the relative carbon emissions of biofuels versus 

gasoline. A positive market leakage (which always occurs with a tax credit that expands fuel 

consumption) does not necessarily imply an increase in carbon emissions, but a negative 

market leakage (that is possible with a mandate) always implies a higher emissions reduction 

relative to what is intended.10 

We distinguish “domestic” versus “international” leakage. Because world gasoline 

prices decline with either biofuel policy, international leakage is always positive, as is 

domestic leakage with a tax credit. But domestic leakage with a mandate can be negative 

under some market conditions, making it possible that total (domestic plus international) 

leakage can be negative. For plausible parameter values we, however, find that, in reality, this 

is not the case as international leakage is much bigger than domestic leakage.  

Nevertheless, the level of market leakage for either policy depends on two key market 

parameters: (a) the elasticities of gasoline supply curves and fuel (gasoline plus biofuel) 

demand curves; and (b) consumption and production shares of the country introducing the 

biofuels. But leakage is found empirically to be more sensitive to elasticities than to market 

shares, and especially to changes in market parameters of the country not introducing 

biofuels. 

Domestic leakage becomes more important relative to international leakage as the 

Home country consumes more gasoline and/or the relative demand elasticity of the Home 

country increases. Our empirical results show that domestic leakage is less important for total 

market leakage compared to the case of carbon leakage – a result driven by the emissions 

savings effect.  

We show that a small importer (exporter) of oil facing a perfectly elastic excess 

supply (demand) curve does not automatically generate 100 percent market or carbon 

leakage. We also show that, under some market conditions, a country whose biofuel policies 
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have a smaller impact on world oil prices can see lower leakage compared to a country that 

lowers world oil prices more significantly. 

The economics of a consumption mandate is shown to be more complex than that of a 

tax credit because the former generates a U-shaped fuel supply curve. However, for the same 

amount of ethanol, market leakage due to a tax credit is always greater than that due to a 

binding consumption mandate. We also find that the combination of a binding consumption 

mandate and a tax credit produces greater leakage than with a mandate alone. If in 

combination with a mandate, the leakage due to the tax credit alone is infinite. 

If the tax credit is equal to the price premium that is necessary to generate the 

mandated amount of ethanol, then the tax credit exactly offsets the reduction in gasoline 

consumption due to the mandate if the country has no effect on world oil prices. However, if 

the country with the biofuel policy can affect world oil prices, then the tax credit more than 

offsets the reduction in gasoline consumption due to the mandate. 

For most plausible elasticities and 2009 U.S. market shares, we find market leakage to 

be in the order of 60 to 65 percent for all three policy options (a tax credit, a mandate, and 

their combination), i.e., one (gasoline-equivalent) gallon of ethanol replaces only 0.35 to 0.40 

gallons of gasoline and the rest (0.60 and 0.65 gallons, respectively) is displaced. This 

combined with the effect of iLUC makes one gallon of ethanol emit 1.43 times more carbon 

than one gallon of gasoline. Note that the EPA in its evaluation of iLUC using life-cycle 

accounting assumes a one-to-one replacement of gasoline with ethanol. On the other hand, 

the magnitude of carbon leakage is lower when iLUC is not taken into account, 20 to 25 

percent, (because the emissions savings effect is strong) but significantly higher, 190 to 210 

percent, when the effect of iLUC is considered that weakens the emissions savings effect. We 

show that iLUC is less important than iOUC.  
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Leakage under “autarky” can be interpreted as a measure for when all countries 

participate in the environmental policy (a biofuel policy in this case). We find that both the 

market and carbon leakage are lower by ‘expanding the coalition’ but not significantly so 

with the possible exception of carbon leakage with mandates but only when the emissions 

savings effect is sufficiently strong. 

The remainder of this paper is organized as follows. The next section defines leakage 

and explains two components of carbon leakage – market leakage and the emissions savings 

effect. In Section 3, we analyze market leakage due to a blender’s tax credit. The discussion 

includes implications for how country size on world oil markets affects leakage. In Section 4, 

we investigate market leakage under a binding consumption mandate and discuss the leakage 

effects of adding a blender’s tax credit to the mandate. Numerical estimates of leakage and 

their sensitivity analyses are provided in Section 5. The last section provides some 

concluding remarks. 

2. Market and Carbon Leakage Defined 

Whenever a ‘clean’ biofuel is subsidized or mandated relative to a ‘dirty’ source like 

gasoline, carbon leakage occurs - the actual carbon savings may be more or less than the 

intended savings (from biofuel consumption). Carbon leakage is a result of two, typically, 

counteracting effects: the “emissions savings” effect and the “market leakage” effect (also 

referred to as “indirect output use change” (iOUC), see de Gorter and Just 2009b) in the fuel 

market.11 To define the former, denote carbon emissions per unit of energy from a dirty (e.g., 

gasoline) and clean (e.g., biofuel) source by ed and ec, respectively. Define the emissions 

savings effectξ  to be the relative difference between ed and ec: 

d c

d

e e
e

ξ −
=  
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The interpretation of ξ is straightforward. A value of 0.20ξ = means that a (gasoline 

equivalent) gallon of ethanol emits 20 percent less carbon relative to the same amount  of 

gasoline. 

While the emissions savings effect depends mostly on technical properties of the two 

fuel sources, the market leakage effect results from market forces in the fuel market after the 

introduction of biofuels. To show this, we write the initial world consumption of fuel, which 

is assumed to be all gasoline, as: 

0 0 0H FC C C= +  

where H and F denote Home and Foreign country, respectively. In the new equilibrium with 

E units of biofuels, world fuel consumption is given by: 

1 1 1H FC E C C= + +  

Market leakage (in absolute terms) due to the introduction of E units of biofuels is the 

change in world fuel consumption: 

1 0 1 1 0 0H F H F H FC C C E C C C C E C CΔ = − = + + − − = + Δ + Δ  

where HCΔ and FCΔ represent a change in consumption of gasoline in the Home and Foreign 

country, respectively. 

In relative terms, the market leakage effect is given by: 

H F
M

C E C CL
E E
Δ + Δ + Δ

= =  

For example, if LM = 0.7, then one unit of biofuel replaces 0.3 units of gasoline, while total 

fuel use has increased by 0.7 units. Contrast this, for example, with life-cycle accounting 

which assumes gasoline is replaced by the biofuels gallon for gallon (gasoline equivalent). 



8 
 

We define carbon leakage in an analogous way to the market leakage: the change in 

global carbon emissions, due introduction of biofuels, is divided by the intended carbon 

reduction. The formulae for the market leakage and emissions savings effects can be 

combined to derive an expression for carbon leakage LC:  

( ) ( )1 1 1

1 1 1

d d H F H F
C

d

e E e C C C C C EL
e E E E

C E C
E E E

ξ ξ ξ
ξ ξ ξ ξ ξ

ξ
ξ ξ ξ ξ

− + Δ + Δ − Δ + Δ − Δ −
= = + = +

− Δ Δ
= + − = −

 

which can be rewritten into a simple form:12 

                                               1 1C ML L
ξ

= −                                                         (1) 

In deriving an expression for carbon leakage, we realize that the clean source only saves ξ 

[×100%] carbon relative to the dirty source. 

Equation (1) clearly identifies the two driving forces of carbon leakage: the emissions 

savings and the market leakage (iOUC) effects. Depending on the relative value of the 

factors, three cases can be distinguished to determine the magnitude of carbon leakage. First, 

carbon leakage is zero, i.e., total emissions have not changed if ML ξ= . In this case, the 

carbon savings effect of biofuels is completely offset by an increase in fuel consumption, 

which results in higher emissions. Second, carbon leakage is positive whenever ML ξ> . In 

this instance, total emissions always increase. Notably, carbon leakage is more than 100 

percent if 2ML ξ> . This means that an increase in global carbon emissions is higher that the 

intended reduction in emissions due to biofuels. Finally, in the event that ML ξ< , global 

emissions are reduced. In particular, they decrease by as much as intended if LM = 0, i.e., if 

ethanol replaces gasoline one to one. Formula (1) also reveals that introduction of biofuels 
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can reduce more carbon than initially expected only when the iOUC effect is negative (LM < 

0), a situation possible only with a mandate as we show later. 

It is the use of biofuels as a substitute for gasoline that gives rise to the many potential 

sizes and signs of carbon leakage. The magnitude of carbon leakage also depends critically 

on the value of the emissions savings effect. For example, total carbon emissions could 

increase if coal were replaced with oil, but very likely decrease were the former replaced with 

natural gas. To illustrate the sensitivity of carbon leakage to the size of the emissions savings 

effect, we note that the direct emissions of corn-ethanol (as measured by life-cycle 

accounting) are 52 percent less than emissions from gasoline (EPA 2010).13 In this case, the 

magnitude of market leakage is multiplied by two (i.e., 1/0.52, as per equation (1)). But if 

indirect land use change (iLUC) is taken into account, then corn-ethanol only saves 21 

percent relative to gasoline (RFA 2010). The magnitude of the market leakage is multiplied 

by five (1/0.21) in this case (as per equation (1)). 

The formula for carbon leakage given by (1) is also very general; it accommodates 

both autarky and international trade cases; allows for any type of policy that affects the 

introduction of biofuels on the market; and it requires some estimate of the emissions savings 

effectξ to determine the magnitude of carbon leakage. It also indicates that carbon leakage 

can only be positive, i.e., total emissions increase, if market leakage is positive. On the other 

hand, there can be situations when carbon leakage is negative, i.e., introduction of biofuels 

reduces total emissions, even though market leakage is positive. The latter outcome may 

occur when the market leakage (iOUC) is sufficiently small and/or a biofuel has substantially 

lower carbon emissions relative to gasoline. 

There are competing methods to derive an estimate for the value of emissions 

savingsξ for a biofuel. First, one can compare the instantaneous amounts of carbon released 

when a fossil fuel and biofuel are combusted. In this case, the biofuel emits a different 
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amount of CO2 relative to the fossil fuel.14 Second, some argue that biofuels are by and large 

net zero as the amount of CO2 absorbed through the process of photosynthesis in growing the 

crop is equal to that when the biofuel is combusted.15 In this case, 1ξ = for any biofuel 

compared to a fossil-based fuel. Third, the life-cycle accounting approach measures all 

carbon emissions from “well-to-wheel” for fossil fuels and from “field-to-tank” for biofuels, 

which might yield yet another value forξ (e.g., 52 percent saving with corn-ethanol relative to 

gasoline (RFA 2010)). The fourth option is to add iLUC to the life-cycle value forξ (e.g., 21 

percent savings with corn-ethanol relative to gasoline (EPA 2010)). 

Implicitly embedded in equation (1) is the fact that the existence of positive market 

leakage undermines the emissions savings effect. Therefore, a question arises as to what the 

true emissions savings of ethanol compared to gasoline are when the iOUC effect is taken 

into consideration. A change in global carbon emissions due to the iOUC effect 

is ( )H F dE C C e+ Δ + Δ . Therefore, the true carbon emissions of a gallon of ethanol introduced 

in the market are given the sum of the own emissions of ethanol and the emissions due to the 

iOUC effect:  

( ) ( ) ( )1
1d d H F

M d

e E e E C C
L e

E
ξ

ξ
− + + Δ + Δ

= − +  

Substituting this expression into the definition of the emissions savings effect above, we 

arrive at: 

( )1d M d
M

d

e L e
L

e
ξ

ξ
− − +

= −  

 This result is very intuitive: in the presence of positive market leakage, emissions 

savings of ethanol relative to gasoline are always lowered by the counteracting market 

leakage effect; hence never as high as supposed to be. In particular, if the market leakage 
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effect is stronger than the emissions savings effect, then consumption of ethanol does not 

reduce global carbon emissions, but increases them. 

In the theoretical analysis to follow, we take advantage of equation (1) in quantifying 

the magnitude of carbon leakage of biofuel policies in the fuel market: we focus on the 

market leakage (iOUC) effect and then just relate the results to carbon leakage. This is 

possible because of the one-to-one relation between the two forms of leakage. The market 

leakage effects of a blender’s tax credit (or a tax exemption at the retail gas pump as in 

Europe) are compared to a consumption mandate. In the numerical example, we also provide 

leakage estimates when a tax credit is combined with a mandate. 

3. Market Leakage with a Blender’s Tax Credit 

 Consider a competitive gasoline market in Figure 1 where the Home country (H) is 

an importer and the Foreign country (F) an exporter of fuel. The initial fuel price Pw0 is where 

excess demand EDH equals excess supply ESF. Initial fuel consumption is CH0 and CF0 in the 

Home and Foreign country, respectively. Similarly, QH0 and QF0 denote Home and Foreign 

country’s production of gasoline.  

Suppose there is a consumption subsidy (a blender’s tax credit) for ethanol in the 

Home market that generates a positive level of E units of ethanol production along the 

ethanol supply curve (not shown). The tax credit-induced ethanol is an exogenous (taxpayer-

financed) increase in fuel supply and can be depicted as a shift in SH to SH' by the distance E 

in the first panel of Figure 1. As domestic supply of fuel increases, excess demand shifts 

down to EDH', creating a new world fuel price Pw1 that is less than Pw0. 

With an exogenous increase in fuel supply due to ethanol production, fuel prices 

decline and total fuel consumption increases. The latter is market leakage (displacement of 

gasoline) and hence, unlike that assumed with life-cycle analysis, a gallon of ethanol (in 

gasoline equivalent) replaces less than a gallon of gasoline. With international trade, there are 
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two components of market (and also of carbon) leakage. The first is domestic leakage, 

represented by an increase in fuel consumption in the Home country (distance CH0CH1), while 

international leakage is defined as an increase in fuel consumption in the Foreign country 

(distance CF0CF1) (de Gorter 2009). With a blender’s tax credit, both leakages are always 

non-negative because each country faces the same decrease in the gasoline price. 

While Figure 1 depicts market leakage in its absolute form, an expression representing 

the market effect as a relative number makes it possible to identify its determinants, namely, 

supply and demand elasticities for gasoline and production and consumption shares in the 

gasoline markets in both countries. The formula for market leakage due to tax credit-induced 

production of ethanol in the Home country is given by (see Appendix 1): 

                                      ( )
( ) ( )

1
1 1

DH DF
M

DH DF SH SF

Lτ
ρη ρ η

ρη ρ η φη φ η
+ −

≈
+ − − − −

                                 (2) 

whereτ denotes a blender’s tax credit, ρ stands for a share of the Home country in world 

gasoline consumption, φ denotes a share of the Home country in world gasoline  production; 

andη denotes an elasticity. The first subscript D and S in each term signifies demand and 

supply, respectively and the second subscript (H and F) denotes country, e.g., DHη denotes the 

elasticity of fuel demand in the Home country. Decomposing leakage into a domestic D
ML and 

international I
ML component, the relative share of domestic leakage depends on consumption 

shares and demand elasticities in both countries, but not on fuel supply elasticities as leakage 

occurs only along demand curves: 

                                                             
1

D
M DH
I
M DF

L
L

ρ η
ρ η

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

                                                     (3)                         

Inspection of (3) reveals that domestic leakage becomes more important relative to 

international leakage as (i) the share of gasoline consumption of the Home country increases, 
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and (ii) the relative demand elasticity of the Home country becomes higher. Therefore, if a 

country (or a coalition of countries) producing ethanol consumes a substantial share of world 

gasoline, the bias of market leakage estimates when ignoring domestic leakage might be 

substantial. Likewise, if the domestic demand for fuel is more elastic and attention is only 

paid to international leakage, then the estimated magnitude of market leakage is likely to be 

an underestimate of its true value.  

How sensitive is market leakage to changes in market parameters? 

From equation (2), we are in a position to analyze the effects of the key market 

parameters on market leakage due to a blender’s tax credit. The partial derivatives of (2), 

summarized in Table 1, show that market leakage decreases, ceteris paribus, as demand for 

fuel in either country becomes less elastic and supply of fuel becomes more elastic in either 

country. An implication is that countries heavily dependent on oil, such as the United States, 

that introduce biofuels are more likely to see market leakage of their green (biofuel) policies 

abroad rather than at home. 

On the other hand, market leakage increases (decreases) with a higher consumption 

share of the Home country if the demand for fuel in that country is more (less) elastic than it 

is in the Foreign country. Similarly, market leakage increases (decreases) as the Home 

country becomes a larger gasoline producer provided that the supply elasticity in the Home 

country is smaller (bigger) than it is in the Foreign country. The above suggests that the 

attempts of countries to be less dependent on oil (i.e., decrease their oil consumption share) 

by progressively consuming more ethanol are likely to increase market leakage if the 

domestic consumers are less price sensitive in comparison with the consumers in the rest of 

the world. 

We use the results in Table 1 to examine the sensitivity of market leakage to changes 

in its determinants. Here we present a selection of the possible pairwise comparisons. For 
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example, market leakage is more sensitive to the demand elasticity of the Home country 

compared Foreign country if the former consumes more than a half of world gasoline               

( 1 / 2ρ > ) (see (4)). Likewise, the magnitude of market leakage will react more to changes in 

the Home country’s supply elasticity relative to the Foreign country, if the former covers 

more than a half of the world supply of gasoline ( 1 / 2φ > ).This is a result of the country size 

effect, i.e., market changes in the large country have a bigger impact (in absolute terms) in 

that country than in the small one. This suggests that the United States with values of 

0.22ρ =  and 0.07φ = will have market leakage that is more sensitive to market elasticities 

abroad. However, if we analyze groups of countries at a time (e.g., members of the Kyoto 

Protocol), then the situation can be reversed and the Home parameters can be more influential 

in affecting the market leakage outcome.                 

                           

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( )  / / 1

( )  / / 1

( )  / /

( ) / / 1

( )  / /

( ) / / 1

DH DF

SH SF

DH DH DF

DF DH DF

SH SH SF

SF SH SF

a L L

b L L

c L L

d L L

e L L

f L L

η η ρ ρ

η η φ φ

ρ η η η ρ

ρ η η η ρ

φ η η η φ

φ η η η φ

∂ ∂ ∂ ∂ = −

∂ ∂ ∂ ∂ = −

∂ ∂ ∂ ∂ = −

∂ ∂ ∂ ∂ = − −

∂ ∂ ∂ ∂ = −

∂ ∂ ∂ ∂ = − −

                            (4) 

The four remaining rows of (4) (equations (c) to (f)) provide an explanation for why 

changes in world gasoline consumption (production) shares typically have a less significant 

effect than do domestic supply and demand elasticities. For consumption (production) shares 

of the world gasoline market to have a more significant impact, the absolute difference in 

respective demand (supply) elasticities has to be bigger than a consumption (production) 

share. But this is less likely to occur as demand elasticities are similar across countries. 

In order to get more insights into market leakage due to a tax credit, we analyze the 

key parameters at their limiting values. The findings are summarized in Table 2. If the Home 

country is the only fuel consumer ( 1ρ = ), ethanol production decreases the world fuel price 
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and generates higher domestic fuel consumption, thereby resulting in higher domestic 

leakage. Note that even though leakage in this case is by definition all domestic, it is not the 

same thing as autarky leakage ( 1φ =  would also be required). In the absence of gasoline 

production in the Home country ( 0φ = ), both domestic and international leakage occur 

because after total fuel supply has expanded due to ethanol production, the world fuel price 

declines, resulting in higher fuel consumption worldwide. 

If the demand curve in either country is perfectly inelastic (i.e., 0DHη = or 0DFη = ) 

then total leakage is either all domestic or international, depending on which country has the 

inelastic demand curve. If, on the other hand, demand for fuel in either country is perfectly 

elastic, ethanol does not replace any gasoline. This is because gasoline consumption has not 

changed, while total fuel consumption has increased by the amount of ethanol production. 

Market leakage in this case is therefore 100 percent. A perfectly inelastic fuel supply curve in 

either country leads to both domestic and international leakage. If the fuel price is fixed in the 

Foreign country due to a perfectly elastic fuel supply curve ( SFη →∞ ), then there is no 

market leakage (similarly if the country is an exporter). 

Some of the results summarized in Table 2 are of practical relevance to countries that 

produce biofuels, but whose global gasoline consumption or production shares are negligible 

(e.g., Slovakia). Despite being implemented by small countries, biofuel policies in these 

countries produce international (and also domestic if no production of gasoline) leakage 

whose magnitude can be substantial, depending on the market parameters. 

Is market leakage for a small country always 100 percent? 

One would think that a biofuel policy of a small importer (exporter) in oil markets 

that faces a perfectly elastic excess supply (demand) curve would automatically result in 100 

percent market and carbon leakage. However, this does not necessarily have to be the case 

and, under some conditions, a smaller country can see lower leakage of its biofuel policies 
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compared to a larger country. We summarize this by the following proposition on the case of 

market leakage, with the result holding also for carbon leakage as per equation (1). 

Proposition 1: Let there be two situations for the Home country, A and B, such 

that ( ) ( )A B
G GdP dE dP dE< , where ( ) i

GdP dE , { },i A B= represents the effect on world 

gasoline price of an increase in ethanol production due to a blender’s tax credit in country i. 

The gasoline price is the same in both situations. Then market leakage seen by the Home 

country in situation A is lower than in situation B whenever 

* *B B A A
DH H DF F DH H DF FD D D Dη η η η+ < + . 

The stars indicate that the fuel demand elasticity and fuel consumption in the Foreign country 

may differ for situations A or B. Proof of Proposition 1 is in Appendix 1. 

A small country in international markets faces a perfectly elastic excess 

supply/demand curve. Conditions under which this is the case are derived in Appendix 2. Out 

of the three possibilities, we analyze the one when a country faces a perfectly elastic trade 

curve because of its consumption and production shares.16 In this instance, market leakage 

with a blender’s tax credit is given by: 

                                            ( )
( ) ( )

1
1

1 1
DH DF

DH DF SH SF

ρη ρ η
ρη ρ η ρη ρ η

+ −
≤

+ − − − −
                                 (5) 

Consider a case where fuel demand and gasoline supply elasticities in both countries are  

-0.3 and 0.3 respectively, then market leakage is 50 percent – half of what it would be 

expected for a small country. 

4. Market Leakage with a Consumption Mandate 

The economics of a biofuels consumption mandate is different from that of a tax 

credit. It is because unlike a tax credit, which is a taxpayer-financed subsidy on ethanol 

production, ethanol produced to meet the mandate is financed by a money transfer from oil 
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producers and (under some circumstances) fuel consumers (de Gorter and Just 2008a; Lapan 

and Moschini 2009). With a consumption mandate, there are four distinct agents in the 

market: ethanol producers, gasoline producers, fuel blenders and fuel consumers. We first 

explain the basic economics of a consumption mandate under autarky and then analyze 

leakage effects of this policy with international trade. For a more comprehensive treatment of 

the consumption mandate see de Gorter and Just (2008a; 2009c).  

Consider the first panel in Figure 2. If a consumption of E gallons of ethanol is 

mandated, the ethanol market price (PE) is read off the ethanol supply curve SE. The produced 

ethanol essentially shifts the gasoline supply curve ST horizontally to the right by the amount 

of E, represented by the curve ST'. The U-shaped fuel supply curve *
FS represents marginal 

costs for the blender (see de Gorter and Just 2008a; 2009a for details on how *
FS is 

constructed).  

A blender equilibrates the marginal cost with the market price for fuel which is read 

off the demand curve DH. The intersection of DH with *
FS constitutes a market equilibrium 

with a fuel price PF1 and fuel consumption of CH1. In the new equilibrium, less gasoline is 

demanded by blenders because a fixed amount of ethanol is mandated to be consumed. This 

results in a lower gasoline price received by gasoline producers PG1 and so gasoline 

production declines. Total fuel consumption can either decrease or increase, depending on the 

position of the fuel demand curve. 17  

How is it possible that total fuel supply can go up? Think of a consumption mandate 

as a tax on the gasoline market. Gasoline consumers pay a higher price for gasoline (to pay 

for high ethanol price) and gasoline producers obtain a lower price. So the mandate is at once 

acting as a monopolist against gasoline consumers and a monopsonist against gasoline 

producers. It is possible that the revenues extracted from gasoline producers are so high 

(inelastic gasoline supply curve) that total fuel production (and hence consumption) goes up 
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(fuel price goes down). Consumers still pay a higher price for gasoline but with ethanol 

supply, a lower fuel price. 

The economics of a consumption mandate with international trade is analogous to the 

autarky case above (with a slight change in notation). The Home country is assumed to be an 

importer.18 Prior to the policy, fuel demand in the Home country faces total gasoline supply 

ST) given by the horizontal sum of domestic SH and Foreign excess supply curve of gasoline 

SF - DF. When a consumption mandate is imposed, the total gasoline supply in the Home 

country shifts to the right by the amount E (depicted by ST'). An intersection of the demand 

for fuel in Home country DH and the fuel supply, *
FS  defines the fuel price paid by fuel 

consumers in the Home country PF1. World fuel price is given by PG1. Since this is lower 

than the fuel price in the initial equilibrium, fuel consumption in the Foreign country goes up 

by CF0 CF1 (international leakage). Fuel consumption in the Home country can decrease (as 

shown in Figure 2), stay unchanged, or increase, depending on where DH intersects *
FS . 

So depending on whether domestic fuel consumption decreases with a consumption 

mandate or not, total leakage may be negative provided that an increase in gasoline 

consumption in the Foreign country is more than offset by a reduction in domestic fuel 

consumption. We also note that even if domestic fuel prices go up with a mandate, GHG 

emissions can increase provided that total market leakage is positive and the emissions 

savings effect is sufficiently small. It can also be the case that even if the domestic fuel prices 

decline, global GHG emissions can decline as well, provided that the total market leakage is 

positive and the emissions savings effect is strong enough. Therefore, a reduction in the fuel 

price is not a sufficient condition for GHG emissions to increase. 

The analytical formula for market leakage with a consumption mandate MLσ derived in 

Appendix 3 takes the form: 
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( ) ( )( ) ( )

( ) ( )
1 1 1

1 1
DH SH SF DH DF

M
SH SF DH DF

Lσ δ η φη φ η ρη ρ η
φη φ η ρη ρ η

− + − − − −
≈

+ − − − −
                            (6) 

where 0E GP Pδ = is the ratio of the intercept of the ethanol supply curve and gasoline market 

price under no ethanol production. The structure of the equation (6) is very similar to that for 

a tax credit in (2). The parameter δ is new and relates the ethanol mandate with the gasoline 

market. Close inspection of equations (2) and (6) reveals that a binding consumption mandate 

is always superior to a blender’s tax credit in terms of the magnitude of market or leakage. 

This is stated by the following proposition.  

Proposition 2: For the same amount of ethanol, the market leakage (and therefore also 

carbon leakage) due to a blender’s tax credit is always greater than that due to a consumption 

mandate. 

Proof: The proof follows immediately from the difference of equations (2) and (6): 

( ) ( )( )
( ) ( )
1 1

0
1 1

DH SH SF
M M

DH DF SH SF

L Lτ σ δ η φη φ η
ρη ρ η φη φ η

− + −
− = >

+ − − − −
 because 1δ >  

Market leakage when a tax credit is added to a binding consumption mandate 

If you add a blender’s tax credit to a binding consumption mandate for ethanol, the tax 

credit simply subsidizes gasoline consumption, thus contradicting all environmental 

objectives (de Gorter and Just, 2008a; Lapan and Moschini, 2009).19 Leakage due to the tax 

credit alone in this case is infinity. The explanation is quite intuitive. A tax credit does not 

induce any ethanol production provided that a consumption mandate is binding. It means that 

no gasoline is replaced by ethanol. On the other hand, additional gasoline is consumed 

(displacement) as a result of combining the two policies together. Following the definition of 

market leakage as the ratio of what is displaced and what is replaced, the result is that the 

value of the fraction is infinity. 
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However, leakage due to a combination of the two policies will be finite. It is because 

ethanol generated under a mandate does replace some gasoline and so the denominator of the 

fraction is not zero. However, total leakage of the combination of the two policies is higher 

compared to a mandate alone because of the additional oil consumption induced worldwide 

by a tax credit.  

Proposition 3: If a binding consumption mandate is combined with a tax credit 

equal20 to the price premium necessary to generate the mandated amount of ethanol with the 

tax credit alone, then  

i.) if the country is small in world oil markets, then the tax credit exactly offsets the 

reduction in gasoline consumption due to the mandate and market leakage of both 

policies combined is zero, 

ii.) if the country is large in world oil markets, then the tax credit more than offsets the 

reduction in gasoline consumption due to the mandate and market leakage of both 

policies combined is positive. 

Proof: 

Denote PF as the fuel price in the Home country with no policy. In this case PF  = PG, where 

PG denotes the world price of gasoline. Let PF' be the fuel price in the Home country when 

both policies are combined. The change in the domestic fuel price is then: 

( ) ( )

( )

* *

*

' 1 ' ' '
' ' '

'

F F F E c G G E G c G G
F F F

E G c G G
F

E E EP P P P t P P P P t P P
C C C

EP P t P P
C

⎛ ⎞
Δ = − = − + − − = − − + −⎜ ⎟

⎝ ⎠

= − − − Δ + Δ

 

where CF' denotes fuel consumption with the policies in place, EP denotes the ethanol price 

determined by the binding consumption mandate of E gallons of ethanol, PG' denotes the 

world gasoline price with the policies, and tc
*denotes a tax credit equal to the price premium 
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necessary to generate the mandated amount of ethanol with the tax credit alone, i.e., 

*
c E Gt P P= − . 

Substituting the expression for the required tax credit back to the above equation, we 

obtain:  

1
'F G

F

EP P
C

−

+

⎛ ⎞
Δ = − Δ⎜ ⎟

⎝ ⎠
 

where the negative sign of GPΔ follows from Appendix 4 and results in: 

( ) ( )F Gsign P sign PΔ = Δ  

Therefore, for a small country, whose policies have no impact on world gasoline prices, it 

must be that 0FPΔ = . This means that domestic and foreign fuel consumption does not 

change with the implementation of the policies and so market leakage is zero. A consumption 

mandate combined with a tax credit in a large country decrease the world gasoline price and 

therefore the tax credit more than offsets the reduction in gasoline consumption due to the 

mandate and world fuel consumption increases, resulting in positive leakage. 

5. A Numerical Example 

In this section, we estimate the magnitude of market and carbon leakage for the 

United States using 2009 data (see Appendix 5 for data sources). All data are in gasoline 

equivalents. In 2009, the United States consumed 22.4 percent and produced 7.4 percent of 

total world oil consumption.21 The share of U.S. ethanol production represented 1.3 percent 

of the world gasoline consumption. Baseline parameters in this paper denote “most plausible” 

values, based on the sources contained on the many other studies to date on the biofuel-fuel 

markets (see Appendix 5 for details). The fuel demand elasticity in the United States is 

assumed to be -0.26 and in the Foreign country -0.40. Elasticity of gasoline supply in both 
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countries is assumed to be 0.2. The ratio of ethanol and gasoline prices adjusted for miles 

obtained is 1.44. 

Using values of the most plausible market parameters (i.e., “baseline” values), 

estimates of market and carbon leakage are given in Table 3 for three policy options: tax 

credit, consumption mandate and when a tax credit is added to a binding mandate (here we 

use the actual tax credit which does not equal to the price premium due to the mandate). To 

calculate carbon leakage, we use two possible values for the relative carbon emissions 

intensity: with and without iLUC, i.e., ξ = 0.21 and ξ = 0.52, respectively. 

We begin our discussion on total leakage with international trade. The first column of 

Table 3 presents total leakage with international trade while the second column gives the 

domestic share. The share of domestic market leakage is the ratio of the change in Home 

country’s fuel consumption to the global change in fuel use (the latter represents market 

leakage in absolute terms). All ethanol is assumed to be consumed domestically.  

Total leakage with a tax credit is 0.65 (i.e., 65 percent, when multiplied by 100), while 

the share of domestic leakage is only 16 percent. Because the United States is one of the 

biggest consumers and importers of oil in the world, results in Table 3 and equation (3) 

suggest that the domestic share is lower in countries like Canada. On the other hand, recall 

that it is very possible for ‘small’ exporting countries to have a higher total leakage than the 

United States, depending on how elastic the fuel demand curve in the rest of the world is and 

how big the consumption share of the exporting country is relative to that of the United 

States.  

With a mandate, on the other hand, domestic leakage is negative (total fuel 

consumption declines), but domestic leakage is low, while total leakage is 61 percent. Total 

leakage with a mandate does not differ much from that due to a tax credit because the level of 

domestic leakage is low relative to international leakage; the latter always being  positive. 
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This result occurs even with the United States consuming close to one quarter of total world 

oil consumption.  

The third row in Table 3 shows the market leakage when the tax credit is added to a 

binding mandate and total leakage is close to that with a consumption mandate alone. This is 

because after the tax credit is added, the fuel supply curve does not shift down by the full tax 

credit, but only approximately by the share of ethanol multiplied by the tax credit. 

The bottom set of results in Table 3 gives carbon leakage under two scenarios: with 

iLUC using the EPA’s most recent estimate (where corn based ethanol emits 21 percent less 

CO2 relative to gasoline) and without iLUC (where ethanol emits 52 percent less CO2 

compared to gasoline). Unlike market leakage, total carbon leakage when including iLUC22 is 

much higher for all three policy scenarios. This is because carbon leakage is a compound 

measure consisting of two mutually synergizing sources through which a policy generates 

leakage: the market leakage effect, i.e., via changes in physical quantities of fuel consumed; 

and the emissions savings effect where gasoline  is being replaced by a biofuel with lower 

carbon emissions. For example, market leakage for a tax credit is 65 percent while carbon 

leakage is 209 percent when carbon emissions due to iLUC are taken into account. Carbon 

leakage is so much higher in this case because the carbon savings of 21 percent per gallon of 

ethanol relative to gasoline are more than offset by a world-wide carbon increase due to 

higher fuel consumption. This means that, for given parameters, the increase in global carbon 

emissions is approximately twice as big as the intended reduction due to ethanol production. 

On the other hand, total carbon leakage is much lower than market leakage when 

evaluating the former excluding iLUC, using the most up to date EPA estimates of direct life-

cycle accounting (for new plants using specific technologies and inputs e.g., natural gas).23 

Looking at the last set of results in the first column of Table 3, carbon leakage is much lower 

than market leakage when excluding iLUC. This differential effect can be explained by much 
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stronger carbon emissions savings (52 vs 21 percent) of ethanol that now alleviates the 

generation of carbon through higher fuel consumption more significantly relative to the 

previous case where iLUC is not included in the emissions savings parameter. 

Another unique feature of the results in Table 3 is comparing the domestic share of 

carbon leakage with that of market leakage. The importance of domestic carbon leakage is 

more pronounced when excluding iLUC. The intuition for why domestic carbon leakage, for 

given parameters, is negative and very high in absolute terms (especially when ξ is high) is as 

follows. Domestic gasoline consumption declines, regardless if a tax credit or a mandate, 

thereby significantly lowering domestic carbon emissions. These emissions increase again as 

ethanol replaces the decline in gasoline consumption, but the replaced amount of emissions is 

lower than before because ethanol has lower emissions relative to gasoline (the more so as ξ 

increases).  

We have shown in equation (1) that a higher emissions savings parameter for ethanol 

alleviates total carbon leakage. In the previous paragraph, we also explained why higher 

emissions savings with ethanol reduces domestic carbon emissions. Therefore, a higher value 

of ξ increases domestic carbon savings (the numerator) and at the same time reduces total 

carbon leakage (the denominator), making the domestic share of carbon leakage much bigger 

(in absolute terms). Notice that total carbon leakage is nowhere negative in Table 3 and is 

small for ξ = 0.52. This is because international carbon leakage, albeit being very high, is 

offset by negative domestic leakage, resulting in total leakage (i.e., the sum of domestic and 

international leakage) reported in the bottom section of Table 3.  

We now turn to the third column of Table 3 that presents estimates of autarky leakage. 

We present autarky leakage as an estimate of what leakage would be if all countries in the 

world adopted the biofuel policy. The first thing to note is that market leakage under autarky 

(where the United States in this case adopts the biofuel policy) does not differ very much 
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from that of total market leakage under international trade – the difference being only 10 

percentage points.24 Therefore, “expanding the coalition” is not a critical issue in the case of 

biofuel policy and climate change (unlike for cap and trade or REDD – Murray 2008). Only 

in the case of high values for the emissions savings effect does carbon leakage drop 

significantly for autarky leakage (compare first and last columns of Table 3 for last three 

rows). This is because a higher emissions savings effect makes, the carbon and market 

leakage measures diverge. In this case, the emissions savings effect, which always reduces 

carbon leakage, almost completely offsets the market leakage effect, resulting in a very low 

carbon leakage.   

Previous studies analyzing the impact of a tax credit and/or a mandate on leakage 

assume autarky (de Gorter and Just 2008a; 2009a; Holland et al. 2009). With a consumption 

mandate, they find both positive and negative market leakage for plausible elasticity values. 

In our simulations (not reported), leakage is almost always underestimated assuming autarky 

when U.S. supply is assumed to be more elastic but it is likely to be overestimated (for a 

fixed value of the demand elasticity) when the U.S. demand for fuel is assumed to be more 

elastic. The U.S. biofuel policies certainly have an impact on international markets. 

Therefore, modeling leakage assuming autarky biases the results. 

Finally, in the fourth and fifth column of Table 3, we present the “true carbon 

savings” of ethanol relative to gasoline, when the effect of iOUC is included for the case of 

international trade and autarky. These values were calculated by taking the difference 

between the emissions savings effect including (or excluding) iLUC and the magnitude of 

market leakage. The negative sign of the difference in all instances suggests that after taking 

into consideration the market leakage effect, corn-ethanol emits more carbon emissions than 

does gasoline. For example, the value of -0.43 in the fourth column means that one (gasoline-

equivalent) gallon of ethanol emits 1.43 times more carbon than 1 gallon of gasoline.  
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Sensitivity analysis on the changes in key parameters affecting the magnitude of 

leakages is presented in Tables 4a and 4b. The organization of data is identical in both tables: 

values of elasticities are changed one at a time, keeping other parameters at their baseline 

levels (baseline leakage values are highlighted).25 In Table 4a, we assume a scenario that 

includes indirect land use change (iLUC) while in Table 4b, iLUC is ignored. Since the 

carbon emissions savings parameter only influences carbon leakage, we do not report the 

magnitudes of market leakage in Table 4b to avoid repetition. 

Consistent with the theoretical predictions in Table 1, leakage decreases as the 

gasoline supply curve in both countries becomes more elastic and increases as the elasticity 

of demand for fuel increases. Elasticities in the Foreign country have a bigger impact on 

leakage relative to the domestic ones because the United States consumes and produces less 

than a half of world’s gasoline. With inelastic demand and supply curves (which is most 

likely the case in reality), carbon leakage typically exceeds 100 percent when we assume an 

emissions savings parameter of U.S. corn-ethanol of 21 percent compared to gasoline. On the 

other hand, if the emissions savings parameter is much higher (e.g., ξ = 0.52 as in most recent 

EPA estimate of direct emissions using life-cycle accounting that excludes iLUC), then U.S. 

corn-ethanol is likely to reduce global carbon emissions substantially (Table 4b). Comparing 

Table 4a to 4b for carbon leakage, we observe that the odds that a more-than-expected 

amount of carbon will be saved increases as the emissions associated with ethanol declines (9 

negative carbon leakage values in Table 4a vs 26 in Table 4b).Therefore, in order to evaluate 

the effects of ethanol production on the global carbon emissions, we not only need reliable 

estimates of how much lower ethanol emissions are compared to gasoline, but also an 

agreement on whether to include iLUC or not.26 

6. Conclusions 
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Leakage is a measure of the ineffectiveness of an environmental policy and is 

frequently discussed in the context of combating global climate change. We develop an 

analytical framework to analyze the carbon leakage due to alternative biofuel policies, 

namely consumption subsidies and mandates (and their combination). We identify two 

components of carbon leakage: the market leakage effect, also referred to as indirect output 

use change (iOUC), and the emissions savings effect. Market leakage results from a change 

in market prices and a subsequent displacement of gasoline and other oil uses by biofuels, 

while the emissions savings effect represents the relative emissions of biofuels versus 

gasoline. We find that a positive market leakage does not necessarily imply an increase in 

carbon emissions, but a negative market leakage (that may occur with a mandate) always 

implies a higher emissions reduction relative to what is intended. 

The international trade framework within which we analyze a blender’s tax credit and 

a consumption mandate gives rise to a distinction between domestic and international 

leakage. Domestic leakage, under plausible assumptions, can be a significant factor of total 

leakage. With numerical simulations, we show why domestic leakage should be included in 

leakage estimates of various policies and what biases result from not doing so. Because world 

gasoline prices decline with either biofuel policy, international leakage is always positive, as 

is domestic leakage with a tax credit. But domestic leakage with a mandate can be negative, 

making it possible that total (domestic plus international) leakage can be negative.  

We show that market leakages (and hence carbon leakage) with both biofuel policies 

depend on two groups of parameters: (1) the elasticities of gasoline supply curves and fuel 

demand curves; and (2) consumption and production shares of the country introducing the 

biofuels. We demonstrate that leakage is typically more sensitive to elasticities than to market 

shares, and is especially more sensitive to changes in market parameters of the country not 
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introducing biofuels. We also find that being a relatively smaller country in world oil markets 

does not automatically imply a lower leakage. 

For the same amount of ethanol, market leakage due to a tax credit is always greater 

than that due to a binding consumption mandate while the combination of a binding mandate 

and a tax credit produces greater leakage than a mandate alone. A tax credit equal to the price 

premium that is necessary to generate the mandated amount of ethanol combined with a 

binding mandate exactly offsets the reduction in gasoline consumption due to the mandate if 

the country has no impact on world oil prices, but more than offsets the reduction if the 

country does impact oil prices. 

Our numerical estimates for the United States in 2009 reveal market leakage to be 

between 60 and 65 percent for all three policy options (i.e., tax credit, a mandate, and their 

combination). This translates into the carbon leakage of 190 to 210 percent provided iLUC is 

taken into account and it ranges from 20 to 25 percent when excluding iLUC. We find that 

existing indirect output changes reduce the ability of ethanol to save carbon emissions 

relative to gasoline and the empirical results for the U.S. policies result in ethanol emitting 

more carbon than gasoline – between 1.09 to 1.44 times more, depending on a policy and 

whether or not iLUC is considered.  

The empirical evidence presented in this paper suggests leakage from biofuel policy 

could be substantial. Leakage from biofuels policies is difficult to address in policy design 

because a mandate does not help much due to international leakage overriding a potential 

negative domestic leakage. Leakage from biofuel policies is also a special problem from a 

policy standpoint because, unlike with leakage in a cap and trade or REDD scheme, the 

problem is not always solved by having all countries adopt a biofuels policy because all 

leakage will be “autarky” (i.e., “domestic” if the coalition is expended to all countries 

adopting a biofuels policy) but this will likely result in little savings compared to the case if 
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the United States was the only country with the biofuels policy. There is one possible 

exception: if the emissions savings effect ξ is high enough (i.e., if iLUC is ignored and ξ is 

around 0.50), then if every country adopts a mandate, there can be negative carbon leakage 

worldwide. 

The framework advanced in this paper on leakage assumes the supply curve for 

gasoline is fixed. But an emerging literature on the Green paradox suggests that the 

introduction of biofuels shifts the gasoline supply curve down as owners of non-renewable 

resources worry about the rate of capital gains on these resources and so are motivated to 

extract their stocks of oil more rapidly in order to convert a larger portion of their wealth into 

cash and securing it as financial capital (Sinn 2008; 2009; Eichner and Pething 2009; Hoel 

2008; Grafton et al. 2010). So the estimates of leakage in this paper may be underestimated if 

aspects of the Green paradox are not included. 
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Table 1: Effect of changes in market parameters on market leakage with a tax credit  

Change in market leakage with respect to: Magnitude of the effect Sign of the effect Note 

Domestic fuel demand elasticity ( DHη ) 
( )( )

( ) ( )( )2

1

1 1
SH SF

DH DF SH SF

ρ φη φ η

ρη ρ η φη φ η

+ −
−

+ − − − −
 (-) unambiguous sign 

Foreign fuel demand elasticity ( DFη ) 
( ) ( )( )
( ) ( )( )2

1 1

1 1
SH SF

DH DF SH SF

ρ φη φ η

ρη ρ η φη φ η

− + −
−

+ − − − −
 (-) unambiguous sign 

Domestic gasoline supply elasticity ( SHη ) 
( )( )

( ) ( )( )2

1

1 1
DH DF

DH DF SH SF

φ ρη ρ η

ρη ρ η φη φ η

+ −

+ − − − −
 (-) unambiguous sign 

Foreign gasoline supply elasticity ( SFη ) 
( ) ( )( )
( ) ( )( )2

1 1

1 1
DH DF

DH DF SH SF

φ ρη ρ η

ρη ρ η φη φ η

− + −

+ − − − −
 (-) unambiguous sign 

Domestic consumption share in world 
gasoline consumption ( ρ ) 

( ) ( )( )
( ) ( )( )2

1

1 1
DH DF SH SF

DH DF SH SF

η η φη φ η

ρη ρ η φη φ η

− + −
−

+ − − − −
 

(+) for DH DFη η<  

(-) for DH DFη η>  

Domestic production share in world gasoline 
production (φ ) 

( ) ( )( )
( ) ( )( )2

1

1 1
SH SF DH DF

DH DF SH SF

η η ρη ρ η

ρη ρ η φη φ η

− + −

+ − − − −
 

(+) for SH SFη η<  

(-) for SH SFη η>  

Source: calculated
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Table 2: Effect on market leakage with a tax credit when parameters take on limiting values*          

         Limiting value of a parameter Magnitude of market leakage Interval of magnitude Location of leakage** 

1. 
Home country consumes all 
gasoline ( 1ρ = ) ( )1

DH

DH SH SF

η
η φη φ η− − −

 between 0 and 1 domestic 

2. 
Home country consumes no 
gasoline ( 0ρ = ) ( )1

DF

DF SH SF

η
η φη φ η− − −

 between 0 and 1 international 

3. 
Home country produces all gasoline 
( 1φ = ) 

( )
( )

1
1

DH DF

DH DF SH

ρη ρ η
ρη ρ η η

+ −
+ − −

 between 0 and 1 domestic & international

4. 
Home country produces no gasoline 
( 0φ = ) 

( )
( )

1
1

DH DF

DH DF SF

ρη ρ η
ρη ρ η η

+ −
+ − −

 between 0 and 1 domestic & international

5. 
Fuel demand in Home country is 
perfectly inelastic ( 0DHη = ) 

( )
( ) ( )

1
1 1

DF

DF SH SF

ρ η
ρ η φη φ η

−
− − − −

 between 0 and 1 international 

6. 
Fuel demand in Home country is 
perfectly elastic ( DHη → −∞ ) 1 1 domestic 

7. 
Fuel demand in Foreign country is 
perfectly inelastic ( 0DFη = ) ( )1

DH

DH SH SF

ρη
ρη φη φ η− − −

 between 0 and 1 domestic 

8. 
Fuel demand in Foreign country is 
perfectly elastic ( DFη → −∞ ) 1 1 international 
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Table 2: continued 
          Limiting value of a parameter Magnitude of market leakage Interval for magnitude Location of leakage** 

9. 
Gasoline supply in Home country is 
perfectly inelastic ( 0SHη = ) 

( )
( ) ( )

1
1 1
DH DF

DH DF SF

ρη ρ η
ρη ρ η φ η

+ −
+ − − −

 between 0 and 1 domestic & international

 
 

10. 

Gasoline supply in Home country is 
perfectly elastic ( SHη →∞ ) 0 0  

11. 
Gasoline supply in Foreign country 
is perfectly inelastic ( 0SFη = ) 

( )
( )

1
1

DH DF

DH DF SH

ρη ρ η
ρη ρ η φη

+ −
+ − −

 between 0 and 1 domestic & international

12. 
Gasoline supply in Foreign country 
is perfectly elastic ( SFη →∞ ) 0 0  

Source: calculated 
* Case of Home country and importer; 2., 3., 8. and 10. are only meaningful for an exporter.  
** Based on equation (3). 
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Table 3: Baseline Values of Market and Carbon Leakages under Trade vs Autarky*

Autarky

(1) (2) (3) (4) (5)

Market Leakage
    Tax credit 0.65 16% 0.57
    Mandate 0.61 -2% 0.52
    Tax credit w/ binding mandate 0.64 9% 0.54
Carbon Leakage
  Incl. iLUC (ξ=0.21)
    Tax credit 2.09 -24% 1.69 -0.44 -0.36
    Mandate 1.90 -56% 1.45 -0.40 -0.31
    Tax credit w/ binding mandate 2.07 -36% 1.55 -0.43 -0.33
  Excl. iLUC (ξ=0.52)
    Tax credit 0.25 -321% 0.09 -0.13 -0.05
    Mandate 0.17 -619% -0.01 -0.09 0.00
    Tax credit w/ binding mandate 0.24 -408% 0.03 -0.12 -0.02

Source: calculated
* Magnitudes of leakage multiplied by 100 are interpreted as percentage.
** The values are calculated as ξ minus total market leakage (with international trade or under autarky). For example, the value -0.43
indicates that one gasoline-equivalent gallon of ethanol emits 1.43 times more carbon emissions than one gallon of gasoline.
Baseline parameters: ρ=0.224, φ=0.074, δ=1.440, ηDH=-0.26, ηDF=-0.40, ηSH=0.20, ηSF=0.20
Domestic share figures are calculated as follows: 
   For market leakage: change in domestic fuel consumption is divided by change in world fuel consumption (all multiplied by 100).
   For carbon leakage: the numerator of the ratio is equal to carbon intensity of ethanol (relative to gasoline) times quantity 
     of ethanol plus change in domestic gasoline consumption; the denominator is equal to carbon intensity of ethanol times quantity 
     of ethanol plus change in world gasoline consumption (all multiplied by 100).

International trade True emissions 
savings of ethanol**

Total Domestic  
share

Trade Autarky
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Table 4a: Sensitivity Analysis for Magnitude of Leakage Including iLUC (ξ=0.21): Trade *

Home supply elasticity of gasoline (ηSH) 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

    Market leakage: Tax credit 0.66 0.65 0.63 0.62 0.60 0.59 0.57 0.56 0.55 0.54 0.53

                                  Consumption mandate 0.62 0.61 0.59 0.57 0.56 0.54 0.52 0.51 0.50 0.48 0.47
    Carbon leakage: Tax credit 2.13 2.09 2.01 1.93 1.86 1.80 1.73 1.67 1.61 1.55 1.50

                                   Consumption mandate 1.94 1.90 1.81 1.72 1.65 1.57 1.50 1.43 1.36 1.30 1.24
Foreign supply elasticity of gasoline (ηSF) 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

    Market leakage: Tax credit 0.77 0.65 0.49 0.39 0.33 0.28 0.25 0.22 0.20 0.18 0.16

                                  Consumption mandate 0.75 0.61 0.43 0.32 0.25 0.20 0.16 0.13 0.11 0.09 0.07
    Carbon leakage: Tax credit 2.69 2.09 1.33 0.87 0.56 0.34 0.17 0.05 -0.06 -0.14 -0.21

                                   Consumption mandate 2.56 1.90 1.05 0.54 0.20 -0.05 -0.24 -0.38 -0.50 -0.59 -0.67
Home demand elasticity of fuel (ηDH) -0.10 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80 -2.00

    Market leakage: Tax credit 0.62 0.64 0.67 0.69 0.71 0.73 0.74 0.76 0.77 0.78 0.79

                                  Consumption mandate 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
    Carbon leakage: Tax credit 1.97 2.05 2.17 2.28 2.38 2.47 2.54 2.61 2.67 2.72 2.77

                                   Consumption mandate 1.90 1.90 1.90 1.90 1.89 1.89 1.89 1.89 1.89 1.89 1.89
Foreign demand elasticity of fuel (ηDF) -0.10 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80 -2.00

    Market leakage: Tax credit 0.40 0.52 0.65 0.72 0.77 0.81 0.83 0.85 0.87 0.88 0.89

                                  Consumption mandate 0.34 0.46 0.61 0.69 0.75 0.78 0.81 0.83 0.85 0.87 0.88
    Carbon leakage: Tax credit 0.93 1.46 2.09 2.45 2.68 2.84 2.96 3.05 3.13 3.19 3.24

                                   Consumption mandate 0.60 1.19 1.90 2.30 2.55 2.74 2.87 2.97 3.05 3.12 3.18
Source: calculated
* Magnitudes of leakage multiplied by 100 are interpreted as percentage.
Note: Shaded areas pertain to baseline.

Parameters values unless otherwise specified: ρ = 0.224, φ = 0.074, δ = 1.44, ηSH = 0.2, ηSF = 0.2, ηDH = -0.26, ηDF = -0.4
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Table 4b: Sensitivity Analysis for Magnitude of Leakage Excluding iLUC (ξ=0.52): Trade *  **

Home supply elasticity of gasoline (ηSH) 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

    Carbon leakage: Tax credit 0.26 0.25 0.21 0.18 0.16 0.13 0.10 0.08 0.05 0.03 0.01

                                   Consumption mandate 0.19 0.17 0.13 0.10 0.07 0.04 0.01 -0.02 -0.05 -0.07 -0.09
Foreign supply elasticity of gasoline (ηSF) 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

    Carbon leakage: Tax credit 0.49 0.25 -0.06 -0.25 -0.37 -0.46 -0.53 -0.58 -0.62 -0.65 -0.68

                                   Consumption mandate 0.44 0.17 -0.17 -0.38 -0.52 -0.62 -0.69 -0.75 -0.80 -0.83 -0.87
Home demand elasticity of fuel (ηDH) -0.10 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80 -2.00

    Carbon leakage: Tax credit 0.20 0.23 0.28 0.33 0.37 0.40 0.43 0.46 0.48 0.50 0.52

                                   Consumption mandate 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Foreign demand elasticity of fuel (ηDF) -0.10 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80 -2.00

    Carbon leakage: Tax credit -0.22 -0.01 0.25 0.39 0.49 0.55 0.60 0.64 0.67 0.69 0.71

                                   Consumption mandate -0.35 -0.11 0.17 0.33 0.44 0.51 0.56 0.60 0.64 0.66 0.69
Source: calculated
* Market leakage is the same as in Table 4a.
** Magnitudes of leakage multiplied by 100 are interpreted as percentage.
Note: Shaded areas pertain to baseline.

Parameters values unless otherwise specified: ρ = 0.224, φ = 0.074, δ = 1.44, ηSH = 0.2, ηSF = 0.2, ηDH = -0.26, ηDF = -0.4
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Figure 1: Biofuels Leakage with a Tax Credit and Trade
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Appendix 1: Formula for market leakage due to a tax credit 

The equilibrium in world gasoline market with E gallons of ethanol produced due to a 

blender’s tax credit is given by: 

                                            ( ) ( ) ( ) ( )H G F G H G F GD P D P S P S P E+ = + +                                (A1-1) 

where D denotes demand for fuel, S supply of gasoline, PG  world price of gasoline, and 

subscripts H and F denote the Home and Foreign country, respectively. 

Totally differentiating (A1-1), we get: 

                                                      1 0
' ' ' '

G

H F H F

dP
dE D D S S

= <
+ − −

                                       (A1-2) 

A change in Home country fuel consumption due to introduction of E gallons of ethanol is   

                                   
( )

1 0
' ' ' '

H H G H
DH

G G H F H F

dD dD dP D
dE dP dE P D D S S

η= = >
+ − −

                     (A1-3) 

Similarly for the change in gasoline consumption in the Foreign country: 

                                   ( )
1 0

' ' ' '
F F G F

DF
G G H F H F

dD dD dP D
dE dP dE P D D S S

η= = >
+ − −

                      (A1-4) 

Market leakage due to a blender’s tax credit MLτ is defined as 

                                          
( )' ' ' '

HF FG DH H DF F
M

G H F H F

dC dC D DL
E P D D S S

τ η η+ +
= =

+ − −
                         (A1-5) 

After transformation of the derivatives of the demand and supply curves into the elasticity forms, 

we get the final formula for market leakage with a tax credit 

( )
( ) ( )

1
1 1

DH DF
M

DH DF SH SH

Lτ ρη ρ η
ρη ρ η φη φ η

+ −
=

+ − − − −
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where ( )H H FD D Dρ = + and ( )H H FS S Sφ = + . The symbol η denotes elasticity and the 

notation of the subscripts is the same as in (A1-1), so for example DHη denoted demand elasticity 

in the Home country. 

Proof of Proposition 1  

From (A1-2) for the Home country types A and B, we have 

    

* * * * * *
* *

1

1

A
G G

A A A A A A
A AH F H F DH H DF F SH H SF F
DH DF SH SF

G G G G
B

G G
B B B B B B

B BH F H F DH H DF F SH H SF F
DH DF SH SF

G G G G

dP P
D D S SdE D D S S
P P P P

dP P
D D S SdE D D S S
P P P P

η η η ηη η η η

η η η ηη η η η

⎛ ⎞ = =⎜ ⎟ + − −⎝ ⎠ + − −

⎛ ⎞ = =⎜ ⎟ + − −⎝ ⎠ + − −

  (A1-6) 

where the star (*) in the case of country B signifies that the elasticities and quantities might be 

different from those for country A. 

The condition ( ) ( )A B
G GdP dE dP dE< is equivalent to 

                                             
* * * *

1
B B B B
DH H DF F SH H SF F
A A A A
DH H DF F SH H SF F

D D S S
D D S S

η η η η
η η η η

+ − −
− < −

+ − −
                                (A1-7) 

Market leakage seen by the Home country type A is less than by type B if 

* *

* * * *

A B
M M

A A B B
DH H DF F DH H DF F

A A A A B B B B
DH H DF F SH H SF F DH H DF F SH H SF F

L L

D D D D
D D S S D D S S

τ τ

η η η η
η η η η η η η η

<

+ +
<

+ − − + − −

 

This is equivalent to 

                                  
* * * * * *B B B B B B

DH H DF F SH H SF F DH H DF F
A A A A A A
DH H DF F SH H SF F DH H DF F

D D S S D D
D D S S D D

η η η η η η
η η η η η η

+ − − +
<

+ − − +
                      (A1-8) 

Finally, summing (A1-7) and (A1-8) and rearranging, we get the required condition 

* *B B A A
DH H DF F DH H DF FD D D Dη η η η+ < +  
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Appendix 2: Derivation of elasticities of excess supply and demand curves 

 

At a price p the Foreign country will export gasoline in the amount of: 

                                              ( ) ( ) ( )F FX p S p D p= −                                               (A2-1) 

Differentiating both sides of (A2-1) with respect to the price and manipulating, we obtain: 

                  

( ) ( ) ( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( )

F F

F F F F

F F

F F
ES SF DF

F F
ES SF DF

F F F F

dX p dS p dD p
dp dp dp

dX p X p dS p S p dD p D pp p p
dp X p p dp S p p dp D p p

S D
X X

S D
S D S D

η η η

η η η

= −

= −

= −

= −
− −

           (A2-2) 

where ESη denotes the elasticity of excess supply and the remaining notation is the same as in 

Appendix 1. 

Multiplying both the numerator and the denominator of (A2-2) by 1/Cw, where Cw is 

world gasoline consumption, we obtain: 

F F

w w
ES SF DF

F F F F

w w w w

S D
C C

S D S D
C C C C

η η η= −
− −

 

which can be re-written using the notation from Appendix 1 as: 

                                                      1 1
ES SF DF

φ ρη η η
ρ φ ρ φ
− −

= −
− −

                                              (A2-3) 

Similarly, for the excess demand curve we obtain: 

                                                      ED DH SH
ρ φη η η

ρ φ ρ φ
= −

− −
                                             (A2-4) 

Therefore, a small importer faces a perfectly elastic excess supply curve when SFη →∞ ; a 

small exporter faces a perfectly elastic excess demand curve when DHη → −∞ ; and irrespective 

of the trade position, a small country faces a perfectly elastic trade curve whenever ρ φ→  (the 

case analyzed in the paper).                                                    
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Appendix 3: Derivation of market leakage formula with a consumption mandate 

World fuel market equilibrium with a binding consumption mandate and a blender’s tax 

credit in the Home country is given by: 

                                     

( )
( )
( )
( )

( )

( ) ( )

HF H F

FG F G

HG HG G

FG FG G

E E

HF
F E c G

HF HF

HF FG HG FG

C D P

C D P

Q S P

Q S P

E S P
E C EP P t t P t

C C
C C Q Q E

=

=

=

=

=

−
= + − + +

+ = + +

                                    (A3-1) 

where the first subscript denotes country (H = Home, F = Foreign), the second denotes either 

fuel F or gasoline G. The letter E represents the amount of ethanol that is mandated. The 

blender’s tax credit is denoted by tc and a fuel tax by t. The remaining notation is the same as in 

Appendix 1. 

 Totally differentiating the system of equations in (A3-1), we get: 

( )
2

'
'
'
'

'

HF H F

FG F G

HG HG G

FG FG G

E E

E G cE G c HF
F E c G HF

HF HF HF HF HF

HF FG HG FG

dC D dP
dC D dP
dQ S dP
dQ S dP

dE S dP
E P P tP P t E E C EdP dE dP dt dt dP dC

C C C C C
dC dC dQ dQ dE

=
=
=
=

=

− −− − −
= + + − + −

+ = + +

  

(A3-2) 

Solving the linearized system (A3-2) for HFdC dE  and FGdC dE  and converting the 

derivatives into the elasticity forms, we obtain: 
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( )
( )

( )
( )

1

1 1

E G c DH E G DH HF
DH

F E F HF F SH HG SF FG DF FGHF

E G c G DH HF
DH

HF F HF F SH HG SF FG DF FG

P P t P E P C
P P C P Q Q CdC

P P tdE E E P C
C P C P Q Q C

η ηη
η η η η

ηη
η η η

− − ⎛ ⎞
+ − −⎜ ⎟ + −⎝ ⎠=
− − ⎛ ⎞

+ − −⎜ ⎟ + −⎝ ⎠

  (A3-3) 

( ) ( )

( )

1

1 1 1

E G c E G cDH E
DH DH

FG F E F HF F

E G c SH HG SF FG DH G HF
DH

HF F DF FG HF DF F FG

P P t P P tP E
dC P P C P
dE P P tE Q Q E P C

C P C C P C

ηη η
η

η η ηη
η η

− − − −
+ − −

=
⎛ ⎞− − ⎛ ⎞ ⎛ ⎞+
+ − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

(A3-4) 

Let us first analyze the situation with a binding consumption mandate alone, i.e., tc = 0. 

Evaluate the derivatives (A3-3) and (A3-4) at E = 0 and use the fact that the ethanol supply curve 

is perfectly elastic around that point.27 

After some simplifications, we get: 

                 
( )0 0 0 0

0

0 0 0 0 0

1E
DH SH HG SF FG DF FG DH HG

GHF

E SH HG SF FG DH HG DF FG

P Q Q C C
PdC

dE Q Q C C

η η η η η

η η η η=

⎛ ⎞
− + − −⎜ ⎟

⎝ ⎠=
+ − −

          (A3-5) 

                            
0

0

0 0 0 0 0

1 1E
DH DF FG

GFG

E SH HG SF FG DH HG DF FG

P C
PdC

dE Q Q C C

η η

η η η η=

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

+ − −
                        (A3-6) 

where the additional subscript 0 is meant to denote the initial equilibrium with no ethanol (hence 

also the changed notation for consumption of gasoline in the Home country, 0HGC ) and 

EP denotes the vertical intercept of the inverse ethanol supply curve. 

For a mandate to bind, it must be the case that 0 1E GP P δ= > . Multiplying both the 

numerators and the denominators of (A3-5) and (A3-6) by 01 C , where C0 denotes world 

consumption of gasoline in the absence of ethanol, we arrive at: 

( ) ( ) ( )( )
( ) ( )0

1 1 1
1 1

DH SH SF DF DHHF

E SH SF DH DF

dC
dE

δ η φη φ η ρ η ρη
φη φ η ρη ρ η=

− + − − − −
=

+ − − − −
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( ) ( )( )
( ) ( )0

1 1 1
1 1

DF DHFG

E SH SF DH DF

dC
dE

ρ η η δ
φη φ η ρη ρ η=

− − −
=

+ − − − −
 

Since we have assumed no ethanol in the initial equilibrium, with a consumption mandate of E 

gallons of ethanol we must have dE E= . Therefore, the change in fuel consumption after the 

mandate has been introduces is: 

( ) ( ) ( )( )
( ) ( )

1 1 1
1 1

DH SH SF DF DH
HF

SH SF DH DF

dC E
δ η φη φ η ρ η ρη

φη φ η ρη ρ η
− + − − − −

=
+ − − − −

 

( ) ( )( )
( ) ( )

1 1 1
0

1 1
DF DH

FG
SH SF DH DF

dC E
ρ η η δ

φη φ η ρη ρ η
− − −

= >
+ − − − −

 

Note that while the change in domestic fuel consumption is ambiguous, gasoline consumption in 

the Foreign country always increases when a consumption biofuel mandate is introduced in the 

Home country. 

Finally, market leakage with a consumption mandate MLσ  is given by: 

( ) ( )( ) ( )
( ) ( )

1 1 1
1 1

DH SH SF DH DFHF FG
M

SH SF DH DF

dC dCL
E

σ δ η φη φ η ρη ρ η
φη φ η ρη ρ η

− + − − − −+
= =

+ − − − −
 

It is easy to show that 1MLσ < , but it is not bounded from below, i.e., can also be negative 

meaning that one than one gallon of gasoline can be replaced with one gallon of ethanol. This 

happens whenever ( ) ( )
( )
1

1
1

DH DF
DH

SH SF

ρη ρ η
δ η

φη φ η
+ −

− <
+ −

. 
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Appendix 4: Change in the World Gasoline Price when a Tax Credit is added to a Binding 
Consumption Mandate 

 

Solving (A3-2) for the change in the world gasoline price we obtain: 

                   

( )

( ) ( )

( ) ( )
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' ' ' 1 ' '
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HF HF

H
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C C S C

dP dE
E P P t C ES S D D D

C C

E D
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E P P t C ES S D D D
C C

⎛ ⎞− −− −
+ − +⎜ ⎟

⎝ ⎠=
⎛ ⎞− − −

+ − + −⎜ ⎟
⎝ ⎠

−
⎛ ⎞− − −

+ − + −⎜ ⎟
⎝ ⎠

              (A4-1) 

Evaluating (A4-1) at E = 0 and tc = 0, and noting that after introduction of ethanol dE E= , we 

get: 

0, 0

' 1
0

' ' ' 'c

E G
H

HF
G E t

HG FG F H

P P D
C

dP E
S S D D= =

⎛ ⎞−
−⎜ ⎟

⎝ ⎠= <
+ − −  

which means that the world gasoline price decreases as a tax credit is added to a binding 

consumption mandate. 
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Appendix 5: Data sources 

Parameter/Variable Symbol Value Source/explanation 

U.S. oil consumption CHO 17,491   1,000 bpd EIA 

U.S. oil production QHO 5,783   1,000  bpd EIA 

World oil consumption CWO 78,006   1,000  bpd EIA 

U.S. ethanol production QE 698   1,000  bpd FAPRI 

Gasoline production out of one barrel 
of crude oil θ  0.46 θ =19.5/42 

Miles per gallon of ethanol relative to 
gasoline * λ  0.70 de Gorter and Just (2008b) 

U.S. gasoline consumption share ρ  0.224 ρ = CHO/CWO 

U.S. gasoline production share φ  0.074 φ = QHO/CWO  

Intercept of the inverse U.S. ethanol 
supply curve EP  $1.77/gallon calculated following de 

Gorter and Just (2009d)  

U.S. gasoline price  PG $1.76/gallon NEO 

Ratio of the intercept of the ethanol 
supply curve and gasoline market 
price under no ethanol production 

δ  1.44 ( )0.7E GP Pδ =  

U.S. ethanol blender’s tax credit tc $0.52/gallon $0.45/gallon federal + 
$0.07/gallon average state 

U.S. fuel demand elasticity  DHη  -0.26 Hamilton (2009) 

ROW fuel demand elasticity DFη  -0.40 de Gorter and Just (2009a) 

U.S. gasoline supply elasticity SHη  0.20 de Gorter and Just (2009a) 

ROW gasoline supply elasticity  SFη  0.20 assumed equal to SHη  

U.S. ethanol supply elasticity Eη  1.00 calculated following de 
Gorter and Just (2009a)  

Note: all data refer to 2009 
bpd – barrels per day 
* Although a gallon of ethanol has only 0.66 energy content of a gallon of gasoline, miles 
traveled is 0.70 (see de Gorter and Just 2008b) 
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Endnotes 
                                                 
1 The literature uses the term carbon leakage to refer to an unintended increase in carbon dioxide (CO2) and other 
green house gas emissions due to an environmental policy which is aimed at their reduction. We adopt this term to 
be consistent with the terminology, but in our paper carbon leakage is a proxy for a more general type of 
leakage−greenhouse gas emissions leakage. 
 
2 See Wooders et al. (2009) for a survey.  
 
3 There are endless studies on iLUC. For just a few surveys, see Fonseca et al. (2010); Al-Riffai, et al. (2010); 
European Commission (2010); Fabiosa et al. (2009); Plevin et al. (2010); Farrel et al. (2006); Kline et al. (2009); 
Lapola et al. (2010) and Edwards et al. (2010). 
 
4 See for example, Alexeeva-Talebi et al. (2008); Fischer and Fox (2009); Bordoff (2009); Brewer (2008); Green 
and Epps (2008); Pauwelyn (2007) and Winchester et al. (2010). 
  
5 See Vöhringer et al. (2006); Murray (2008); Muller (2009); Raymond (2010); Schneider (2007); and Schneider 
and Cames (2009). The Clean Development Mechanism is also concerned with permanence. The concepts of 
additionality and leakage are included in the measures developed in this paper, while permanence is addressed in the 
conclusion of this paper when discussing the implications of the emerging literature on the Green Paradox for the 
leakage measures developed here. 
 
6 The term “indirect output use change” (iOUC) was coined by de Gorter and Just (2009b) to emphasize how 
arbitrary the emphasis on iLUC was while not analyzing iOUC. For further developments of this concept, see de 
Gorter (2010a,b,c,d) and Drabik and de Gorter (2010).  
 
7 However, with a biofuel mandate it can be the case that the direct emissions reduction can be strengthened, leading 
to higher carbon reductions than originally intended. 
 
8 In this paper, we use a partial equilibrium framework to analyze carbon leakage. For a discussion of differences 
between partial equilibrium and general equilibrium models for analysis of carbon leakage see Karp (2010). 
 
9 Life-cycle accounting that underpins the 0,1 sustainability thresholds, like the U.S. requirement that corn-ethanol 
reduce GHG emissions by 20 percent relative to gasoline, assumes one gallon of ethanol (gasoline equivalent) 
replaces one gallon of gasoline.  
 
10 Because a mandate taxes the gasoline market, it is possible that market leakage in the fuel market is negative, 
possibly replacing more than a gallon of gasoline.  
 
11 The two effects act in the same direction if market leakage is negative. 
 
12 In deriving this formula, we make four assumptions: (i) no “technical leakage”, i.e., the emissions intensities of 
dirty energy source are the same in both countries; (ii) dirty and clean energy sources are perfect substitutes in 
consumption (in energy equivalents), most notably so for gasoline and ethanol; (iii). all clean energy (ethanol) saves 
the same amount of carbon relative to dirty energy, e.g., corn-ethanol is assumed to emit the same amount of carbon 
as that produced from sugar cane; (iv) no prior consumption of ethanol in either country. 

13 Indirect land use changes denote additional land that is converted to produce biofuels. In the process, carbon 
emissions incur not only by biofuels production and their combustion, but also by the additional land conversion. 
 
14 The weight of the carbon dioxide produced by burning a gallon of gasoline is 19.56 pounds, while that produced 
by burning a gallon of ethanol is 12.57 pounds. The latter figure becomes 17.95 if adjusted for mileage, yielding the 
emissions savings effect ξ = 0.08. 
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15 This is the approach taken by the Nobel Laureate IPCC who gives biofuels a value of zero in their accounting 
balance tables. 
 
16 A small importer faces no market leakage provided that production technology in the Foreign country exhibits 
constant returns to scale that render the Foreign gasoline supply curve perfectly elastic. On the other hand, a small 
exporter sees 100 percent market leakage, if the fuel demand curve in the rest of the world is perfectly elastic. 
  
17 Fuel price does also respond ambiguously to changes in the quantity of the mandated ethanol, with the result 
heavily depending on market elasticities and the share of ethanol in total fuel consumption: 

( )1 11 1 1F G DF GDF
E G E G

F SE SG G SG G F F SG F

dP P PEEP P P P
C Q Q C P PdE

ηη
η η η η

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎡ ⎤
= + − − − + − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎝ ⎠⎣ ⎦

 

where SGη , SEη , and SEη are elasticities of the gasoline and ethanol supply curves, and fuel demand curve, 
respectively; CF denotes fuel consumption and QG gasoline production. Explanation of other variables is the same as 
in section 4. 
 
18 This parallels the U.S. case, as the United States is the world’s largest ethanol producer; is an oil importer and has 
a consumption mandate.  
 
19 For an original account of what happens when adding a tax credit to a blend mandate, see de Gorter (2007; 
2009a). 
 
20 If the tax credit is less than the mandate premium (which almost has to be the case in reality when the mandate 
binds), then the market leakage in the large country case can still be positive but may become negative if the 
mandate alone generates negative leakage; otherwise leakage is more positive than mandate alone. 
 
21 In this paper, we do not distinguish gasoline consumption between transportation and non-transportation use to 
estimate leakage. The analysis in Drabik and de Gorter (2010) shows that such a division has little effect on leakage 
estimates. 
 
22 Alternatively, the effect of including iLUC is very similar to assuming a direct life-cycle accounting measure of 
20 percent as all studies on biofuels have done to date because the revised EPA estimates in 2010 are very recent 
and have not been incorporated in studies yet. 
 
23 One can view the results thus: when including iLUC, the results can also double for a what if you assumed direct 
life-cycle accounting emissions of 20 percent less than gasoline as all studies to date (and before the recent EPA 
ruling for RFS2), while the other results that include iLUC and the new EPA estimate of direct emissions are a 
unique situation itself. 
 
24 While under autarky market leakage is all domestic by definition, the domestic component of market leakage is 
often very small as a share of total leakage with international trade. 
 
25 Two columns are highlighted in Tables 4a, 4b and 5 because the baseline value of the Home fuel demand 
elasticity (-0.26) lies between the values presented in the tables, namely -0.20 and -0.40. 
 
26 For arguments not to include iLUC, see de Gorter and Just (2009b). However, there is widespread disagreement 
with this view so this paper presents both possibilities. 
 
27 We assume that the ethanol supply curve is differentiable in the neighborhood of E = 0 and that its slope is 

globally strictly positive. Then, from the definition of elasticity, it follows that
0 0

lim lim E E
E

E E E

dS P
dP E

η
+ +→ →

= = ∞ , where 

EP denotes the intercept of the inverse ethanol supply curve with the vertical axis. 
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