
 WP 2003-11 
April 2003 

  

Working Paper 
 
Department of Applied Economics and Management 
Cornell University, Ithaca, New York  14853-7801  USA 

 
 
 
 
 

PREMATURE MORTALITY AND  
POVERTY MEASUREMENT  

 
 
 
 
 

 

Ravi Kanbur and Diganta Mukherjee 



 

 

It is the Policy of Cornell University actively to support equality of 

educational and employment opportunity.  No person shall be denied 

admission to any educational program or activity or be denied 

employment on the basis of any legally prohibited discrimination 

involving, but not limited to, such factors as race, color, creed, religion, 

national or ethnic origin, sex, age or handicap.  The University is 

committed to the maintenance of affirmative action programs which will 

assure the continuation of such equality of opportunity. 



Premature Mortality and Poverty Measurement

Ravi Kanbur
∗
and Diganta Mukherjee

†‡

Abstract

There is a glaring paradox in all commonly used measures of poverty. The

death of a poor person reduces poverty according to these measures. This

surely violates our basic intuitions of how poverty measures should behave. It

cannot be right in concept that differentially higher mortality among the poor

serves to reduce poverty. This paper begins the task of developing poverty

measures that are not perversely mortality sensitive. A family of measures

is proposed that is an intuitive modification of standard poverty measures to

take into account the fact that the rich live longer than the poor.
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1 Introduction

More than a quarter of a century ago, Amartya Sen (1976) pointed out a glaring

paradox in the most commonly used measure of poverty - the head-count ratio.

He observed that taking income away from the poor did not change this measure,

since it did not change the number of people in poverty. This, he argued, violated

our basic intuitions about poverty. This simple but powerful observation led to the

development of ”distribution sensitive” poverty measures, including the Sen measure

(Sen, 1976) and the FGT measure (Foster, Greer and Thorbecke, 1984), which

have become the workhorse poverty measures in applied and policy work.

But there is perhaps an even more glaring paradox in the head-count ratio and

it is this. If a poor person dies, poverty decreases. This also holds true for the

distribution sensitive measures of poverty such as the commonly used FGT family

of measures. Reduction of poverty through deaths of the poor must surely violate

our basic intuitions on poverty. It cannot be right in concept that differentially

higher mortality rates among the poor serve to reduce poverty. This conceptual

challenge is only strengthened by the fact that higher mortality rates and lower life

expectancies among the poor are an established empirical regularity the world over.

Similar issues are discussed in the area of health economics also. An untimely demise

of the poor, who are usually not in a very good state of health, has the perverse

implication that the average health standards of the society improves.

Of course, the paradoxes of population variation and welfare measurement have

exercised philosophers and economists over many years. Parfits (1984) ”Repug-

nant Conclusion” launched the modern debate. As formulated by Arrehnius

(2000), this is a critique of Total Utilitarianism since: ”For any perfectly equal

population with very high positive welfare, there is a population with a very low

positive welfare which is better.” What is repugnant is that one society can be

pronounced to be better than another even though every person in the former is

worse off than every person in the latter, simply because population in the first is
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so much higher than in the second. Issues of length of life and standard of living

during life are also discussed in the economics literature, for example in Blackorby,

Bossert and Donaldson (1999). Focusing on the average utility as a way of

getting around the repugnant conclusion has its own problems because, as Cowen

(1989) rightly observes, ”average utilitarianism cannot escape recommending the

death of all those below the social mean.” In the case of standard poverty measures,

this paradox manifest itself through the conclusion that killing off people below the

poverty line will reduce poverty.

This paper draws its inspiration from the large literature on population and wel-

fare measurement, but its focus is on the measurement of poverty. Its objective

is to launch a discussion that will, hopefully, lead to the development of poverty

measures that are not vulnerable to the mortality paradox. We begin in Section

2 with a simple and intuitive modification of the FGT class of poverty measures,

to illustrate the nature of our arguments. Section 3 starts the formal and rigorous

analysis with a statement of notation and definitions, and some preliminaries. Sec-

tion 4 axiomatizes lifetime poverty measures, and Section 5 introduces premature

mortality. It will be seen that the simple and intutive discussion of Section 2 falls

out as a special case of the more general results developed in Section 5. Finally,

Section 6 offers some concluding remarks.

2 The Relevant Set of Individuals and a Simple

Modification of FGT

The standard approaches to poverty measurement look at a snapshot of alive in-

dividuals. Hence the paradox that when a poor individual disappears, measured

poverty goes down. The obvious answer to this paradox is to not let individuals

disappear because of death, to keep them nevertheless in the universe of individuals

whose poverty is being measured. We call the set of individuals who enter into the
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measurement poverty, whether they are alive or dead, the relevant set of individuals.

It should be clear that the relevant set of individuals is a deeply normative

concept. Who should we consider? All those individuals who have ever lived?

Should deaths due to poverty in the middle ages burden poverty measurement today?

We believe that a good starting point is to specify a normative lifetime L, close to

the top of the range observed today in rich countries. The exact value is arbitrary,

but a range around 80 years seems reasonable, especially if our focus is on poor

countries. Then one specification of the relevant set today is all those individuals

who would have been alive today had they lived to the age of 80. In other words,

the relevant set is all individuals born L years ago or later.

Keeping with the tradition of measuring poverty on a snapshot income distribu-

tion, we would next need to specify the income today of the relevant set of individuals

specified above. For those currently alive, of course, it is their current income. The

interesting conceptual question is, what income do we ascribe to those who died

prematurely? In principle we should project what they would have had if they had

been alive and, with this information, calculate any of the FGT family of poverty

indices, for example. This is not easy to do empirically, but conceptual clarity can

be gained by considering a situation in which the n income levels, Y1, Y2, ..., Yn, re-

main constant over time, and there is no mobility across income levels. Further,

suppose the population distribution is also in a steady state in the following sense.

Each individual at income level Yi lives for li periods, after which time he or she is

replaced by exactly one individual. The observed snapshot distribution of income

thus has one individual at each of the income levels Yi, and the FGT index can be

calculated for this in the usual way.

However, now consider the relevant set of individuals. This includes all those

who were born L years ago or less. Define I(x) as a function that finds the closest

higher integer to x. At income level Yi there is currently 1 individual alive, but also

I(L/li) − 1 individuals who would have been alive had they lived the full L years

of the normative lifespan. Hence there are I(L/li) individuals in the relevant set at
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income level Yi, and N =
∑

i I(L/li) individuals in the relevant set in all.

If the standard axioms of poverty measurement are now invoked, any of the

corresponding poverty measures can be defined on the relevant set. The FGT family

of indices thus becomes:

P
l
=

1

N

∑

i

I(L/li)(
z − Yi

z
)
α
,

where z is the poverty line and the superscript l indicates adjustment for differ-

ential lengths of life across income levels. It can be seen from the above that if li

is constant across Yi then we recover the standard FGT index. However, if income

and length of life are positively correlated, the P l measure will be higher than the

traditional poverty measure P and if there is negative correlation the P l measure

will be lower than P . In any event, measured poverty will be affected by the income

lifetime relation, over and above the distribution of income. The measure given

above is easily implementable given the wealth of information on the relationship

between income and expected length of life.

3 Formal analysis: Notation, Definition and Pre-

liminaries

Let us start with some notation. We will denote the set of real number by R and the

non-negative reals by R+. The set of integers is given by Z and the set of positive

(negative) integers by Z+ (Z
−

). Let H =
⋃
n∈Z+

Z
n

−
. We will be considering discrete

periods of time in this paper. Denote
⋃
n∈Z+

R
n

+
by Ω, the set of all possible income

distributions, Rn

+
being the n-dimensional cartesian product of R+.

Let there be n individuals in the population under consideration - the relevant

set. Each person i is completely characterized by her birth date ti ∈ Z
−

, actual

length of life li ∈ Z+ and the life time income profile Yi = (yi,1, ..., yi,li
) ∈ R

li
+ for

i = 1, .., n, where a typical element yi,l is person i’s income in period l of her life. The
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set A = {Yi, i = 1, ..., n} is the income profile for the relevant population. Denote

the vector of birth dates by T = {t1, ..., tn} where each ti ∈ Z
−

. Thus T ∈ H.

To discuss measurement of poverty we need to talk about a measure of subsistence

requirement for the population under consideration, or the ‘traditional poverty line’.

Here, we need to have a subsistence requirement for each period of time. Hence, we

define the vector S = {..., z
−1, z0, z1, ...} ∈ Ω, where the current period is period 0

and zt ∈ R+ represents the poverty line for period t.

Let us now define our life time measure of poverty in the most general form as

a function

P = P (A,T,S,n) : Ω×H × Ω× z+ → R+. (1)

So, we assume that the measure of poverty is a positive real value and it depends

on the life time income profile for the population, the birth dates of each of the

members of the population, the subsistence requirement vector and the size of the

population. For person i, the kth period of life is considered to be spent in poverty if

yi,k < zti+k, that is, her income for age k fell below the subsistence requirement for

the period when she was aged k. Note that, now we can not talk about a ‘person’

being poor; rather, all we can now say is that such and such periods of her life has

been spent in poverty. The censored income profile associated with Yi is denoted by

Yi∗, whose typical element is yi,k∗ = min{yi,k, zti+k}.

The poverty index is supposed to satisfy certain desirable properties. We describe

them as follows.

Continuity (C): For all n ∈ Z+, S ∈ Ω and T ∈ H, P (A,T,S, n) is a continuous

function of all elements yi,k, k = 1, ..., li and i = 1, ..., n, in A.

Focus (F): For all n ∈ Z+, S ∈ Ω, T ∈ H and for population income profiles

A = (Y1, Y2, ..., Yn) and B = (X1,X2, ...,Xn) with elements yi,k = xi,k whenever

yi,k < zti+k and xt

i,k
< zti+k, we have P (A,T, S, n) = P (B,T, S, n).

Monotonicity (M): For all n ∈ Z+, S ∈ Ω, T ∈ H and for population income

profilesA = (Y1, Y2, ..., Yn) and B = (X1,X2, ...,Xn) with elements yi,k = xi,k < zti+k
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for all i �= j, yj,k = xj,k < zti+k for all k �= l and yj,l < xj,l < zti+k, we have

P (A,T, S, n) > P (B,T, S, n).

Symmetry (S): For all n ∈ Z+, S ∈ Ω, T ∈ H and for population income pro-

files A = (Y1, Y2, ..., Yn), if B = (Y
π(1), Yπ(2), ..., Yπ(n)) and T ′ = (t

π(1), tπ(2), ..., tπ(n)),

where (π(1), π(2), ..., π(n)) is any permutation of (1, 2, ..., n), then P (A,T, S, n) =

P (B,T ′, S,n).

Scale Invariance (SI): For all n ∈ Z+, S ∈ Ω, T ∈ H and for population

income profiles A = (Y1, Y2, ..., Yn), P (A,T, S, n) = P (A′, T, S ′, n) where A′ is a set

of income profiles (X1, ...,Xn) with birth dates T and S ′ = {..., z′

0, ...} is a subsistence

requirement vector with the property that for all i and for all t,
yi,t

zti+t
=

xi,t

z
′

ti+t

.

Translation Invariance (TI): For all n ∈ Z+, S ∈ Ω, T ∈ H and for popula-

tion income profiles A = (Y1, Y2, ..., Yn), P (A,T, S, n) = P (A′, T, S ′, n) where A′
∈ Ω

is a set of income profiles (X1, ...,Xn) with birth dates T and S′ = {..., z′

0, ...} ∈ Ω

is a subsistence requirement vector with the property that for all i and for all t,

yi,t − zti+t = xi,t − z
′

ti+t
.

Population Principle (P): For all n ∈ Z+, S ∈ Ω, T ∈ H and for population

income profiles A = (Y1, Y2, ..., Yn), if B = (Y1, ..., Y1, Y2, ..., Y2, ..., Yn, ..., Yn) is a

m-fold replication of A and T ′ is the corresponding m-fold replication of T , then

P (A,T, S, n) = P (B,T ′, S,mn).

Interpersonal Transfers Principle (TR): For all n ∈ Z+, S ∈ Ω, T ∈ H

and for population income profiles A = (Y1, Y2, ..., Yn), if another population income

profile B is given by (Y1, ..., Yi−1,Xi, Yi+1, ..., Yj−1,Xj, Yj+1, ..., Yn) such that yi,k =

xi,k for k �= l and yj,k = xj,k for k �= t = l + (ti − tj), and 0 < yi,l < xi,l = yi,l + δ <

yj,t − δ = xj,t < yj,t < zti+l then P (A,T, S,n) > P (B,T, S, n).

Subgroup Decomposability (D): There exists Q : R+ × R+ → R+ such

that, for all n ∈ Z+, S ∈ Ω and T ∈ H, if we partition any population income

profile A = (Y1, Y2, ..., Yn) into two such matrices A1 = (Y1, Y2, ..., Yn1) and A2 =

(Yn1+1, Y2, ..., Yn), where 1 ≤ n1 ≤ n and the birth date vector T in to T 1 =
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(t1, ..., tn1) and T 2 = (t
n1+1, ..., tn) in a similar fashion, then

P (A,T, S, n) = Q(P (A
1
, T

1
, S,n1), P (A

2
, T

2
, S, (n − n1))).

(C) ensures that minor observational errors in incomes will generate minor

changes in the poverty index. (F) says that the poverty index is independent of

the incomes in excess of the subsistence requirement. So, person i’s income for pe-

riod l will not affect the poverty measure if she was nonpoor in period l. According

to (M), a reduction in the income of a person in any period when she was poor

must increase poverty. (S) means that any characteristic other than the life time

income profile and birth date, e.g. the names of the individuals, is irrelevant to the

measurement of poverty. (SI) says that the poverty index is independent of the unit

of measurement for income and subsistence requirement in any period. (TI) says

that, for any period, an equal increment in income for all persons and the subsis-

tence requirement do not affect the poverty measure. (P) is the usual replication

invariance principle that implies that if we make a m-fold copy of the population, all

other things unchanged, then the poverty index is unaffected. (TR) demands that a

transfer of income in any period, to person i who is poor in that period from another

person j who is also poor in the same period but richer than i, without changing

their relative position for that period, will reduce poverty. (D) is similar to the sub-

group consistency axiom of Foster and Shorrocks (1991) which requires overall

poverty for a population partitioned into subgroups to increase if poverty in one or

more subgroups increases and stay constant in others. The function Q may be re-

garded as an aggregate deprivation function where deprivation may be measured in

terms of relative or absolute shortfall of income in each period from the subsistence

requirement. We can also view this in terms of the censored income profiles. (For a

detailed discussion on similar properties related to the usual static, or one period,

poverty measurement see Zheng, 1997).

So far, we have not discussed any structural assumptions regarding the intertem-

poral properties of our life time poverty measure. How the different periods of a
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person’s life time are compared is the issue of the next two axioms.

Intertemporal Symmetry (ITS): For all n ∈ Z+, S ∈ Ω, T ∈ H and for pop-

ulation income profilesA = (Y1, Y2, ..., Yn) and for any l, k ∈ Z such that ti < l < k <

ti+li for all i = 1, ..., n, ifA′ = (Y ′

1
, Y ′

2
, ..., Y ′

n
) with Y ′

i
= (yi,1, ..., yi,l−1, yi,k, yi,l+1, ..., yi,k−1, yi,l, yi,k+1

and S ′ = (..., zl−1, zk, zl+1, ..., zk−1, zl, zk+1, ...), then P (A,T, S, n) = P (A′, T, S ′, n).

Intertemporal Consistency (ITC): For all n ∈ Z+, S ∈ Ω, T ∈ H and for

population income profiles A = (Y1, Y2, ..., Yn), for any l ∈ Z define

A
≤ = {(yi,1, ..., yi,l) for i such that ti ≤ l ≤ ti+li}

⋃
{(yi,1, ..., yi,li

) for i such that ti+li ≤ l}

and

A> = {(yi,l+1, ..., yi,li) for i such that ti ≤ l ≤ ti+li}
⋃
{(yi,1, ..., yi,li

) for i such that l < ti}.

Also, let T≤ = {ti ∈ T |ti ≤ l} and T> = {ti ∈ T |ti + li > l}, the cardinality of T≤

be n≤ and that of T> be n>. Then there exists W : R+ × R+ → R+ such that,

P (A,T, S, n) = W (P (A≤, T≤, S,n≤), P (A>, T>, S, n>)).

(ITS) is the symmetry requirement across time which ensures that any time

period of a person’s life time has the same significance with respect to life time

poverty calculations. (ITC) is the time line analogue of (D) which requires that for

any set of persons, if one partitions the time line into disjoint intervals and does

the relevant poverty calculations with each of the individual’s so truncated income

profiles separately, one can recover the overall life time poverty from these separately

computed figures in a consistent manner.

4 Life Time Poverty Measures

In what follow, we will be tackling the issue of how to facilitate the interpersonal

aggregation of poverty values first. That is, given the individual poverty status

of each person based on their life time income profile, how do we arrive at the

aggregate poverty status of the whole population. Also, given the life time income
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profiles of the members of the population, one has to find a representative value

for the feeling of poverty of this person across her life span. That is, one has

to postulate a representative poverty level of any person depending on her profile

and the subsistence requirement. This is the issue we tackle next. This particular

sequencing is for technical ease only and this do not result in any significant loss

of generality as we can safely assume that poverty level of any person i in time

period k will not in any way interact with the poverty level of another person j

(�= i) in period l (�= k) in determining the aggregate measure of poverty. so we can

safely discuss the aggregation possiblities in this two dimensions (persons and time

periods) as two independent issues.

4.1 Interpersonal Aggregation

We will now state the first and basic result of this paper regarding some benchmark

features of the poverty measure given by (1) when it is required to satisfy some of

the above mentioned properties.

Theorem 1: The poverty measure in (1) satisfies C, F, M, S, P, TR and D

if and only if, for all n ∈ Z+, S ∈ Ω, T ∈ H and for population income profiles

A = (Y1, Y2, ..., Yn) ∈ Ω, it is ordinally equivalent to

1

n

n∑

i=1

φ(f1(y∗i,1, zti+1), ..., fli
(y∗i,li

, zti+li
)) (2)

where φ : Ω→ R+ is continuous, increasing and convex in each of its arguments.

The functions flR+ × R+ → R+, l = 1, ..., li, are continuous in the arguments and

given the second argument, is decreasing and strictly convex in the first.

Proof : The first part of the proof of this result is similar to that of Proposition

1 and 3 in Tsui (2002), hence, we only present an outline of it. First of all, note

that the sufficiency part of this result is very easy to verify. For the necessity part,

we proceed as follows.

By property F, we can redefine the poverty measure P (.), in (1), on the censored
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income profiles Yi∗’s. Property D and S together implies that the aggregate measure

P (.) can be written as an aggregate of individual poverty levels
∑

n

i=1
φ1(Yi∗, ti, S, n),

where the identical functional form φ1(.) is due to (S). We now invoke (P) to arrive

at the average form given by

1

n

n∑

i=1

φ2(Yi∗, ti, S)

where φ2 : Ω × Z
−

× Ω → R+ is continuous, decreasing and strictly convex in

each of the arguments yi,k∗, k = 1, ..., li of Yi∗. The continuity and decreasingness of

φ2(.) follows from (C) and (M). Finally, convexity of φ2(.) in each argument follows

from (TR).

Now, let us look at the function φ2 more closely. The arguments ti are relevant

for the poverty calculations only so far as they indicate which element of S to link

with any argument of Yi∗. Thus, one can suitably redefine the φ2 function to

φ
3
(Yi∗; zti+1, ..., zti+li

) : Ω ×Ω→ R+

with similar properties. Now note that, the terms yi,k and zl do not interact with

each other if l �= ti + k. So, we may take such terms to be separable in φ
3. Also,

if the terms yi,k and yi,k′ for some k �= k
′
has scope for interaction, then we are

implicitly assuming intertemporal mobility of income. Now suppose yi,k > zti+k

and yi,k′ < zti+k′. Then the excess income, over subsistence, in period k may be

transferred to period k′ to ameliorate the extent of poverty in that period. So the

excess income in period k would have some effect on the poverty calculation. But

this violates (F). So, the terms yi,k and yi,k′ will be separable in the arguments of

φ
3. For similar reasons, the different zti+k terms will also be separable. Thus, finally

one can see that the only variables that may possibly interact among them are the

pairs (y∗i,k, zti+k), k = 1, ..., li. So, one can finally redefine φ3 to arrive at the form

of the aggregate poverty measure given by (2). The properties of the functions φ

and fl’s, l = 1, ..., li, are inherited from that of φ2.
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Theorem 1 identifies a general class of measures that are useful for application to

data and is simply parametrized. We will now look at the consequence of invoking

alternative invariance assumptions on the poverty measure in (2). Here one can

establish the following results.

Theorem 2: (a) The poverty measure given by (1) satisfies C, F, M, S, P, TR,

D and SI if and only if for all n ∈ Z+, S ∈ Ω, T ∈ H and for life time income

matrices A = (Y1, Y2, ..., Yn), it is ordinally equivalent to

1

n

n∑

i=1

φR(Ri) (3)

where Ri = (ri,1, ri,2, ..., ri,li) with ri,k = yi,k∗

zti+k

, for k = 1, ..., li. φR : Ω → R+ is

continuous, decreasing and strictly convex in each of the arguments ri,k, k = 1, ..., li

of Ri.

(b) The poverty measure given by (1) satisfies C, F, M, S, P, TR, D and TI

if and only if for all n ∈ Z+, S ∈ Ω, T ∈ H and for life time income matrices

A = (Y1, Y2, ..., Yn), it is ordinally equivalent to

1

n

n∑

i=1

φB(Bi) (4)

where Bi = (bi,1, bi,2, ..., bi,li) with bi,k = zti+k − yi,k∗, for k = 1, ..., li. φB :

Ω→ R+ is continuous, increasing and strictly convex in each of the arguments bi,k,

k = 1, ..., li of Bi.

Proof : (a) Define u as a subsistence requirement vector all of whose entries

equal one. Let R = (R1, ..., Rn) where Ri’s are as defined in the statement. Now

note that, due to SI, P (A,T, S, n) = P (R,T, u, n)

We now invoke the other axioms as in Theorem 1 to arrive at the form

1

n

n∑

i=1

φ(f1(ri,1, 1), ..., fli
(ri,li

, 1))

with the desired properties. Now, this can be redefined as equation (3). This

demonstrates the necessity part. Sufficiency can be easily verified by checking that

the class of poverty measure given by (3) satisifies all the assumptions.
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(b) Again, if we define the subsistence requirement vector O, all of whose

entries equal 0, we can similarly show that P (A,T, S, n) = P (B,T,O, n) where

B = (B1, ..., Bn).

We now invoke the other axioms as in Theorem 1 to arrive at the form

1

n

n∑

i=1

φ(f1(bi,1, 0), ..., fli
(bi,li

, 0))

with the desired properties. Now, this can be redefined as equation (4). Hence the

necessity. Sufficiency is once again easy to check.

4.2 Personal Life Time Poverty

Given that we can formulate a reasonable aggregation rule for interpersonal level

of poverty given by (3) or (4), depending on our value judgement about invariance

laws, one should now try and find a solution to the other problem that we mentioned

before; that of determining the life time poverty level of any peron. With the help

of the intertemporal axioms, this we proceed to do in the following theorem.

Theorem 3: (a) The poverty measure given by (1) satisfies C, F, M, S, P, TR,

D, SI, ITS and ITC if and only if for all n ∈ Z+, S ∈ Ω, T ∈ H and for life time

income matrices A = (Y1, Y2, ..., Yn), it is ordinally equivalent to

1

n

n∑

i=1

G(
li∑

t=1

ψR

li
(ri,t)) (5)

where G : R+ → R+ is continuous, increasing and convex. ψ
R

lI
: R+ → R+ is

continuous, decreasing and strictly convex.

(b) The poverty measure given by (1) satisfies C, F, M, S, P, TR, D, TI, ITS and

ITC if and only if for all n ∈ Z+, S ∈ Ω, T ∈ H and for life time income matrices

A = (Y1, Y2, ..., Yn), it is ordinally equivalent to

1

n

n∑

i=1

G(
li∑

t=1

ψ
B

li
(bi,t)) (6)
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where G : R+ → R+ is continuous, increasing and convex. ψ
B

lI
: R+ → R+ is

continuous, increasing and strictly convex.

Proof : (a) In view of theorem 2(a), we start with the form (3) and invoke ITC

on φR(Ri), this is analogous to imposing D on interpersonal poverty measures and

hence the form of φR(Ri) becomes

li∑

t=1

ψR

i,t
(ri,t).

Now the axiom ITS imposes symmetry between the functions ψR

i,t
for each t. So

the functions ψR

i,t
becomes independent on t and may only depend on li, which

is individual specific parameter. Thus we finally arrive at the form ψR

li
(ri,t) for

each ψR

i,t
(ri,t). Hence, the aggregate poverty measure now reduces to the form (5).

Sufficiency can be easily verified by checking that the class of poverty measure given

by (5) satisifies all the assumptions.

(b) The proof of this part is exactly similar to that of part (a), given theorem

2(b), and we omit the details.

The above theorem characterises a general class of aggregate life time poverty

measures that satisfy the set of axioms put forth. The final choice for a practitioner

may be any particular member of this class. This is a matter of value judgement

and specific forms will follow from specific assumptions that are taken on the form

of the functions G(.) and ψ(.) in theorem 3. Below we provide a few examples.

Simple illustrations of measures belonging to the class characterised by theorem

3 (a) is given by the following two examples. These would be reasonable measures

if we assume some version of intertemporal separability on our life time poverty

measure.

Example 1: Consider G(x) = x and

ψ
R

li
(ri,k) =

1

li
(1 − (ri,k)

δ).

So that the life time poverty measure becomes

P (A,T, S, n) = 1−
1

n

n∑

i=1

1

li

li∑

k=1

(
yi,k∗

zti+k

)δ, (5.1)

13



where 0 < δ < 1 is some constant. For δ = 1, this is analogous to average of

income gap ratio.

Example 2: An analogue of the FGT measure is when we consider G(x) = x

again and

ψ
R

li
(ri,k) =

1

li
(1 − ri,k)

α
.

Then P (.) becomes

P (A,T, S, n) =
1

n

n∑

i=1

1

li

li∑

k=1

(
zti+k − yi,k∗

zti+k

)α, (5.2)

where α > 1 is some constant.

Again, a simple example of measures belonging to the class characterised by

theorem 3 (b) is given in example 3 below.

Example 3: G(x) = x and

ψ
B

li
(bi,k) =

1

li
(bi,k)

α
.

Then,

P (A,T, S, n) =
1

n

n∑

i=1

1

li

li∑

k=1

(zti+k − yi,k∗)
α, (6.1)

for some constant α > 1. For α = 1, this can be written as

1

n

n∑

i=1

(
1

li

li∑

k=1

(zti+k − yi,k∗)) =
1

n

n∑

i=1

(
1

li

ti+li∑

k=ti+1

zk − Ȳi∗), (6.2)

the average shortfall over a person’s life time.

Note that these classes of measures closely resemble the aggregate deprivation

measures discussed in Mukherjee (2001). As poverty can be seen as a measure of

deprivation arising dute to shortfall from a subsistence level, this proximity is quite

natural.
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5 Premature Mortality

Now that we have characterised the aggregate life time poverty measures for a set

of individuals with a give life time and income profile, we will now try to tackle

the issue of premature mortality, as indicated in section 2. That is, we will now

ask how the length of life interacts with the income level and if so, how should we

incorporate that into the poverty measure discussed above.

Consider two populations of n persons all born at the same date. In each, there

are 2 poor persons with income y1 and y2 (> y1) in each period of their lives and (n-

2) persons who are non-poor throughout. All persons in population 1, all non-poor

and the richer poor in population 2 lives for two periods. The poorest in population

2 live only for one period.

Now, lets compare traditional snapshot poverty levels in the two periods. In the

first period, the income distributions are identical, so all usual measures will show

the same level of poverty for both the populations. In the second period, poverty

in population 2 will be lower according to any standard poverty measure because

the poorest person has died! In fact, even if we use the life time poverty measure

developed in the last section based on the life time income profiles of the persons in

these two populations, poverty would still be unambiguously no higher in population

2 than in 1. Something must be wrong.

To solve the above anomaly, we proceed in the following manner. For any popu-

lation, let us consider a normative length of life (say L); length of time each person

in the population is expected to live upto. If she dies before the age L (li < L) then

one has to take note of this premature death in the life time income profile itself.

To facilitate this, one has to extend the income profile of person i from Yi of length

li to, say, ̂Yi of length L. To achieve that, if li < L then for person i, the income

values are taken to be E(yi,1, ..., yi,li
), E : Ω→ R+, in each of the periods li+1, ..., L.

Thus, this function gives us a proxy for the fictitious ”income” of a dead individual.

We assume that (i) E is increasing in each argument, (ii) 0 < E(x, .., x) ≤ x for
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x > 0 and (iii) E(x1, .., xm) ≥ z if xi ≥ ztx+i for all i and for any m ∈ Z+ (tx being

the birthdate of this person). These assumptions ensure that the proxy income is

positive and less than the living income. That is, a person is better off alive1. Also,

if a person was rich in all periods of his lifetime, then his proxy income will also

be a nonpoor income. This assumption implies that a dead rich person’s presence

will not affect any poverty measure that focusses only on the incomes of the poor.

Thus, if person i dies at age 3 < L, then for this person we have the income profile

̂Yi = (yi,1, yi,2, yi,3, e, ..., e) ∈ R
L

+
where e = E(yi,1, yi,2, yi,3). We need to impose

certain structure on the function E(.) for it to be consistent with SI (or TI). This is

(iv) E(λx1, ..., λxm) = λE(x1, ..., xm) for any m ∈ Z+. That is, E(.) is homogenous

of degree one (or (iv) E(aU + X) = a + E(X) for any X ∈ Ω, U being a vector

of ones of the same order as X and any a ∈ R such that aU + X ∈ Ω). Call the

extended income profile for the population ̂A = { ̂Yi, i = 1, ..., n}.

We now focus our attention on the possible alternative specifications of the func-

tion E(.). Lets take a look back at our example of two populations discussed at the

beginning of this section. If we assume that E(y1) = y1 as the second period proxy

income for the poorest individual in population 2, then the poverty profiles will be

identical for both the populations using the modified normative life time measures.

That is, the poverty measure becomes insensitive to the fact that the poorest died

early in population 2. Thus, the substitution of E(y1) = y1 (as done here) achieves

a neutrality to death for our life time poverty measure, whereas earlier (without the

correction for premature mortality) it was mortality averse (poverty reduces if poor-

est people die off). If we take E(y1) < y1, then this is consistent with the ”better

off alive” assumption. This way a penalty can be imposed on premature mortality.

So, we define the aggregate normative life time poverty measure defined on the

1
One can also think of a situation where the death of a poor person may be considered as

putting him out of his misery and hence improves the fictitious individual’s well being. But this

would immediately bring us back to the discussion involving the repugnant conclusion.
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extended profile ̂A for the population under consideration by

P
e

= P
e

( ̂A,T, S, n) : Ω×H ×Ω × z+ → R+. (7)

One can now invoke the assumptions laid out in section 3 on the extended in-

come profiles ( ̂Y1,
̂Y2, ...,

̂Y
n
), in an analogous fashion to theorem 1 and 2, to arrive

at similar personal life time poverty measures. Thus, individual level normative life

time poverty may now be redefined as φe
R
( ̂Ri) or φe

B
( ̂Bi) (depending on whether SI or

TI is invoked), where ̂Ri = (̂ri,1, ..., ̂ri,L) with ̂ri,t = ̂yi,t∗/zti+t and
̂Bi = (̂bi,1, ...,

̂bi,L)

with ̂

bi,t = zti+t − ŷi,t∗ for t = 1, ..., L and i = 1, ..., n. Under the intertemporal ax-

ioms, ITS and ITC, one can now finally state the following modification of Theorem

3.

Theorem 4: (a) The normative life time poverty measure given by (7) satisfies

C, F, M, S, P, TR, D, SI, ITS and ITC if and only if for all n ∈ Z+, S ∈ Ω,

T ∈ H and for normative life time extended income matrices ̂A = (Ŷ1, Ŷ2, ..., Ŷn), it

is ordinally equivalent to

1

n

n∑
i=1

G
e(

L∑

t=1

ψ
R

e
(r̂i,t)) (8)

where Ge : R+ → R+ is continuous, increasing and convex. ψR

e
: R+ → R+ is

continuous, decreasing and strictly convex.

(b) The normative life time poverty measure given by (7) satisfies C, F, M, S,

P, TR, D, TI, ITS and ITC if and only if for all n ∈ Z+, S ∈ Ω, T ∈ H and for

normative life time extended income matrices ̂A = (Ŷ1, Ŷ2, ..., Ŷn), it is ordinally

equivalent to

1

n

n∑
i=1

G
e(

L∑
t=1

ψ
B

e
(b̂i,t)) (9)

where Ge : R+ → R+ is continuous, increasing and convex. ψB

e
: R+ → R+ is

continuous, increasing and strictly convex.

Proof : Proof is immediate given that of theorem 3. We only need to consider

the extended profiles and impose ITC and ITS. The function ψ(.) is forced to be the
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same for all individuals as all the lengths of life now are equal. Hence we redefine it

to be ψR

e
or ψB

e
in (a) and (b) respectively.

Example 4: (a) To illustrate the above theorem, consider the following form of

the individual poverty indicator ψB

e
given by ψB

e
(̂bi,t) =

1

L
(̂bi,t)

α and Ge(x) = x. The

poverty measure would then be given by

P
e(Â, T, S, n) =

1

nL

n∑
i=1

(
L∑
t=1

(b̂i,t)
α). (9.1)

Similarly if we consider ψR

e
(r̂i,t) =

1

L
(1 − ̂ri,t)α and Ge(x) = x, we will obtain

P
e(Â, T, S, n) =

1

nL

n∑
i=1

(
L∑
t=1

(1− r̂i,t)
α). (8.1)

This once again is an analogue of the FGT measure.

Also, our definition of the vector Ŷi implies that if a poor person dies before the

normative age, then she will be considered as if she were poor during the periods

subsequent to her death. As we will show, this has extremely interesting implications

in the context of our measurement methodology.

To illustrate the difference of the measures we discuss with the traditional mea-

sures of poverty that do not take into account the mortality patterns of the popu-

lation under consideration, consider the following example.

Example 5: Suppose the poverty measure we are using is analogous to income

gap ratio. Consider two populations. Assume that the normative life time for both

the population is 100. The subsistence requirement is $ 1 each period.

Suppose in population 1, the percentage of poor is 20, all of whom live for 50

years and have $ 1 income in each period of their lifetime. The proxy income, when

they are dead, is taken to be $ 0 (as a limiting value, for simplicity). Hence, the

premature mortality corrected income gap ratio for this population will be given by

I1 = 20%× (1 - 50

100
) = 10% Population 2 has 15% poor who live for 30 years and

also earn $ 1 each period with proxy income $ 0. We similarly compute I2 = 15%×

(1 - 30

100
) = 10.5%.
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In this example, the traditional poverty gap measure and its usual life time ver-

sion shows a lower value for population 2 but as the life span is much shorter, our

mortality corrected measure shows a higher value for population 2 than for popula-

tion 1.

Our methodology outlined above can be easily adapted for empirical purposes,

as indicated in section 2. For a currently living population, we need to have data

on birth dates (ti), length of life (li) and income profiles (Yi) of each member i in

the population. Then one has to decide on a normative length of life L for this

population to decide on the relevant set and a suitable proxy income function to

arrive at the extended profiles, ̂Yi, for each (possibly hypothetical) person in the

relevant set. The relevant set can be determined as discussed in section 2 above.

Then, using equation (8.1) or (9.1), the aggregate poverty measure for the extended

profile will now look like

1∑
n

i=1
I(L/li)

n∑
i=1

I(L/li)
1

L

L∑
t=1

(1 − r̂i,t)
α (8.2)

or
1∑

n

i=1
I(L/li)

n∑
i=1

I(L/li)
1

L

L∑
t=1

b̂i,t
α

. (9.2)

Note that this poverty measure will have all the desirable properties discussed

in section 3. Now, if we take the income of each individual to be the same at each

period of his/her life (say yi) and take the subsistence requirements to be the same

also (say z), then (8.2) and (9.2) reduces to

1
∑

n

i=1
I(L/li)

n∑

i=1

I(L/li)(
z − yi∗

z
)α (8.3)

and
1

∑
n

i=1
I(L/li)

n∑

i=1

I(L/li)(z − yi∗)
α (9.3)

respectively. Note that (8.3) is just the measure P l discussed in section 2.
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6 Conclusion

In the presence of premature mortality for the poorer sections of the population,

standard snapshot poverty measures will show a decrease. To avoid this welfare

measurement paradox, in this paper we develop and characterise a poverty measure

based on the life time income profile of an individual. This measure does not exhibit

such paradoxical behaviour but one can further modify this measure, defining it on a

normative rather than actual life time of the individuals so that premature mortality

of the poor actually effects the poverty measure positively. We characterise and

illustrate such a measure here and indicate how to compute this measure in practise

in a simple fashion. Choice of the normative length of life, L, is a crucial issue

for this life time poverty measurement. The poverty ranking of a population may

change with respect to other population groups if the value of L is changed, say from

80 to 70 years. Thus, a careful choice of L is an important element of this analysis.

We could have put forth a two-dimensional snapshot measure of well-being as a

solution to this problem, with poverty and life expectancy of the population as the

two determinants. But that would still have missed looking at the poor who are

actually, but albeit prematurely, dead. This measure takes account of vital events

like birth and death. But one could think of other important demographic events

like immigration and emigration that affects the poverty status of a population.

These issues are beyond the scope of our structure, but one might put forward a

tentative solution as follows. An immigration or emigration results in a left or right

truncated income profile for the relevant individual. For example, a profile like

(y1, ..., yk) or (Yk+1, ..., yl) where l is the life time of the individual and k < l is the

year of transition. One may now complete these vectors as (y1, ..., yk, zk+1, ..., zl)

or (z1, ..., zk, yk+1, ..., yl), where zt is the subsistence requirement relevant for the

period t of the individual’s life time. A substitution of this type will make the

poverty measure neutral to the income of this person in periods when she did not

belong to the population. Now, these extended profiles may be used in place of
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the original truncated profiles and life time povery level for the individuals may be

computed in the usual fashion.
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