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Asymmetric volatility refers to the stylized fact that stock volatility is negatively correlated to stock 
returns. Traditionally, this phenomenon has been explained by the financial leverage effect. This 
explanation has recently been challenged in favor of a risk premium based explanation. We develop a 
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market, or operating leverage, explains volatility asymmetry on a firm-by-firm basis. Our results reveal 
that, at the firm level, financial leverage explains much of the volatility asymmetry. This result is robust 
to different unlevering methodologies, samples, and measurement intervals. However, we find that 
financial leverage does not explain index-level volatility asymmetry, which is consistent with theoretical 
results in Aydemir, Gallmeyer and Hollifield (2006).  
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I. Introduction 

Asymmetric volatility refers to the stylized fact that stock volatility is negatively correlated to 

stock returns. Traditionally, this phenomenon has been explained by the financial leverage effect (Black 

(1976) and Christie (1982a)).  The financial leverage hypothesis posits that as the price of a firm’s stock 

decreases, that firm’s financial leverage increases, leading to a higher volatility of equity.  Indeed, this 

leverage effect explanation is so dominant that it has become synonymous with asymmetric volatility.1    

However, Pindyck (1984) and French, Schwert and Stambaugh (1987) have challenged the 

financial leverage hypothesis with the risk premium hypothesis and, subsequently, this challenge has been 

supported by many major studies.2 The risk premium hypothesis, also known as the volatility feedback 

effect, proposes that an increase in unexpected volatility will increase expected future volatility. The 

resulting increase in expected returns will cause prices to drop and this will lead to volatility asymmetry.  

As a result, it appears that financial leverage does not play much of a role in explaining volatility 

asymmetry. 

Using a new, intuitive, approach that utilizes the concept of unlevering, we examine whether the 

financial leverage explanation should be rejected in favor of the risk premium hypothesis.  Interestingly, 

we find that the leverage effect plays an important role in explaining volatility asymmetry.  In fact, at the 

firm level, financial leverage explains much of volatility asymmetry. This result is robust to different 

unlevering methodologies, different samples, and different measurement intervals, applies to firms of 

different sizes and in different industries, and is the same whether we examine the panel data set or just 

the cross section of firms.  We find that financial leverage is more important than size, beta, book-to-

market, or operating leverage in explaining volatility asymmetry at the firm level. 

The reason that we find a significant role for financial leverage is that we conduct a firm-level 

analysis rather than the portfolio- or index-level analyses which have been used in most recent studies.3  

Our unlevering approach makes it possible to examine volatility asymmetry on a firm-by-firm basis using 

a broad cross section of firms.  Equity volatility is first transformed by stripping out the effect of financial 

leverage. The reduction in volatility asymmetry subsequent to this operation indicates the strength of the 

effect of financial leverage.  This approach allows us to examine the reasons for volatility asymmetry 

among a broad cross section of firms.   

                                                 
1 For instance, the parameter that captures the covariance of expected returns and volatility in GARCH is called 
“leverage effect.” 
2 Glosten, Jagannathan and Runkle (1993), Campbell and Hentschel (1992), Bekaert and Wu (2000), Tauchen 
(2005) and Dennis, Mayhew and Stivers (2006). 
3 The exception is Dennis, Mayhew and Stivers (2006). Dennis, Mayhew and Stivers (2006) examine implied 
volatilities on indices and stocks and conclude that the risk premium effect is important. However, they do not 
examine financial leverage.  
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The next task is to use the unlevering approach to find out whether financial leverage is as 

important at the index level as it is at the firm level.  The unlevering approach allows us to remove 

financial leverage from each component firm before different firms’ returns are aggregated into an index.  

In contrast to the result found at the firm level, at the index level, a large portion of volatility asymmetry 

persists even after unlevering.  In other words, even unlevered index-level returns have higher volatility 

when the index goes down than when it goes up.  Hence, financial leverage alone explains only a small 

portion of the index-level volatility.  To sum up, we find that the leverage effect is extremely important in 

explaining volatility asymmetry at the firm level, but it is not important in explaining index-level 

asymmetry. 

The paper makes three main contributions to the volatility asymmetry literature.  First, we 

develop the unlevering approach that helps us to examine the leverage effect on a firm-by-firm basis. This 

approach opens up opportunities to empirically document the effect of financial leverage on a broad cross 

section of firms over time.  We find that the financial leverage hypothesis is by far the most important 

explanation for volatility asymmetry at the firm level.  Second, as Aydemir, Gallmeyer and Hollifield 

(2006) point out, “any study of the effect of financial leverage on volatility should use market debt 

valuations, which are difficult to obtain in practice.”  As a result of this difficulty, no previous work has 

allowed for market price of debt in computing financial leverage.  When we strip out financial leverage, 

we account for market price of debt either through a Merton-KMV model or a procedure that matches the 

bond prices with bonds with similar credit ratings.  Third, we find that volatility asymmetry at the market 

level and at the firm level have different causes.  While financial leverage accounts for most of the firm-

level asymmetry, it does not explain index-level asymmetry.  

Our empirical finding is consistent with the theoretical results developed in Aydemir, Gallmeyer 

and Hollifield (2006). While Campbell and Hentschel (1992), Wu (2001), and Tauchen (2005) make 

important theoretical contributions concerning the modeling of asymmetric volatility at a market level, the 

Aydemir, Gallmeyer and Hollifield (2006) model is particularly relevant in our case because it includes 

firm-level as well as market-level asymmetries. It incorporates both the leverage effect and a time-varying 

risk premium in a dynamic general equilibrium economy with debt and equity claims.  Under a 

representative agent model with habit formation preference, financial leverage is linked endogenously to 

interest rates, prices of risk and volatility.   At the market level, financial leverage is driven by the 

aggregate risk in the economy.  As a result, risk premium rather than financial leverage explains the 

market-level volatility asymmetry.  At the firm level, however, the equity portion of financial leverage is 

driven by idiosyncratic risk shocks, in addition to aggregate risk shocks. Hence, financial leverage could 

have a substantial impact on firm-level volatility asymmetry, although it contributes very little to market-

level stock return volatility.   
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Our paper is related to Bekaert and Wu (2000), a major study of index- and firm-level volatility 

in the Japanese stock market. Using the market portfolio and portfolios with different leverage 

constructed from Japanese Nikkei stocks, Bekaert and Wu reject the leverage effect in favor of the 

volatility feedback hypothesis.  Their result is not consistent with our finding for the following reasons. 

First, our samples are different.  Bekaert and Wu use 172 Japanese stocks from 1986 to 1995, while we 

examine thousands of US stocks from 1986 to 2003.4 Second, Bekaert and Wu conduct their analysis by 

aggregating stocks into portfolios, while we examine firm-level asymmetry directly, based upon firm-

level data. As we will show in this paper, leverage effect is extremely important on the firm level but 

diminishes after stocks are aggregated into portfolios.   

Our finding is also related to the empirical phenomenon of covariance asymmetry.  Erb, Harvey, 

and Viskanta (1994), Bekaert and Wu (2000), Ang and Chen (2005), and Ang, Chen, and Xing (2006) 

find that covariance for stocks is higher in a down market.  We find that unlevered stock returns also have 

higher covariance when the market index goes down. While firm-level unlevered volatility stays the same 

in a down market, index-level unlevered volatility  

is higher due to higher covariance between stocks.   

Other papers propose alternative explanations of asymmetry volatility.  Cheung and Ng (1992) 

show that volatility asymmetry is much stronger for small stocks. Bekaert and Wu (2000) propose that the 

risk premium effect behind volatility asymmetry will be more pronounced for firms with higher 

covariance with the market. Kogan (2004) develops a production economy model which implies that firm 

investment activity and firm characteristics, particularly the market-to-book ratio, or q, might lead to 

volatility asymmetry.  Christie (1984b) proposes that operating leverage affects volatility asymmetry. 

Finally, Duffee (1995) proposes that volatility asymmetry at the firm-level could be due to a positive 

contemporaneous relation between returns and volatility.   We empirically examine these explanations 

and conclude that firm-level volatility asymmetry is due to financial leverage rather than size, beta, book-

to-market ratio, operating leverage, or a positive contemporaneous relationship between returns and 

volatility.  

The remainder of the paper proceeds as follows. Section II presents the unlevering methodology. 

Section III presents data and summary statistics. Sections IV and V present results using pooled firm-

month observations and a cross section of firms. Section VI shows the market-level versus firm-level 

asymmetry. Finally, section VII offers conclusions. 

 

                                                 
4 Wu (2001) also finds leverage play a role in the US market index, which is different from Bekaert and Wu’s 
(2000) finding on Japanese stocks. 
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II. Methodology For Unlevering Volatility 

In this section, we propose a methodology that transforms equity volatility to extract from it the 

effect of financial leverage. This is done by using an equation that expresses the volatility of equity in 

terms of a volatility that is not affected by financial leverage. 

A. Effect of financial leverage 

We account for the effect of financial leverage through three different methodologies.  First, we 

compare volatility asymmetries for firms with the highest value of book debt, lowest value of book debt 

and the median value of book debt.  Second, we adopt the approach developed by Merton (1974) and 

implemented by KMV (Crosbie and Bohn (2001)). Vassalou and Xing (2004), Campbell, Hilscher and 

Szilagyi (2007) and Bharath and Shumway (2004) have also recently applied the Merton-KMV model in 

the context of examining firm-level default risk.  Third, we unlever using the Schwert (1989) formula that 

has been used in this literature.  To improve on this method, we use the bond index prices for different 

credit rating classes instead of face value to approximate market value of debt.  We will describe the 

methodologies in this section.  

First, we examine volatility asymmetry based on sub-samples of firms with different levels of 

book leverage.  In particular, we report the volatility asymmetry of the firm-months with lowest 1% 

leverage, median (49-51%) leverage, and highest 1% leverage.  We will report the change in raw 

volatilities together with the returns for firms with different leverage levels in figure 3.  To preview the 

results, we find that all three methodologies provide similar conclusions. 

Second, we unlever firm volatilities based on Merton-KMV models.  In the Merton-KMV model, 

the equity of the firm is a call option for the underlying value of the firm with a strike price equal to the 

face value of the firm’s debt.  The model recognizes that neither the underlying value of the firm nor its 

volatility are directly observable but they can be inferred from the value of equity, the volatility of equity 

and several other observable variables by solving two nonlinear simultaneous equations (see Bharath and 

Shumway (2004) for details of the procedure and computer code). In this paper, we are interested in 

inferring the volatility of the value of the firm.  

The Merton-KMV model makes two important assumptions. The first is that the total value of a 

firm will follow geometric Brownian motion, 

dV = µV dt + σV V dW,   (1) 

where V is the total value of the firm, µ is the expected continuously compounded return on V, σV is the 

volatility of firm value and dW is a standard Weiner process. The second important assumption of the 

Merton-KMV model is that the firm has issued just one discount bond maturing in T periods. Under these 

assumptions, the equity of the firm is a call option for the underlying value of the firm, with a strike price 

equal to the face value of the firm’s debt and a time-to-maturity of T. Moreover, the value of equity as a 
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function of the total value of the firm can be described by the Black-Scholes-Merton Formula. By put-call 

parity, the value of the firm’s debt is equal to the value of a risk-free discount bond minus the value of a 

put option written on the firm, again with a strike price equal to the face value of debt and a time-to-

maturity of T. 

The Merton model stipulates that the equity value of a firm satisfies 

S = V N(d1) − e−rT FN(d2),    (2) 

where S is the market value of the firm’s equity, F is the face value of the firm’s debt, r is the 

instantaneous risk-free rate, N(·) is the cumulative standard normal distribution function, d1 is 

given by 

( ) ( )2

1

ln 0.5
,V

V

V F r T
d

T

σ

σ

+ +
=    (3) 

and d2 = d1−σV√T. Under Merton’s assumptions, the value of equity is a function of the value of the firm 

and time, so it follows directly from Ito’s lemma that 
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.    (4) 

In the Black-Scholes-Merton model, it can be shown that ∂S/∂V = N(d1), so that under the Merton 

model’s assumptions, the volatility of the firm and its equity are related by ( ) .1 VS dN
S
V σσ ⎟
⎠
⎞

⎜
⎝
⎛=  In other 

words,  

( )1

1 .V S
S
V N d

σ σ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (5) 

The most significant step in implementing the model is to solve equations (2) and (5) numerically 

for values of V and σV. Simultaneously solving equations (2) and (5) is a reasonably straightforward thing 

to do. However, Crosbie and Bohn (2001) explain that “in practice the market leverage moves around far 

too much for [equation (5)] to provide reasonable results.” To resolve this problem, we adopt an iterative 

procedure used in Bharath and Shumway (2004). First, we use an initial value of σV = σS [S/(S + F)]. This 

value of σV is used in conjunction with equation (3) to infer the market value of each firm’s assets every 

day for the previous year. We then calculate the implied log return on assets each day and use that returns 

series to generate new estimates of σV and µ. We iterate on σV in this manner until it converges (so that the 

absolute difference in current and previous value of σV is less than 10−3). Following Bharath and 

Shumway (2004), we assume a forecast horizon of one year (T=1) and take the book value of debt as the 

face value of the firm’s debt.  
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Third, we also adopt a simple unlevering approach, recognizing that the Merton model has its 

limitations. To compare our results with previous literature, we unlever using the same formula that is 

used in this literature (see for example Schwert (1989)). The volatility of the return to the assets of the 

firm σV is 

.V S
S
V

σ σ⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (6) 

where ⎟
⎠
⎞

⎜
⎝
⎛
V
S

represents the fraction of the market value of the firm due to stocks, and σS is the volatility of 

the return to the stock. We call this method simple unlevering. While previous papers use a firm’s book 

debt as a proxy of its market debt, we make an improvement by using bond index prices for different 

credit risk categories instead of face value to approximate market value of debt. 

Comparison of (5) and (6) shows that the Merton-KMV method is different from the simple 

unlevering method by a factor of N(d1), which can be interpreted as an adjusted default probability.  This 

is because the Merton-KMV method captures the fact that the debt may default in the future. 

In this paper, we examine two versions of volatility. We first report the raw stock volatility σS 

without any adjustment.  We then examine the stock volatility after unlevering for financial leverage σV.  

This is done by using either the Merton-KMV method in equation (5) or the simple unlevering in 

equation (6).  

III. Data and Volatility Asymmetry Metrics  

A. Data 

 We merge all firms in the intersection of COMPUSTAT industrial and research files and the 

CRSP database.  The data period is from January 1986 to December 2003.  Because leverage takes on a 

different meaning in financial firms, we remove stocks of financial firms from the sample.   

 For book value of debt, we use quarterly data from COMPUSTAT by adding total liabilities 

(#54) and preferred stock carrying value (#55).  The market price of debt is implied by the option pricing 

formula in the Merton-KMV model. As a proxy for equity value, we multiply monthly stock prices from 

CRSP by common shares outstanding. Then, we compute a monthly asset-to-equity ratio. To facilitate 

estimation of a robust model, we drop firms with prices below $3 per share. We also eliminate firms with 

negative book value (defined as common equity), and any firms missing price or accounting data that is 

needed for the estimation regression.  After these screens, the number of firms range from 1456 in 1987 to 

2448 firms in 2003, for a total of 767268 firm-month observations.   

When we unlever using the simple unlevering method instead of the Merton-KMV method, we 

use proxies for the market value of debt.  To obtain such proxies, we require that the firms have credit 
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ratings data from COMPUSTAT.  We construct market value of debt based on book value of debt along 

with Lehman Brothers Corporate Bond Index of different credit ratings. Returns data for the Lehman 

Brothers Corporate Bond Index for these rating classes has to be available for those years. We assume 

that the initial book value of debt is evaluated at market price and that, subsequently, the price of the debt 

follows the movement of bonds with the same credit ratings. The requirement for the availability of credit 

rating data reduces the sample substantially when we use simple unlevering method.  But, as we will see, 

the results are very similar when we unlever using the Merton-KMV method or the simple unlevering 

method. 

First, we calculate the variance of stock returns for every month as the variance of daily returns in 

the month:  

                          2 2
, ,

1

1 ( ) ,
( 1)

tN

s t i t t
it

r r
N

σ
=

= −
− ∑    (7) 

where there are Nt daily returns ri,t in month t. Using non-overlapping samples of daily data to estimate 

the monthly variance creates an estimation error that is uncorrelated through time. We take the square 

root to obtain the standard deviation (i.e. volatility) of the stock returns.   

We investigate the robustness of our results in relation to a firm’s size, beta, book-to-market, and 

operating leverage.  As mentioned before, a firm’s size (i.e. market capitalization) is calculated by 

multiplying monthly stock prices by common shares outstanding.  Beta is based upon a rolling regression 

of stock returns on the S&P 500 index on a firm-by-firm basis.  Book-to-market ratio is computed by 

dividing a firm’s book equity by its market capitalization. The degree of operating leverage (OL) is the 

percentage change in EBIT (earnings before interest and taxes) for a given percentage change in sales 

revenue i.e. ( ) %1 OL
%

EBIT
sales

Δ
+ =

Δ
.  Following Mandelker and Rhee (1984), we compute operating 

leverage by running the following regression for each firm j: 

ln lnjt j j jt jtEBIT a b Sales ε= + +   

The coefficient jb is the operating leverage for firm j.5  Table 1 reports the summary statistics for our 

main variables of interest: volatility, monthly returns, financial leverage, market capitalization, beta, 

book-to-market, and operating leverage.   

 

 

 

                                                 
5 We also conduct a robustness check, in which we estimate industry-wide operating leverage and use that as a 
firm’s operating leverage. The results remain the same. 
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B. Volatility Asymmetry Metrics 

To examine volatility asymmetry, we adopt a regression approach that allows both clean 

graphical evidence as well as statistical inference.  The general form of the regression model is the 

following: 

     ,
, 1

1, 2

ln .
d

k t
i i t t

ik t

D
σ

β ε
σ −

=−

= +∑   (8) 

where k = S or V.  These two specifications pertain to log changes in monthly standard deviations of stock 

returns before any transformation σS and log changes in monthly standard deviations with financial 

leverage removed σV. Di,t-1  is a dummy variable that equals 1 if returns at t-1 fall within the range, and d 

is the number of sets of returns that are created by partitioning the space of returns.  We partition the 

stock returns into ten intervals (i.e. d = 10), each of which is represented by a dummy variable in the 

following way: D1 for returns less than –0.20; D2 for returns between –0.20 and –0.15; D3 for returns 

between –0.15 and –0.10; D4 for returns between –0.10 and –0.05; D5 for returns between –0.05 and 0; D6 

for returns between 0 and 0.05; D7 for returns between 0.05 and 0.10; D8 for returns between 0.10 and 

0.15; D9 for returns between 0.15 and 0.20; and D10 for returns larger than 0.20.6 

The independent variables are dummy variables, representing returns of different signs and 

magnitude. This gives us the mean response of the change in volatility to returns of differing signs and 

magnitudes. In this model, an asymmetric relation would be assessed by examining the response of 

volatility to returns of the same magnitude but with opposite signs. This functional form is close in spirit 

to the news impact curve in Engle and Ng (1993)7. It has the appealing features of simplicity (linear least 

squares) and flexibility (allowing different parameter values for different return categories). It also allows 

for the well known ARCH effect, where volatility increases following both large negative and large 

positive returns. We should note that the leverage effect does not mean that leverage is the main 

determinant of the movement of volatility. The large ARCH literature has shown that the magnitude of 

lagged return has the most explanatory power for volatility changes. The response of volatility to returns 

therefore has the shape of a parabola.  The leverage effect tilts this parabola to the right by making the 

reaction of volatility to large negative returns more pronounced than that from large positive returns. 

Figlewski and Wang (2000) investigate the leverage effect but do not account for this ARCH effect.8  

                                                 
6 All of our results are robust to alternative partitions with different d’s. 
7 Engle and Ng (1993) derive a procedure that plots the implied relation between the conditional variance from an 
Asymmetric GARCH model and lagged residuals. They explore the curve pattern of many models, and assess how 
well these models fit the data. They also propose a partially non-parametric news impact curve. 
8 Figlewski and Wang (2000) find that volatility increases even when stock price increases. They call this a 
“reverse” leverage effect and consider this evidence against the leverage effect. However, they do not account for 
the ARCH effect. When positive returns are large, ARCH effect pushes volatility higher while the leverage effect 
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Following Petersen (2007) and Vuolteenaho (2002), we use Rogers’s (1983, 1993) robust 

standard error methodology in order to calculate cross-sectional correlation consistent standard error. In 

order to run a statistical test on the level of volatility asymmetry, we develop a new metric for volatility 

asymmetry, which describes how much of the asymmetry is explained by each competing hypothesis. The 

metric in question is based on the difference between the “left tail” and the “right tail” of the curve in the 

graphs.  The left tail is the response of volatility to negative shocks, and the right tail is the response of 

volatility to positive shocks.  If the two tails are exactly the same, then there is no asymmetry.  If the two 

tails are very dissimilar, then there is strong asymmetry.  The sign of the asymmetry in this case will 

depend on which tail of the curve is higher than the other, on average.  

The metric formalizes the above intuition by summarizing the degree of asymmetry by a single 

number. We resort to the concept of integration which can be seen in Figure 1. Figure 1 left panel plots 

the change of stock volatility (on the y-axis) against stock returns (on the x-axis). Picture the two tails of 

the curve superimposed with absolute returns on the x-axis as in Figure 1, right panel. The area between 

the two tails can be used as a measure of asymmetry. If there is no asymmetry, the two tails of the curve 

are identical. In such a case, superposing the two tails provides a single curve with no area in it, and the 

asymmetry metric has a value of zero.  On the other hand, if there is strong asymmetry, then the area 

between the two tails becomes very large, and the asymmetry metric has a large value. We adopt the 

convention that the area is negative (positive) if there is negative (positive) asymmetry.  

   To compute the asymmetry metric from our coefficients, we approximate the (signed) area 

described above by summing the difference between the two (superposed) tails of the curve for each 

category of absolute returns. We give standard errors around the metric in the brackets following the point 

estimate. The standard errors are derived from one million replications of Monte Carlo Integration of the 

area underlying the asymmetry metric. We refer to this first volatility asymmetry metric as the U-shaped 

metric, because a symmetric relationship looks like a capital letter U.   

The second volatility asymmetry metric is based on a simplified version of equation (8):  

,
, 1 , 1

, 2 1 1

ln ln ln ,k t t t
t t t

k t t t

S SD D u
S S

σ
β β

σ − − − + + −
− − −

= + +  (9)  

where D-,t-1 (D+,t-1) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), 

and 0 otherwise. This model fits a linear regression for negative returns and positive returns separately. It 

is similar to equation (8) except that it uses a line instead of a curve to fit the volatility changes. The 

difference in areas between the “negative” segment and the “positive” segment is a measure of volatility 

                                                                                                                                                             
pushes volatility lower. Since ARCH is the dominant effect, volatility increases. It does not mean that the leverage 
effect is not important. Our methodology makes it easy to see if the magnitude of the tilt in the parabola corresponds 
to what is expected given the magnitude of the change in leverage. 
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asymmetry (see Figure 2, right panel).  We refer to this second volatility asymmetry metric as the V-

shaped metric, because a symmetric relationship looks like a capital letter V.  We show our results based 

on both the U- and the V-shaped metrics. While equation (8) provides clear graphical evidence and 

statistical inference for volatility asymmetry, it requires that a wide range of returns are observed.  The 

metric based on equation (9) has the advantage that it can be calculated even when a stock does not have 

returns within a certain range.  For some of the later analysis, we use only the V-shaped metric because of 

this data limitation. We will explain this in more detail later. 

In the remainder of the paper, we will present results on volatility asymmetry.  First, we will 

examine the role of financial leverage based on pooled firm-month observations (Section IV). Second, we 

will examine the financial leverage, risk premium and other hypotheses using a cross section of firm-level 

volatility asymmetries (Section V).  Third, we will relate firm-level volatility asymmetry to index-level 

volatility asymmetry (Section VI). 

IV. Results Using Pooled Firm-Month Observations 

A. Assessing the effect of leverage on the relation between volatility and returns for stocks 

We first examine volatility asymmetry based on a sub-sample of firms with different levels of 

book leverage.9  In particular, we report the volatility asymmetry of the firm-months with lowest 1% 

leverage, median (49-51%) leverage, and highest 1% leverage.  We plot the change in raw volatilities 

together with the returns for firms with different leverage levels.   

Panels A, B, and C in Figure 3 show the results in three graphs, for firms with low, median and 

high leverage, respectively. The graphs show that volatility asymmetry is substantially higher for firms 

with high leverage, while firms with the lowest leverage have minimal volatility asymmetry.  The U-

shaped volatility asymmetry metric is -0.98 for firms with low leverage, -2.9 for firms with median 

leverage, and -4.3 for firms with high leverage.   

Table 2 shows results based on the unlevering approach using the Merton-KMV model, through 

equation (5). Table 3 reports the regression results in (6) for stock volatility by removing the financial 

leverage via the simple unlevering approach. We also report robustness checks for different firm sizes and 

industry groups. 

Table 2, Panel A, shows the result for raw (i.e. untransformed) stock volatility σS and unlevered 

volatility σV. The volatility asymmetry metric is negative and significant at -2.94 (t-statistic -4.00). After 

unlevering, the volatility asymmetry metric is substantially reduced to -0.23 (t-statistic -0.31). The change 

from stripping out financial leverage is 2.71 (2.94 minus 0.23). In other words, financial leverage 

                                                 
9 Book leverage is used instead of market leverage in this section because our focus is on firms with close to zero 
leverage.  Our sample of firms with market leverage requires credit ratings of firms. Usually only firms with 
substantial leverage have credit ratings.  
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accounts for 92% of the change in asymmetry.10  Table 2, Panel B shows the result using the V-shaped 

volatility asymmetry metric. The result is similar to that in the first panel.  Volatility asymmetry drops 

from -2.41 (t-stat -8.65) to -0.19 (t-stat -1.92).  Again, after unlevering, a vast majority (92%) of the 

volatility asymmetry is gone, although in this case the asymmetry is still statistically significant.  

Figure 4 displays graphically the results in Table 2, Panel A. The band around the curves is a two 

standard error confidence interval.  The graph on the left shows the results related to raw stock volatility 

σS. The response of volatility change to returns exhibits a substantial negative asymmetry. Large negative 

returns lead to a large increase in volatility. On the other hand, positive returns in general lead to a small 

decrease in volatility.  The graph on the right shows the curve related to the unlevered volatility σV using 

the Merton-KMV unlevering method in equation (5). As one can tell, after taking out financial leverage, 

there is very little negative volatility asymmetry left.11  This offers strong support for the firm-level 

financial leverage effect and mirrors the volatility asymmetry metric results in showing that most of the 

negative asymmetry has disappeared after accounting for financial leverage.  Since the results in Panel B 

are the same, we do not report the graph separately. 

Table 3 presents results from using the simple unlevering method in equation (6)  to account for 

risky corporate debt. As can be seen, even with a different unlevering approach, the results are very 

similar to our previous results.  Table 3, Panel A shows the results for the U-shaped volatility asymmetry 

metric.  After unlevering, volatility asymmetry drops from -4.15 (t-statistics -5.65) to  -0.72 (t-statistics -

0.96).  Around 83% of the volatility asymmetry is removed after financial leverage is taken out.12  Figure 

4 shows the results from this unlevering procedure.   Table 3, Panel B, shows that the V-shaped volatility 

asymmetry metric also drops substantially. Approximately 89% of the volatility asymmetry is removed 

after unlevering.  

B. Robustness Checks with Different Firm Sizes and Industry Groups 

We investigate the robustness of our results for firms in different size quintiles or industries. 

Cheung and Ng (1992) examine the volatility asymmetry for individual stocks from 1962 to 1989 and 

show that volatility asymmetry is much stronger for small stocks.  In this section, we check whether 

stocks of different sizes or industries behave differently. 

                                                 
10 As the asymmetry metric is the measure of a (signed) area, the change in the area due to the removal of a specific 
effect divided by the total change in the area will give the percentage of the asymmetry effect attributable to a 
specific explanation. 
11 Even if leverage effect is the only explanation for volatility asymmetry, the asymmetry curve based on KMV-
Merton unlevering will not be flat but will be U-shaped since the pure Merton model does not capture the ARCH 
effect.  For the same reason, the levered curve is downward sloping but not linear as in a pure Merton leverage 
model. 
12 To identify whether our market debt assumption makes a big difference in the results, we repeat our analysis in 
Table 3 using book debt data.  Most (84%) of the volatility asymmetry is removed after adjusting for financial 
leverage.   
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We examine the volatility asymmetry metrics for different size quintiles. We find significant 

negative asymmetry across all size quintiles (ranging from -2.69 to -3.52 for U-shaped asymmetries).  

More importantly, regardless of the size quintiles and metrics, volatility asymmetries drop dramatically 

after unlevering.  After unlevering, volatility asymmetry is reduced by 85% (size 5 quintile) to 97% (size 

1 quintile).   The results for V-shape volatility asymmetry results are broadly similar.   

We also check the volatility asymmetry metric for different industry groups. The industry 

grouping is the same as in Griffin and Karolyi (1998). Again, we find significant negative asymmetry 

across all industry groups.  After taking out financial leverage, volatility asymmetries drop by 88% or 

more in all industries.  Thus, the financial leverage effect is strong in all industry groups.   

C. Timing issue  

We present the main results using the change of volatility from t-2 to t because Duffee (1995) 

conjectures that the negative volatility asymmetry documented in the literature is largely due to a positive 

contemporaneous relation between firm stock returns and firm stock return volatility.  Essentially, using 

the change in volatility between t and t-1 as a dependent variable might induce the regression to pick up 

the positive contemporaneous relation. Given this possibility, finding negative volatility asymmetry might 

be a spurious result (see Duffee (1995) for more details).  To address Duffee’s (1995) valid point, we use 

a specification that can show that volatility asymmetry is a pervasive phenomenon that is not limited only 

to the t-1 specification.  Throughout the paper, we use the change in volatility between times t and t-2 as 

the dependent variable instead of that between times t and t-1.  This specification is in the spirit of event 

study methodologies in which a normal period is used as a benchmark, excluding the window of data that 

contains the event. 

As a robustness check, we examine results with the specification for change in volatility that uses 

month t-1 instead of t-2.  Following Duffee (1995), we conduct the following linear regression: 
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Table 4 Panel A reports the results.  The raw return volatility asymmetry is statistically 

significant, and the negative asymmetry goes away when we remove leverage using the Merton-KMV 

model.13   This is confirmed in Table 4 Panel B.  

V. Results Using the Cross Section of Firm-Specific Volatility Asymmetry 

This section reports the results from the cross-sectional analysis of volatility asymmetry for 

different firms.  We run a time-series regression (9) for each firm in our sample and construct a volatility 

asymmetry metric for each firm.  We then relate the cross section of firm volatility asymmetries to 

different firm-level variables.  This allows us to examine the financial leverage hypothesis, the risk 

premium hypothesis and other potential explanations of volatility asymmetry. We focus, here, on the V-

shaped volatility asymmetry instead of the U-shaped volatility asymmetry. The U-shaped volatility 

asymmetry is calculated based upon the regression in equation (8). However, not every firm has the entire 

range of returns necessary to allow us to run the regression. In a case in which a stock never showed 

returns in a particular interval, the U-shaped volatility asymmetry would be undefined.  

A. Cross-Sectional Distribution of Volatility Asymmetries 

In Figure 6, we plot the distribution of the volatility asymmetry metric for our firms. Looking at 

the distribution of volatility asymmetries before unlevering, it is clear that the distribution is mostly in the 

negative range (solid line).  This shows that, on average, firms exhibit negative volatility asymmetry.  

However, after the Merton-KMV unlevering procedure, the unlevered volatility seems to be equally 

distributed between positive and negative values (dotted line). This again indicates that the original 

negative asymmetry is, to a large extent, accounted for by financial leverage. 

B. Volatility Asymmetry based on Different Financial Leverage, Beta, Book-to-market and Operating 

Leverage Quintiles  

In Table 5, we assess the effect of financial leverage as compared to the effect of the risk 

premium and other hypotheses.  We compute each firm's financial leverage, beta, book-to-market, and 

operating leverage based on its time-series data. Stocks are then sorted into quintiles based on the cross 

section of these variables.   In each quintile, the average volatility asymmetry for stocks is computed.  

Table 5, Panel A presents results from sorting on financial leverage. There is a clear negative 

monotonic relation between the volatility asymmetry metric and financial leverage. A test of difference in 

                                                 
13 When we examine the coefficients in Panel A, we notice that large returns for either sign are associated with a 
large decrease in volatility. The reason for this is selection bias, as in Duffee (1995).  A month with a large absolute 
return is associated with a large standard deviation. Since this regression uses the change in standard deviation as 
the dependent variable, an abnormally large return will be associated with a decrease in volatility since the 
following month’s standard deviation will likely be lower.  Because of this problem, we choose to use the change in 
volatility between month t and month t-2 in this paper. 
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the volatility asymmetry metric between the first and fifth quintile yields a p-value of 0.001.  This shows 

that financial leverage is a driver of volatility asymmetry.  

Table 5, Panel B presents results from sorting on beta. As Bekaert and Wu (2000) indicate, the 

risk premium effect will be more pronounced for firms with higher covariance with the market. The cross-

sectional implication is that firms with higher beta will have higher risk premia.  This is because beta is 

defined as the covariance divided by the variance of the market (which does not vary in the cross-

section). In contrast to the results for financial leverage, there does not seem to be any recognizable 

pattern that relates beta and volatility asymmetry. The difference in the volatility asymmetry metric 

between the first and fifth quintile is negative (p-value of 0.065). This is the opposite of the prediction 

from the risk premium story. This indicates that risk premium does not explain volatility asymmetry in 

the cross section.  

Table 5, Panel C shows the results from sorting on book-to-market.  Kogan (2004) develops a 

model of a production economy in which real investment is irreversible and subject to convex adjustment 

costs. An implication of his model is that firm investment activity and firm characteristics, particularly the 

market-to-book ratio, or q, might lead to volatility asymmetry.  Also, book-to-market is often considered 

a factor underlying the risk premium that is separate from beta (Fama and French (1993)). We find no 

discernible pattern across the quintiles.  The difference between the first and fifth book-to-market quintile 

is insignificant. This shows that it is financial leverage, and not book-to-market, that drives volatility 

asymmetry. 

Finally, Table 5 Panel D presents results from sorting on operating leverage.  Operating leverage 

is the degree to which a firm is committed to fixed production costs.  A firm with low (high) fixed costs 

will have low (high) operating leverage. Theoretically, as Christie (1984b) shows, operating leverage can 

cause volatility asymmetry.  A forecast of lowered cash flows can result in an immediate fall in stock 

prices. Cash flows, and stock prices, become more volatile when their levels decrease because fixed costs 

act like a lever in the sense that a small percentage change in operating revenue can be magnified into a 

large percentage change in operating cash flow. There is some evidence that many aggregate economic 

series are more volatile during recessions (Schwert (1989)). However, the effect of operating leverage on 

stock-market volatility asymmetry has not been tested empirically.  Therefore, we examine operating 

leverage in addition to financial leverage. We find that there does not seem to be any recognizable pattern 

that relates operating leverage and volatility asymmetry.  

C. Cross-Sectional Regressions of Firm-Level Volatility Asymmetry 

 Table 6 presents cross-sectional regressions of the firm volatility asymmetry metric on the 

explanatory variables used above. Following Petersen (2007), we calculate robust standard errors with 

firm clustering to correct for cross-sectional correlation in all regressions. Column 1 shows the results for 
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financial leverage. Column 2 shows the results for beta. Column 3 shows the results for book-to-market. 

Column 4 shows the results for operating leverage. Columns 5, 6, and 7 show the results when we include 

financial leverage along with the competing variable, i.e. beta, book-to-market and operating leverage.  

Column 8 shows the multivariate regression with financial leverage, beta, book-to-market and operating 

leverage.  

Our results in the first two columns show that the coefficient of financial leverage is negative and 

significant at the 1% level.  However, the coefficient of firm beta is of the wrong sign. More importantly, 

when we run multivariate regressions with financial leverage and beta, the coefficient of firm beta is 

insignificant and of the wrong sign.   

The book-to-market factor and operating leverage are insignificant in both univariate regressions 

and multivariate regressions with financial leverage. This shows that volatility asymmetry is driven by 

financial leverage but not by book-to-market or operating leverage.  We also replace firm beta with 

covariance of firm returns with the index (results available upon request). The covariance factor is not 

significant.   

Overall, our empirical results confirm our conclusions. Firms with higher financial leverage have 

more negative volatility asymmetry. On the other hand, the risk premium explanation for individual firm 

negative volatility asymmetry is not supported.  Furthermore, neither the book-to-market or the operating 

leverage explanations for volatility asymmetry are supported.  

VI. Market-Level Versus Firm-Level Asymmetry  

Our results so far suggest that financial leverage explains most firm-level volatility asymmetry.  

In this section, we examine the impact of financial leverage on market-level volatility asymmetry.  We 

find that volatility asymmetry is more pronounced at the market level than at the firm level.  Interestingly, 

we find that financial leverage has little effect on market-level volatility asymmetry.   

A. Market-Level vs. Firm-Level Volatility Asymmetry 

We first construct an equal-weighted market index based on stocks in the Standard and Poor’s 

(S&P) mid-cap 400 and small-cap 600 indices, as well as the S&P 500 index.  We first compare the raw 

and unlevered volatility asymmetry of the index to that of the individual stocks that compose the index.   

The results are reported in Table 7 and Figure 7.  Table 7, Panel A shows the volatility 

asymmetry results for the index, while Panel B shows the results for the component stocks.  Figure 7 

graphically depicts the results.   

We find that both the market index and component stocks show significant negative asymmetry, 

but the asymmetry for the market is much larger than that for the individual stocks. The V-shaped 

asymmetry metric for the market index is -14.49, compared to -3.77 for the component stocks.  In other 

words, the market-level volatility asymmetry is 3.84 times that of the firm-level volatility asymmetry.  
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Our regressions show that, on average, market volatility rises by 4.64% more when return drops by 1%, 

as compared to a case in which return rises by 1%.14  In contrast, firm volatility rises by only 1.21% more 

when return drops by 1%, as compared to a case in which return rises by 1%. This finding is qualitatively 

similar to the ones based on implied volatility in Dennis, Mayhew and Stivers (2006), and on return 

skewness on equity options in Bakshi, Kapadia and Madan (2003). 

  To understand what drives the difference in market-level and firm-level asymmetry, we use the 

unlevering approach.  The daily returns of each stock are first unlevered based on an equation similar to 

equation (6).15 The unlevered market return and volatility are then computed based on the unlevered 

returns of the component stocks. Even after unlevering, index volatility remains highly asymmetric.  The 

volatility asymmetry is -12.89 with a t-statistic of -3.05. In contrast, the volatility asymmetry metric for 

the component stocks is -0.85 with a t-statistic of      -1.58.  Only 11% of the index volatility asymmetry 

is removed after unlevering, while 77% of the component stock volatility asymmetry is removed after 

unlevering. 

Figure 7 plots this result.  Unlevered market-level volatility still exhibits considerable negative 

asymmetry (Figure 7, Panel A, dotted line). However, unlevered firm-level volatility has no significant 

negative asymmetry (Figure 7, Panel B, dotted line). 

In summary, our findings are as follows.  Volatility asymmetry for the market index is much 

higher than firm-level asymmetry.  As expected, we find that, after financial leverage is removed, firm-

level volatility asymmetry is reduced to an insignificant level.  However, even after financial leverage is 

removed from the component firms, market-level volatility asymmetry is still very substantial. This 

means that, while leverage explains firm-level asymmetry, it does not explain market-level volatility 

asymmetry.   

Our finding is consistent with Aydemir, Gallmeyer and Hollifield (2006), in which the 

representative agent has a Campbell-Cochrane (1999) type preference.  In their model, leverage effect is 

explicitly modeled and volatility is endogenously determined along with interest rates and time-varying 

risk premiums.  On the market level, financial leverage is solely driven by aggregate risk and does not 

affect volatility beyond risk premium.  On the firm level, leverage is influenced by idiosyncratic risk and 

may have a substantial impact on firm-level volatility asymmetry.  Through simulations Aydemir et al. 

find that financial leverage is important for firm-level but not market-level volatility asymmetry.  Our 

empirical work shows that financial leverage indeed accounts for a vast majority of firm-level volatility 

asymmetry although it does not account for market-level volatility asymmetry.    

B. Relation to Covariance Asymmetry  

                                                 
14 This equals β− +β+ =-2.85 -1.79 = -4.64. 



 17

The difference in unlevered volatility asymmetry between the index and the component stocks is 

related to the empirical finding of covariance asymmetry.  To better understand this, we calculate a 

diversification factor which also shows the average correlation of firm returns. A diversification factor 

can be defined as the ratio of the equal-weight-index return variance to the firm-level return variance (see 

for example Elton et al. (2003) and Vuolteenaho (2002)).  Formally, the diversification factor is written as 

Diversification factor = 
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where ri are the firms’ returns, var is the variance, and n is the number of firms in the market portfolio.  

There is less diversification in the equal weighted index as the diversification factor increases. 

The variance of equal-weight index returns can be expressed as a function of the elements of the 

cross-sectional covariance matrix: 
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where average variance and covariance are denoted by var  and cov .  Defining the average correlation as 

var/cov≡corr , the diversification factor can then be written as: 
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From equation (14), it can be seen that for relatively large n, the diversification factor equals the average 

correlation.   

A portfolio is said to display a negative asymmetric diversification factor if  
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This means that the diversification factor is higher when stocks are down than when stocks are up. We 

compute the diversification factors based on unlevered returns. This allows us to examine the difference 

in asymmetry between unlevered volatility of index and unlevered volatility of firms. 

                                                                                                                                                             
15 Book value of debt is used here due to the absence of daily corporate bond index prices. 
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We find that the diversification factor is 0.38 when lagged returns are negative, and 0.29 when 

lagged returns are positive, i.e. diversification is worse in bad times than in good times.  This means that 

the market portfolio displays a negative asymmetric diversification factor.  This finding is consistent with 

our finding that market-level unlevered asymmetry is more negative than firm-level unlevered 

asymmetry.  This also means that average correlation is higher when stocks are down than when stocks 

are up.   

Because of the increase in correlation when returns are lower, there is market-level volatility 

asymmetry, even though there is no firm-level volatility asymmetry. Indeed, we have seen earlier that, 

after negative returns, average firm-level unlevered volatility does not increase (see Figure 7, Panel B, 

dotted line).  However, the average unlevered correlation between firms increases, which implies an 

increase in unlevered covariance (i.e. covariance asymmetry). This causes the unlevered volatility of the 

market-level portfolio to increase, even though the average firm-level unlevered volatility does not.  

Notice that the covariance asymmetry we find is based upon unlevered returns rather than levered returns.  

In other words, we find that, on an unlevered basis, 
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The reduction in diversification when return is negative causes the unlevered market index to 

become more volatile during bad times even though an average unlevered firm’s volatility remains the 

same. Covariance asymmetry is therefore related to our finding that index-level volatility asymmetry still 

exists after unlevering, while firm-level volatility asymmetry is eliminated after unlevering.  

VII. Conclusion 

Using an unlevering approach, this paper examines the source of volatility asymmetry in 

thousands of US firms. Our unlevering approach makes it possible to examine the impact of leverage on 

volatility asymmetry using a firm-level, as supposed to a portfolio-level, analysis. Using this approach, 

we document the key role of financial leverage in affecting volatility asymmetry at the firm level.   

We have done extensive robustness checks to adjust for the effect of market leverage, including 

the use of the Merton-KMV model and the market price of debt with similar ratings. While we 

acknowledge that each method alone may not fully capture market leverage, consistency across different 

sets of results nonetheless suggests that financial leverage indeed accounts for most of the volatility 

asymmetry at the firm level. 

While financial leverage explains most of the firm-level asymmetry in a large sample of US 

firms, it explains only a small portion of the index-level asymmetry.  This is consistent with the general 

equilibrium model of Aydemir, Gallmeyer and Hollifield (2006), which shows that the determinants of 

firm-level and market-level volatility asymmetry are potentially different. We hope that our result will 
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serve as a catalyst for more theoretical research that aims to understand the roles of leverage and risk 

premium in volatility asymmetry. 

References 
Ang, A., Chen, J., 2005, Asymmetric Correlations of Equity Portfolios, J. Financial Econom. 63, 443-

494. 

Ang, A., Chen J., Xing Y., 2006, Downside Risk, Rev. Financial Stud. 19, 1191-1239. 

Aydemir, A., Gallmeyer, M., Hollifield, B., 2006, Financial Leverage Does Not Cause the Leverage 

Effect, Working Paper, Texas A&M and Carnegie Mellon Universities. 

Bakshi, G., Kapadia, N., Madan, D., 2003, Stock Return Characteristics, Skew Laws, and the Differential 

Pricing of Individual Equity Options, Rev. Financial Stud. 16, 101-143. 

Bekaert, G., Wu, G., 2000, Asymmetric Volatility and Risk in Equity Markets, Rev. Financial Stud. 13, 

1-42. 

Bharath, S., Shumway, T., 2004, Forecasting Default with the KMV-Merton Model, Working Paper, 

University of Michigan. 

Black, F., 1976, Studies of Stock Price Volatility Changes, Proceedings of the Business and Economic 

Statistics, American Statistical Association, 177-181. 

Campbell, J., Cochrane J., 1999, By Force of Habit: A Consumption-Based Explanation of Aggregate 

Stock Market Behavior, J. Political Econom. 107, 205-251. 

Campbell, J., Hentschel, L., 1992, No News Is Good News: An Asymmetric Model of Changing 

Volatility in Stocks Returns, J. Financial Econom. 31, 281-318. 

Campbell, J., Hilscher, J., Szilagyi, J., 2007, In Search of Distress Risk, J. Finance, forthcoming. 

Cheung, Y., Ng, L., 1992, Stock Price Dynamics and Firm Size: An Empirical Investigation, J. Finance 

47, 1985-1997. 

Christie, A., 1982a, The Stochastic Behavior of Common Stock Variances: Values, Leverage and Interest 

Rates Effects, J. Financial Econom. 10, 407-432. 

Christie, A., 1982b, Equity Variances: Operating Leverage and Other Factors, Working Paper, University 

of Rochester. 

Crosbie, P., Bohn, J.,  2001, Modeling Default Risk, KMV LLC. 

Dennis, P., Mayhew, S., Stivers, C., 2006, Stock Returns, Implied Volatility Innovations and the 

Asymmetric Volatility Phenomenon, J. Financial and Quantitative Anal., 41, 381-406. 

Duffee, G., 1995, Stock Returns and Volatility: A Firm Level Analysis, J. Financial Econom. 37, 399-

420. 

Elton, E., Gruber, M., Brown, S., Goetzmann, W., 2003, Modern Portfolio Theory and Investment 

Analysis, Wiley, 6th edition. 



 20

Engle, R., Ng, V., 1993, Measuring and Testing the Impact of News on Volatility, J. Finance 48, 1749-

1778. 

Erb, C., Harvey C., Viskanta, J., 1994, Forecasting International Equity Correlations, Financial Anal. J., 

6, 32-45. 

Fama, E., French, K., 1993, Common Risk Factors in the Returns on Stocks and Bonds, J. Financial  

Econom., 33, 3-56.  

Figlewski, S., Wang, X., 2000, Is the 'Leverage Effect' a Leverage Effect?, Working paper, NYU.  

French, K., Schwert, W., Stambaugh, R., 1987, Expected Stock Returns and Volatility, J. Financial 

Econom 19, 3-29. 

Glosten, L., Jagannathan, R., Runkle, D., 1993, On the Relation between the Expected Value and the 

Volatility of the Nominal Excess Return on Stocks, J. Finance 68, 1779-1801. 

Griffin, J., Karolyi, A., 1998, Another Look at the Role of the Industrial Structure of Markets for 

International Diversification Strategies, J. Financial Econom. 50, 351-373. 

Kogan, L., 2004, Asset Prices and Real Investment, J. Financial Econom. 73, 411-431. 

Mandelker, G., Rhee, G., 1984, The Impact of the Degrees of Operating and Financial Leverage on the 

Systematic Risk of Common Stock, J. Financial and Quantitative Anal. 19, 45-57. 

Merton, R., 1974, On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, J. Finance 29, 

449-470. 

Petersen, M., 2007, Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches, Rev. 

Financial Stud., forthcoming. 

Pindyck, R., 1984, Uncertainty in the Theory of Renewable Resource Markets, Rev. Economic Stud. 51, 

289-303. 

Rogers, W., 1983, Analyzing Complex Survey Data, Rand Corporation memorandum, Santa Monica. 

Rogers, W., 1993, Regression Standard Errors in Clustered Samples, Stata Technical Bulletin Reprints, 

STB-13 – STB-18, 88-94.  

Schwert, W., 1989, Why Does Stock Market Volatility Change Over Time? J. Finance, 44, 1115-1153.  

Tauchen, G., 2005, Stochastic Volatility in General Equilibrium, Working paper, Duke University. 

Vassalou, M., Xing, Y., 2004, Default Risk in Equity Returns, J. Finance 59, 831-868. 

Vuolteenaho, T., 2002, What Drives Firm-Level Stock Returns? J. Finance 57, 233-264. 

Wu, G., 2001, The Determinants of Asymmetric Volatility, Rev. Financial Stud. 14, 837- 859. 



Variables Volatility Returns Financial 
Leverage

Market 
Capitalization Beta Book-to-

market
Operating 
Leverage

Number of Observations 767268 767268 767268 767268 767268 767268 474669
Mean 0.14 0.02 0.37 1535.33 0.70 0.68 1.84

Standard deviation 0.09 0.15 0.23 9408.92 1.24 0.52 1.72
Median 0.12 0.01 0.35 147.08 0.61 0.55 1.49

Table 1 

The data are from January 1986 to December 2003. Volatility is monthly standard deviation of the stocks computed based on daily returns. 
Returns are monthly returns of the stocks. Financial leverage is the ratio of equity to the total assets of the firm. Market capitalization is computed 
by multiplying monthly stock prices from CRSP by common shares outstanding. Beta is the beta of the stocks with respect to the CRSP market 
index. Book-to-market is the ratio of book value of equity to market value of equity. Operating leverage is the coefficient from a regression of the 
percentage change of EBIT (earnings before interest and tax) on the percentage change of sales revenue.  

Summary Statistics



Raw 
Volatility 

Unlevered 
Volatility

% Reduction in 
Asymmetry

Raw 
Volatility

Unlevered 
Volatility

% Reduction 
in Asymmetry

U-shaped Volatility Asymmetry -2.9373 -0.2309 92.14 V-shaped Volatility Asymmetry -2.4123 -0.1932 91.99
t-Statistic (-4.00) (-0.31) t-Statistic (-8.65) (-1.92)

β1 0.1874 0.0547 β- -0.5841 -0.1137
(67.82) (53.53) (-7.23) (-3.64)

β2 0.1041 0.0108 β+ -0.1878 0.0519
(36.70) (12.60) (-4.97) (6.78)

β3 0.0608 0.0000
(29.64) (0.01)

β4 0.0207 -0.0086
(13.99) (-18.17)

β5 -0.0167 -0.0155
(-13.65) (-38.62)

β6 -0.0404 -0.0154
(-36.93) (-43.36)

β7 -0.0457 -0.0098
(-31.69) (-20.91)

β8 -0.0483 -0.0023
(-25.61) (-3.90)

β9 -0.0454 0.0015
(-17.75) (1.82)

β10 -0.0514 0.0213
(-25.60) (32.29)

F-Stat 1100.33 962.58 F-Stat 4177.73 1587.92
Number of Observations 767268 767268 Number of Observations 767268 767268

Panel B shows results from the V-shape volatility asymmetry metric and is based on the following regression model:

Panel A Panel B

where D- (D+) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), and 0 otherwise. This model fits a linear regression for
negative returns and positive returns separately. V-shape volatility asymmetry is the area between the two lines superposed with absolute returns on the x-axis
(see Figure 2). The number of firm-month observations is reported.

where k = S or V. The raw volatility column shows the results when k=S, where the dependent variable is the log change in stock standard deviation from t-2
to t. The unlevered volatility column shows the results when k=V, where the dependent variable is the log change in standard deviation after the Merton-
KMV unlevering in equation (5). Di,t-1 is a dummy variable that equals one if returns r fall within a range at t-1, and zero otherwise. D1 for r < –0.20; D2 for
–0.20 < r < –0.15; D3 for –0.15 < r < –0.10; D4 for –0.10 < r < –0.05; D5 for –0.05 < r < 0; D6 for 0 < r < 0.05; D7 for 0.05 < r < 0.10; D8 for 0.10 < r < 0.15;
D9 for 0.15 < r < 0.20; and D10 for r > 0.20. Robust t-statistics with firm-clustering are in parentheses. U-shape volatility asymmetry is the area between the
two tails superposed with absolute returns on the x-axis (see Figure 1). The area will be negative (positive) if there is negative (positive) asymmetry.
Statistical significance of the metric is established by deriving its distribution via Monte Carlo Integration. Percentage (%) reduction in asymmetry shows the
extent to which volatility asymmetry is reduced after unlevering. 

Panel A shows results from the U-shape volatility asymmetry metric and is based on the following regression model:

Table 2
Regressions of Change in Volatility on Returns 

(Merton-KMV Unlevering)
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Raw 
Volatility 

Unlevered 
Volatility

% Reduction in 
Asymmetry

Raw 
Volatility 

Unlevered 
Volatility

% Reduction in 
Asymmetry

U-shaped Volatility Asymmetry -4.1545 -0.7152 82.79 V-shaped Volatility Asymmetry -3.6398 -0.3975 89.08
t-Statistic (-5.65) (-0.96) t-Statistic (-7.34) (-0.81)

β1 0.2727 0.0831 β- -0.8097 -0.1606
(33.56) (10.12) (-6.07) (-1.22)

β2 0.1461 0.0413 β+ -0.3550 0.0334
(18.05) (5.10) (-4.13) (0.39)

β3 0.0968 0.0263
(17.48) (4.67)

β4 0.0410 0.0026
(11.61) (0.73)

β5 -0.0049 -0.0190
(-1.96) (-7.55)

β6 -0.0434 -0.0361
(-19.94) (-16.49)

β7 -0.0456 -0.0182
(-14.53) (-5.73)

β8 -0.0574 -0.0094
(-12.58) (-2.05)

β9 -0.0529 0.0153
(-7.61) (2.13)

β10 -0.0799 0.0397
(-11.52) (5.43)

F-Stat 236.96 74.02 F-Stat 1444.38 46.97
Number of Observations 113693 113693 Number of Observations 141714 141714

Panel BPanel A

where k = S or V. The raw volatility column shows the results when k=S, where the dependent variable is the log change in stock standard deviation from t-2 to t.
The unlevered volatility column shows the results when k=V, where the dependent variable is the log change in standard deviation unlevered through the simple
unlevering model in equation (6). Di,t-1 is a dummy variable that equals one if returns r fall within a range at t-1, and zero otherwise. D1 for r < –0.20; D2 for
–0.20 < r < –0.15; D3 for –0.15 < r < –0.10; D4 for –0.10 < r < –0.05; D5 for –0.05 < r < 0; D6 for 0 < r < 0.05; D7 for 0.05 < r < 0.10; D8 for 0.10 < r < 0.15; D9 

for 0.15 < r < 0.20; and D10 for r > 0.20. Robust t-statistics with firm-clustering are in parentheses. U-shaped volatility asymmetry is the area between the two
tails superposed with absolute returns on the x-axis (see Figure 1). The area will be negative (positive) if there is negative (positive) asymmetry. Statistical
significance of the metric is established by deriving its distribution via Monte Carlo Integration. Percentage (%) reduction in asymmetry shows the extent to
which volatility asymmetry is reduced after unlevering. 

Panel B shows results from the V-shaped volatility asymmetry metric and is based on the following regression model:

where D- (D+) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), and 0 otherwise. This model fits a linear regression for
negative returns and positive returns separately. The raw volatility column shows the results when k=S, where the dependent variable is the log change in stock
standard deviation from t-2 to t. The unlevered volatility column shows the results when k=V, where the dependent variable is the log change in standard
deviation unlevered through the simple unlevering model in equation (6). V-shaped volatility asymmetry is the area between the two lines superposed with
absolute returns on the x-axis (see Figure 2). The number of firm-month observations is reported.

Table 3
Regressions of Change in Volatility on Returns

(Simple Unlevering)

Panel A shows results from the U-shaped volatility asymmetry metric and is based on the following regression model:
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Raw 
Volatility 

Unlevered 
Volatility

% Reduction 
in Asymmetry

Raw 
Volatility 

Unlevered 
Volatility

% Reduction 
in Asymmetry

U-shaped Volatility Asymmetry -3.1594 -0.1211 96.17 V-shaped Volatility Asymmetry -2.3171 -0.0835 96.40
t-Statistic (-4.30) (-0.16) t-Statistic (-6.65) (-2.26)

β1 -0.0857 0.0124 β- -0.0478 -0.0287
(-29.11) (23.01) (-0.46) (-2.64)

β2 0.0305 0.0035 β+ -0.6937 0.0020
(10.98) (6.28) (-16.66) (0.42)

β3 0.0523 0.0015
(26.91) (3.59)

β4 0.0687 -0.0016
(48.10) (-4.85)

β5 0.0816 -0.0045
(65.27) (-16.35)

β6 0.0499 -0.0055
(47.24) (-22.41)

β7 -0.0292 -0.0042
(-21.55) (-12.90)

β8 -0.0892 -0.0025
(-50.29) (-6.04)

β9 -0.1425 -0.0022
(-57.64) (-3.90)

β10 -0.2734 0.0014
(-115.87) (3.54)

F-Stat 2151.09 236.33 F-Stat 3775.78 210.01
Number of Observations 767268 767268 Number of Observations 768340 768340

where k = S or V. The raw volatility column shows the results when k=S, where the dependent variable is the log change in stock standard deviation from t-1
to t. The unlevered volatility column shows the results when k=V, where the dependent variable is the log change in standard deviation unlevered through
the Merton-KMV model in equation (5). Di,t-1 is a dummy variable that equals one if returns r fall within a range at t-1 and zero otherwise. D1 for r < –0.20;
D2 for –0.20 < r < –0.15; D3 for –0.15 < r < –0.10; D4 for –0.10 < r < –0.05; D5 for –0.05 < r < 0; D6 for 0 < r < 0.05; D7 for 0.05 < r < 0.10; D8 for 0.10 < r <
0.15; D9 for 0.15 < r < 0.20; and D10 for r > 0.20. Robust t-statistics with firm-clustering are in parentheses. U-shape volatility asymmetry is the area between
the two tails superposed with absolute returns on the x-axis (see Figure 1). The area will be negative (positive) if there is negative (positive) asymmetry.
Statistical significance of the metric is established by deriving its distribution via Monte Carlo Integration. Percentage (%) reduction in asymmetry shows the
extent to which volatility asymmetry is reduced after unlevering. 

Panel A

Panel B shows results from the V-shaped volatility asymmetry metric and is based on the following regression model:

where D- (D+) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), and 0 otherwise. This model fits a linear regression for
negative returns and positive returns separately. V-shaped volatility asymmetry is the area between the two lines superposed with absolute returns on the x-
axis (see Figure 2). The number of firm-month observations is reported.

Panel B

Panel A shows results from the U-shaped volatility asymmetry metric and is based on the following regression model:

Regression of Change in Volatility on Returns (One-month Lag)
Table 4
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Portfolio Mean Financial 
Leverage

Volatility 
Asymmetry Mean Beta Volatility 

Asymmetry 
Mean Book-to-

Market
Volatility 

Asymmetry 
Mean Operating 

Leverage
Volatility 

Asymmetry 

P1 0.2274 -2.7767 0.3153 -3.3159 0.2526 -3.3742 0.5672 -3.2386
(-15.52) (-18.50) (-18.86) (-18.98)

P2 0.3946 -3.0724 0.5762 -3.3930 0.4525 -3.0172 1.1386 -3.3815
(-17.18) (-18.94) (-16.87) (-19.82)

P3 0.5119 -3.2512 0.7725 -3.2442 0.6297 -3.1179 1.5383 -3.4117
(-18.18) (-18.10) (-17.43) (-20.00)

P4 0.6235 -3.3867 0.9845 -3.3096 0.8412 -2.8955 2.1231 -3.0957
(-18.93) (-18.47) (-16.19) (-18.15)

P5 0.7850 -3.6238 1.5153 -2.8481 1.4873 -3.7060 3.5176 -3.1753
(-20.26) (-15.89) (-20.72) (-18.61)

P1-P5 0.8470 -0.4678 0.3319 -0.0633
P-value (P1=P5) 0.001 0.065 0.190 0.793
Number of Obs 1970 1970 1970 1695

Panel C: Book-to-market Panel D: Operating Leverage

Table 5

We compute each firm's financial leverage, beta, book-to-market, and operating leverage based on its time-series data. Stocks are then sorted into quintiles based on the cross-
section of these firm factors.  This table reports the average volatility asymmetry for stocks in each quintile of firm factors.  Panel A presents the average volatility asymmetry 
when firms are sorted by financial leverage (the ratio of total market debt to total firm value). Panel B shows the average volatility asymmetry when firms are sorted by beta.   
Beta is calculated from regression of individual firm returns on market index returns. Panel C shows the average volatility asymmetry when firms are sorted by book-to-
market ratio (book equity divided by market capitalization). Panel D shows the average volatility asymmetry when firms are sorted by operating leverage, i.e. the percentage 
change in EBIT (earnings before interest and taxes) for a given percentage change in sales revenue. Each firm’s volatility asymmetry is computed using V-shaped volatility 
asymmetry as illustrated in Figure 2.  Robust t-statistics corrected for firm-level clustering are in the parentheses. 

Volatility Asymmetry based on Different Financial Leverage, Beta, Book-to-market, and Operating Leverage Quintiles

Panel A: Financial Leverage Panel B: Beta



Volatility 
Asymmetry 

Volatility 
Asymmetry 

Volatility 
Asymmetry 

Volatility 
Asymmetry 

Volatility 
Asymmetry 

Volatility 
Asymmetry 

Volatility 
Asymmetry 

Volatility 
Asymmetry 

Constant -2.4850 -3.5755 -2.9603 -3.3708 -2.7641 -2.4888 -2.7616 -3.0524
(-12.53) (-18.29) (-18.54) (-20.58) (-7.72) (-12.72) (-12.19) (-8.41)

Financial Leverage -1.4497 -1.2717 -1.3397 -1.2592 -1.0988
(-3.75) (-2.90) (-2.85) (-3.24) (-2.08)

Beta 0.4243 0.2264 0.2513
(2.43) (1.15) (1.33)

Book-to-market -0.3574 -0.0711 0.0236
(-1.82) (-0.30) (0.09)

Operating Leverage 0.0621 0.0793 0.0740
(0.84) (1.07) (1.00)

F-value F( 1, 1969) = 14.06 F( 1, 1969) = 5.91 F( 2, 1969) = 3.32 F( 1, 1969) = 0.7 F( 2, 1969) = 8.57 F( 1, 1969) = 7.21 F( 3, 1969) = 10.53 F( 1, 1969) = 4.96
P-value 0.0002 0.0152 0.0688 0.4019 0.0002 0.0008 0.0012 0.0020

Number of 
Observations 1970 1970 1970 1695 1970 1970 1695 1695

Table 6
Regression of Firm Volatility Asymmetry on Financial Leverage, Beta, Book-to-market and Operating Leverage

This table presents coefficients from cross-sectional regressions of volatility asymmetry on various factors and characteristics. To calculate individual firm volatility asymmetry, we first fit a 
linear regression for negative returns and positive returns separately. The difference in slopes between the “negative” segment and the “positive” segment is a measure of V-shaped volatility 
asymmetry for each firm, as illustrated in Figure 2. Individual firm volatility asymmetry is regressed upon time-series averages of the individual firm's financial leverage, beta, book-to-market 
and operating leverage.  Financial leverage refers to the ratio of total market debt to total firm value. Beta is calculated from regression of individual firm returns on market index returns. Book-
to-market ratio is book value divided by market capitalization of the firm.  Operating leverage is defined as the percentage change in EBIT (earnings before interest and taxes) for a given 
percentage change in sales revenue. Robust t-statistics corrected for firm-level clustering are in parentheses.



Raw 
Volatility

Unlevered 
Volatility

% Reduction 
in Asymmetry

Raw 
Volatility

Unlevered 
Volatility

% Reduction 
in Asymmetry

Index Volatility Asymmetry -14.4872 -12.8928 11.01
Component Stock Volatility 

Asymmetry -3.7657 -0.8542 77.32
t-Statistic (-4.09) (-3.05) t-Statistic (23.63) (-1.58)

β- -2.8503 -2.2885 β- -0.8256 -0.2423
(-3.52) (-2.86) (-40.97) (-11.98)

β+ -1.7856 -1.8372 β+ -0.3794 -0.0310
(-2.64) (-2.74) (-23.23) (-1.89)

Number of Observations 212 212 Number of Observations 90315 90315

Table 7
Index vs Component Stock Volatility Asymmetry

Panel A Panel B

We construct an equal-weighted market index based upon stocks in the Standard and Poor's (S&P) mid-cap 400, small-cap 600 indices and the S&P
500 index.  This table shows the regression and volatility asymmetry results on the index and on the component stocks based on the following model:

where k = S or V, and D- (D+) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), and 0 otherwise. This model fits
a linear regression for negative returns and positive returns separately. The V-shaped volatility asymmetry reported is illustrated in Figure 2. Panel A
shows the results for the index. Panel B shows the relation for the panel of individual stocks that compose the index. The raw volatility column shows
the results when k=S, where the dependent variable is the log change in stock standard deviation from t-2 to t. The unlevered volatility column shows
the results when k=V, where the dependent variable is the log change in unlevered standard deviation. To unlever index returns, the daily returns of
each stock are first unlevered based on equation (6). The unlevered market return and volatility are then computed based on the unlevered returns of
the component stocks.  To unlever the component stock returns, we use the simple unlevering model in equation (6). 
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Figure 1. A graphical illustration of the U-shaped volatility asymmetry metric. U-shaped volatility asymmetry is the (signed) area between the two curves on the positive side of 
the x-axis (shaded area). The area will be negative (positive) if there is negative (positive) asymmetry.

Figure 2. A graphical illustration of the firm V-shaped volatility asymmetry metric. V-shaped volatility asymmetry is the (signed) area between the two curves on the positive 
side of the x-axis (shaded area up until returns of 0.3). The area will be negative (positive) if there is negative (positive) asymmetry.



Figure 3. The response of volatility changes from time t-2 to t to returns at t-1 for firms at different financial leverage levels. For all panels, the dependent 
variable is the percentage change in stock standard deviation ( σS). The independent variables are dummy variables Di,t-1  that represent a range of returns at t-1. 
Panel A shows the results for firms in the lowest 1 percentile of financial leverage level. Panel B shows the results for firms in the median (i.e. 49-51 percentile) 
of financial leverage level. Panel C shows the results for firms in the highest 1 percentile of financial leverage level. Volatility Asymmetry (VA) refers to the 
level of U-shaped asymmetry metric, as illustrated in Figure 1. The band around the curves is a two standard error confidence interval (robust standard errors 
with firm clustering). 
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Figure 4. The response of volatility changes from time t-2 to t to returns at t-1. This is a plot of the results from table 2, based on Merton-KMV unlevering. In the 
left panel, the dependent variable is the log change in stock standard deviation ( σS). In the right panel, the dependent variable is the percent change in stock 
standard deviation that was transformed by equation (5) to account for financial leverage using Merton-KMV method ( σV). Volatility Asymmetry (VA) refers to 
the level of U-shaped asymmetry metric as illustrated in Figure 1. The band around the curves is a two standard error confidence interval (robust t-statistics wtih 
firm clustering). 

Figure 5. The response of volatility changes from time t-2 to t to returns at t-1. This is a plot of the results from table 3, based on simple unlevering. In the left 
panel, the dependent variable is the percent change in stock standard deviation ( σS). In the right panel, the dependent variable is the percent change in stock 
standard deviation that was transformed by the simple unlevering model in equation (6) to account for financial leverage ( σV). Volatility Asymmetry (VA) refers to 
the level of U-shaped asymmetry metric as illustrated in Figure 1. The band around the curves is a two standard error confidence interval (robust t-statistics wtih 
firm clustering). 
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Panel B: Unlevered Volatility
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Panel A: Raw Volatility 
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Panel B: Unlevered Volatility 
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where k=S or V, and D- (D+) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), and 0 otherwise. This model fits a linear 
regression for negative returns and positive returns separately. The difference in slopes between the “negative” segment and the “positive” segment is the 
volatility asymmetry metric (see Figure 2). Raw volatility uses as the dependent variable the log change in stock standard deviation, σS. Unlevered volatility uses 
as the dependent variable the log change in unlevered volatility σV, i.e. stock standard deviation that is transformed by equation (5) to account for financial 
leverage using Merton-KMV method.

Figure 6. The figure plots the distribution of the firm V-shaped volatility asymmetry metric for all of our firms. The firm V-shape volatility asymmetry metric is 
computed using the following equation:

Figure 7. The response of volatility changes from time t-2 to t to returns at t-1 using the following equation:

where k=S or V, and D- (D+) is a dummy variable that takes on a value of 1 when t-1 returns are negative (positive), and 0 otherwise. This model fits a linear 
regression for negative returns and positive returns separately. The difference in slopes between the “negative” segment and the “positive” segment is the 
volatility asymmetry (VA) metric (see Figure 2). Panel A shows the relation for the index. Panel B shows the relation for the panel of individual stocks that 
compose the index. For raw volatility, the dependent variable is the log change in σS. For unlevered volatility, the dependent variable is the log change in σV, i.e. 
stock standard deviation that was transformed by equation (6) to account for financial leverage.
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Panel B: Component Stocks Volatility Asymmetry
VA (σS)=-3.77, VA(σV) =-0.85
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Panel A: Index-Level Volatility Asymmetry
VA (σS)=-14.49, VA (σV) =-12.89 
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