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Abstract: 
In this working paper we demonstrate that some of the statistical tests used by Huang and Smith in a 
recent Land Economics article (74(2 1998): 186-202) were erroneous, and raise concerns about their 
corresponding conclusions. Specifically, using data from one of the studies that they showcase, we 
demonstrate that Huang and Smith’s analysis suggesting statistical equality between hypothetical 
dichotomous choice responses and actual contributions is incorrect. We further show that their purported 
equality between dichotomous choice and open-ended response formats is unfounded. Based on these 
analyses we conclude that when real humans make real or stated decisions, the observed procedural 
variance across elicitation methods and the degree of hypothetical bias are more fundamental than relying 
on alternative econometric specifications. 
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I. INTRODUCTION 
 

In a recent article, Huang and Smith (1998, hereafter HS) use Monte Carlo simulation 

methods to suggest that the procedural variance observed between open-ended (OE) and 

dichotomous choice (DC) contingent valuation (CV) responses can be attributed to specification 

error in modeling the DC responses. In particular, HS argue that employing alternative 

specifications of the error term for DC responses can provide estimates of mean willingness to 

pay (WTP) that are “virtually identical to the mean of the raw data derived with open-ended CV 

and not significantly different from the mean…for actual purchases” (p. 191). Hence, they claim 

that the evidence from a large body of laboratory and field research that DC-CV question 

formats yield substantially larger estimates of mean WTP than OE response methods is 

“unfounded” (p. 187).  While we applaud the Monte Carlo methods used by HS to demonstrate 

that error specification is important in providing unbiased and accurate estimates of WTP and 

conditional WTP, we wish to caution the reader that alternative specifications of the error term 

are not likely to bridge the gap between OE and DC WTP estimates.  When real humans make 

real or stated decisions, observed procedural variance across elicitation methods and the degree 

of hypothetical bias are more fundamental than relying on alternative econometric specifications. 

To demonstrate this point we roughly follow the organization of the HS paper.  In the 

following section we provide a brief review of the Balistreri et al. (2001) data showcased by HSi.  

This data is used to demonstrate that, in contrast to the HS paper, the mean WTP estimate from 

DC-CV data is significantly different from actual contributions and that the DC and OE 

distributions are significantly different from each other. In the third section we raise concerns 

about the functional forms, error distributions, and welfare estimates used in the Monte Carlo 
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analysis of HS.  Using a broader range of utility-theoretic specifications than the linear logistic 

and probit models employed by HS, we demonstrate that employing alternative error 

specifications is not likely to overcome the observed disparity in mean WTP values across 

elicitation methods. The fourth section addresses concerns about the Turnbull lower bound 

estimator used by HS in support of their not significantly different and virtually identical claims, 

and the increased application of this method to provide “conservative” estimates of mean WTP 

from DC-CV responses.  We conclude with some final thoughts on relying on alternative error 

specifications, rather than seeking a better understanding of human generated responses, to 

measure and correct for procedural variances observed in applied economic research. 

 
II. ON “NOT SIGNIFICANTLY DIFFERENT” AND “VIRTUALLY IDENTICAL” 

 
The Balistreri et al. study compared mean WTP values obtained from an English Auction 

(using real money) with hypothetical DC and OE survey responses for an insurance policy 

against a known loss ($10) with a known probability (40%).  Participants were endowed with 

$80, being actual or hypothetical money depending on whether actual or hypothetical WTP 

values are elicited.  In Table 2 of their paper, HS provide a partial summary of the Balistreri et 

al. results.  Actual values elicited from an English Auction provide a mean WTP of $3.66 with a 

standard deviation of 1.15 (n=52), which is slightly, but significantly, below the expected value 

of $4 for such an insurance policy (t=2.13, p=0.04)ii.  In such an auction prices are raised 

sequentially until the bidding stops (i.e., only one active bidder remains).  This method is 

relatively transparent and incentive compatible for private goods (Davis and Holt, 1993) and 

hence serves as a reference point for assessing hypothetical bias.  In this same table, the mean 

derived from the hypothetical OE responses is $4.58 (standard deviation = $5.38, n=345).  Mean 

WTP values derived from DC responses, wherein the price of the insurance policy is varied 
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across respondents is $5.77 (standard error = $0.26) for the non-negative mean of a linear 

logistic WTP function and $5.63 (standard error = $0.26) using the entire linear logistic 

distribution, including possible negative valuesiii.   Using methods described in Haab and 

McConnell (1997) HS further estimate the non-parametric Turnbull lower bound estimate of the 

mean ($4.56, standard error =$0.31).  Note that in presenting these results we are careful to 

distinguish between the standard deviation of the distribution and the standard error of the mean. 

The above statistics provide enough information to assess the validity of the HS claim 

that DC responses provide a mean WTP estimate that is not significantly different from the 

estimated mean for actual purchases.  Unfortunately, in making this claim, HS do not provide 

information about how this conclusion was reached.  One may conjecture from the statistics 

provided in Table 2 of HS that a difference of means t-test was applied.  A widely adopted form 

of this test, which accommodates unequal sample variances from two independent samples, is 

known as ‘Welsh’s approximate t’. The test statistic is: 
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When this difference of means test is applied to the summary data from the Balistreri et al. study, 

we reach exactly the opposite conclusion than that reached by HS –  even when the lowest 
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possible estimate of the DC response function is used (i.e., the Turnbull lower bound estimate), 

the mean WTP estimate is significantly higher than actual contributions.  The t statistic from this 

test is 2.58 (d.f. = 425.36) resulting in a significance level of p = 0.01.  As such, we maintain that 

the “not statistically different” claim made by HS is itself unfounded.  

In contrast, we concur with HS that the mean WTP estimate derived from DC data using 

the Turnbull Lower Bound method is virtually identical to the raw mean obtained from the OE 

data.  Indeed, if anything, the point estimate for the Turnbull Lower Bound estimate is lower 

than that for the OE data. But does this measure of central tendency really reflect the underlying 

differences in the distributions? We think not. 

In addressing this issue, it is helpful to have additional information on the distributions of 

responses from these two formats.  Table 1 replicates Table 3 in Balistreri et al. (2001): the first 

column indicates the posted price or bid values used in the DC questionnaire, the second column 

indicates the number of responses obtained at each bid value, and the third column provides the 

proportion of DC respondents that “accepted” the posted price.  The last two columns report the 

estimated, rounded number of OE respondents, and corresponding proportions, that would have 

answered yes to each DC value, assuming that respondents would have chosen to buy the 

insurance if the posted price had been less than or equal to their OE valuesiv.  These proportions, 

along with the survival, or reverse cumulative, distribution, of the OE responses are depicted 

graphically in Figure 1.  For reference purposes all OE responses are provided in Appendix 2.   

 From Table 1 and Figure 1, it should be readily apparent that the DC responses 

stochastically dominate the OE responses.  At some of the posted prices the probability 

difference between the two methods is relatively small (e.g., 5.62% at $1), while at others it is 

quite substantial (e.g, 16.14% at $6).   Regardless of magnitude, the fact remains that at every 
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point at which we have a possible comparison, the OE survival function lies below the DC 

survival function.  

Stochastic dominance need not imply significance.  Unfortunately, we have a problem of 

comparability.  The OE survival function is continuous while the DC survival distribution is not. 

To make these two sets of data comparable, either both have to be converted to continuous 

distributions or both have to be converted to discrete functions.  Balistreri et al. followed the 

former approach, rejecting the null hypothesis of equality between OE and DC (p<0.01, 

χ2(2)=15.11) using linear logistic error specifications.   Here, we make use of the converted OE 

values provided in Table 1 and conduct a Kolmogorov-Smirnov type test. We return to 

comparisons associated with continuous distributions in the following section. 

The Smirnov Test (Conover, 1980) can be used to test whether two empirical 

distributions are equal, when the distributions are derived from two mutually independent, 

random samples. Because of the discrete nature of our data, however, this test is conservative 

(Noether, 1967).  The Smirnov Test statistic is exactly the same as the Kolmogorov-Smirnov D-

statistic:       

    D = max | F (x) – G (x) | 

 
where F(x) and G(x) depicts the DC and OE distributions, respectively. The maximum distance 

between distributions is 0.1614 and occurs at $6. Applying the appropriate formula in Conover 

(1980, p. 473), the large-sample approximation for the critical D0.01 value is 0.12 and so we 

reject the hypothesis of equal distributions beyond the 1% significance level. 

Given these statistical results and the observation that the DC distribution stochastically 

dominates the OE response function, why then did HS get a result in which the estimated mean 

WTP for the DC responses lies below, but not significantly so, the OE mean WTP?  In part the 
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answer lies in the fact that the HS article only considers alternative specifications for the DC 

responses and took the raw mean from the OE as given.   

However, fair and complete tests of comparability necessitates that we consider 

shortcomings and modifications to both sides of the comparison.  Recall, that the raw mean of 

the data is drawn from a simple average of WTP values reported to avoid the risk of a 40% 

chance of losing 10 dollars.  Inspection of Figure 1 and Appendix 2 indicate that 16 (or 4.63%) 

of the OE observations exceeded the highest possible loss of $10v with six observations at $30 or 

higher.  These extreme, “irrational” values exert a strong influence on the mean and the variance 

of the OE responses, both of which are critical to the standard difference of means test.  

Following experimental economics standards that all values be retained, regardless of whether 

they appear irrational or not, Balistreri et al. used the entire data set in calculating the mean WTP 

of $4.58.  In making this decision, they note however, that the irrationally high “bids, as is 

typically done in CV studies might justifiably be trimmed” (p. 281). 

For demonstrative purposes, rather than dropping these observations entirely from the 

data set, we recoded these elevated values to the highest “rational” response of $10.  In this case 

the mean WTP falls to $3.88 (s.d = 2.61, n = 345).  This estimated mean is not significantly 

different from the expected value of $4 (t=0.84, p.0.40) nor is it different from the English 

Auction results (t=1.05, p.0.30).  It is however, marginally different than the Turnbull estimate 

(t=1.99, p.0.05).  Alternatively, in an effort to ensure comparability between elicitation formats, 

these extreme values might be recoded to $12, the highest value in the DC bid vector.  Under 

these conditions the estimated mean is $3.97, which is not significantly different from the 

expected value of $4 (t=0.17, p.0.87) nor the value obtained from the English Auction (t=1.42, 
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p.0.16).  This value is still marginally different than the Turnbull lower bound estimate (t=1.69, 

p.0.09), lying between the 5 and 10 percent level of significance.   

 
III. ON FUNCTIONAL FORM, ERROR DISTRIBUTIONS, AND WELFARE 

ESTIMATES 
 

Omission of relevant explanatory variables and misspecification of the functional 

relationship between the dependent variable and explanatory variables are common econometric 

problems that can lead to erroneous economic conclusions. The Monte Carlo results of HS 

illustrate this well-known finding in the specific context of DC-CV.  However, the algebraic 

model HS use to benchmark the degree of specification error is suspect. 

Our caution about applying the HS results stems from the fact that the algebraic model 

used by HS to demonstrate specification error is inconsistent with the structure of their Monte 

Carlo experiment.  By construction, their various preference specifications restrict the utility 

difference to be positive.   However, in some 924 of their 4800 cases “technically feasible but 

economically implausible…negative use values” did occur (p. 197).  As described in their 

footnote 18, such observations were deleted.  The potential problem with such a selected 

simulation approach arises because the linear logistic and probit models used in the subsequent 

HS analysis are unbounded, including possible negative values.  As pointed out by Haab and 

McConnell (1998) in the same issue of this journal, “if the distribution of WTP is known to have 

lower and upper bounds which are narrower than implied from the estimation, then the initial 

model is misspecified and the parallel estimates are inefficient, failing to use all the available 

information and inconsistent from assuming the wrong distribution of WTP” (p. 217).   As such, 

the HS demonstration of specification errors may itself be associated with the fact that they 

chose specifications that are not consistent with their underlying experimentvi. 
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Our concern here is whether a similar misspecification in the Balistreri et al. paper, 

wherein an unbounded linear logistic function was applied to data that was unambiguously non-

negative, could have led to erroneous rejections of equality between estimated mean WTP values 

from the DC and OE data.  To investigate this possibility we reestimate the DC-WTP 

relationship using specifications of the error term that are consistent with utility-theoretic 

restriction that the utility difference be non-negative (see Hanemann and Kanninen, 1999). In 

arriving at these estimates, the structure of the laboratory experiments precluded using many 

different specifications for the algebraic modelvii.  Hence, we restrict ourselves to an algebraic 

model that specifies the yes/no response choice as a function of a constant term and either the 

bid or the natural log of the bid.  Using logistic, normal and two-parameter Weibull error 

distributions, we further impose a theoretically desirable constraint on the upper bound of the 

estimated WTP distribution. Each experiment participant is (hypothetically) endowed with $80 

and so estimated WTP should fall at or below $80. However, based on OE responses, the upper 

bound of estimated WTP is likely to be closer to $40. We employ two approaches to imposing 

this upper bound restriction. First, we normalize/truncate the estimated cdf using the approach of 

Boyle, Welsh, and Bishop (1988). Second, we impose the restriction that an individual’s WTP 

lie between zero and $40 directly into the econometric model through a technique referred to as 

“pinching” (Ready and Hu, 1995). Finally, we abandon all algebraic model and error distribution 

assumptions and use Kriström’s (1990) nonparametric approach and the Turnbull lower bound 

estimate (see Haab and McConnell, 1997). Using linear interpolation, the upper bound for the 

Kriström nonparametric estimator is $15.60. The parameter estimates for the various 

specifications we explore are included as Appendix 2. 
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Overall, we obtain eleven different mean WTP estimates and report these values - along 

with the linear logistic and probit estimates - in Table 2. Standard errors and 95% confidence 

intervals for the parametric specifications are estimated using the Krinsky and Robb procedure 

with 10,000 random draws (see Park, Loomis, and Creel, 1991).  Standard errors and confidence 

intervals for the non-parametric specifications are calculated using formulas provided in the 

literature (Haab and McConnell, 1997).  Empirical distributions of mean WTP for the OE, 

English Auction, and non-parametric specifications were generated from the respective sample 

means and standard errors.  The convolutions method (Poe, Severance-Lossin, and Welsh, 1994) 

is used to conduct statistical tests under the null hypothesis that the mean WTP estimates from 

the raw OE data are equal to corresponding estimates obtained from the DC responses.   

As indicated in Table 2, the hypothesis of identical OE and DC mean WTP can be 

rejected for all specifications at the 5% significance level or greater, with the sole exception 

being the Turnbull lower bound estimate. Not surprisingly, all DC mean WTP estimates are 

statistically different than the English Auction estimates.  Note, in particular, that this 

bootstrapping of means approach corroborates the earlier parametric comparisons of Turnbull 

and English auction estimates. 

 
IV.  ON LOWER BOUND APPROACHES 

 
To this point we have merely used the statistics provided by HS and a reexamination of 

the Balistrei et al. data to refute the “statistical different” and “virtually identical” statements 

made by HS and to express our concerns about the Monte Carlo simulations.  Under a broad 

range of specifications we found that the HS claims cannot be supported.  The only instance in 

which equality does appear to hold across elicitation methods is when the most extreme lower 
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bound assumption regarding DC responses is made.  Here we raise particular concerns about this 

estimator and its increased use in CV. 

The application of the Turnbull lower bound approach in CV appears to have arisen out 

of “highly publicized damage assessment cases” (Haab and McConnell, 1997) and the 

corresponding desire to have a legalistically defendable, conservative estimate of hypothetical 

WTP (see Harrison and Kristr m, 1995).  Briefly, this estimator masses all the positive WTP 

responses at the corresponding DC value (for a more detailed presentation see Haab and 

McConnell, 1997), rather than assuming that the distribution of WTP includes values that lie 

between DC levels. 

Our hesitation towards the increased application of this method arises out a number of 

interrelated concerns.  First, while we agree that the Turnbull estimate is relatively transparent, 

uses only the information provided and could, perhaps, be regarded as the “minimum legal” 

WTP from implicit DC “contracts” between the researcher and the respondent (Harrison and 

Kriström, 1995), we maintain that the goal of CV should be to provide the best, rather than lower 

bound, estimate of WTP.  When hypothetical bias is found to exist, we argue that there is a 

greater need to explore how and why respondents provide answers that appear “inconsistent” 

with actual contributions instead of relying on technical, and as we demonstrate below somewhat 

arbitrary, econometric permutations to bring hypothetical DC values down to apparently 

reasonable levels.  That is, our efforts should be directed towards developing question formats 

that help respondents provide more realistic representations of their underlying WTP.  Some 

recent, promising modifications to the DC methods along these lines are presented by Champ et 

al. (1997), Poe and Welsh (1998), Cummings and Taylor (1999) and Ready, Navrud, and 

Dubourg (2001). 
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We also question the apparent equating of the terms “distribution free” and “assumption 

free” that occurs by some defenders of the Turnbull approach.  By massing points at the DC 

values rather than, say, assuming the values to be distributed between DC bids as was done by 

Kriström (1990), the modeler is making the rather strong assumption that all values can be 

massed at their corresponding DC bid function.  Examination of the OE WTP distribution in 

Figure 1 shows that such an assumption is counterfactual.  That making such an assumption 

grossly influences estimated mean values is demonstrated by applying the Turnbull lower bound 

estimator to the converted OE responses in Table 1.  Under these assumptionsviii the mean WTP 

value is estimated to be $3.25 (standard error = $0.25) which is lower than the mean WTP for the 

English Auction, but not significantly so (t=1.39, p.0.17).  However, in stark contrast to HS, 

imposing this parallel assumption on the OE data engenders a highly significant difference 

between the Turnbull lower bound DC estimate and OE mean WTP (t=3.30, p<0.01).   

Additional concern about using the Turnbull estimator as providing a lower bound 

estimate of WTP is that it is highly dependent upon the bid vector, a point raised in Haab and 

McConnell (1997) and empirically demonstrated here.  In turn this dependence “suggests caution 

with respect to absolute interpretations of the welfare measure” to be the lower bound estimate 

(Haab and McConnell, 1997, p. 259).  To demonstrate this point, we start with the full bid design 

used in Balistreri et al.ix, explore the effects on mean WTP associated with dropping one of the 

bid levels (and the corresponding responses) from the data set, and compare the resulting values 

with those obtained from the Kriström (1990) specification, which masses values equally across 

the bid interval, and a series of non-negative “pinched” parametric distributions.  The results 

from this exercise are provided in Table 3.  As shown, relative to the full bid vector the 

“jackknifed” bid vectors lower the Turnbull lower bound estimates for each alternative, 
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sometimes substantially.  In contrast, the corresponding measures of WTP derived from the 

Kriström and parametric approaches tend to vary around the full bid vector value and exhibit a 

lot less fluctuation.  Using the full bid vector as a reference point, the jackknifed Turnbull Lower 

Bound estimates exhibit a much higher mean squared error (0.30) on average than that of the 

Kriström (0.04) and the continuous parametric distributions (0.04 to 0.07).  As such, the near-

perfect alignment of the mean OE and the corresponding Turnbull estimate from DC responses 

appears to be a serendipitous result particular to the bid design used in Balistreri et al. 

In summary, we have substantial concerns about the estimator that HS used to support 

their not statistically significant and virtually identical claims, and broader concerns about the 

increased use of this estimator in CV research.  Adopting equal, counterfactual assumptions for 

the OE responses drives a wedge between the mean OE and DC estimates.  Further, Turnbull 

lower bound estimates are extremely dependent upon the bid vector, to the extent that they may 

be regarded as somewhat arbitrary values.  It appears that estimation methods that assume a 

continuity in values are less susceptible to changes in the bid structure. 

 
 

V.  SUMMARY AND CONCLUSIONS 
 

In the abstract of their paper, HS maintain that the “belief that discrete contingent 

valuation questions yield substantially larger estimates of the mean (and median) willingness to 

pay (WTP) for nonmarket resources is unfounded” (p. 186).  This claim is purportedly supported 

by their reassessment of the results from specific studies on elicitation effects. Drawing WTP 

values from known distributions, they then conduct Monte Carlo simulations to show that the 

degree of error associated with commonly used DC response functions can “easily span the 

differences between” OE and DC results (p. 200). 
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Using data from one study showcased by HS, we show that reasonable, and correct, 

statistical comparisons refute their statements that respecifications can provide DC values that 

are virtually identical to OE responses and not statistically different from actual WTP. While we 

applaud their efforts to demonstrate the importance of specification error and omitted variable 

bias in the estimating WTP, our close examination of the one data set that they use to support 

their claims and that is available to us, leads us to conclude that assuming simulated individuals 

and employing creative econometrics may provide some useful insights on the expected 

magnitude of the difference, but will not obviate the fundamental observation that a disparity 

occurs between DC and OE mean WTP values.  Human subjects reporting real and hypothetical 

values apparently demonstrate behavioral tendencies that lead to hypothetical bias and 

procedural variance.   Rather than assuming away these behaviors, a more promising research 

agenda would be to increase our understanding as to why these systematic differences occur and 

to develop elicitation methods that account for these sorts of variation. 

   

 



 

Appendix 1. Distribution of Open Ended Responses 
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Appendix 2. Parameter Estimates for Various Willingness to Pay Functions 
 
Distribution Constant 

(s.e.) 
Slope 
(s.e.) 

χ2 Log-L Pseudo R2 

Logistic 2.6876 
(0.2744) 

-0.4771 
(0.0501) 

144.97 -214.90 0.2522 

Log-Logistic 3.4234 
(0.4082) 

-2.1094 
(0.2441) 

144.83 -214.96 0.2520 

Pinched 
Logistic 

4.4199  
(0.7273) 

-2.4962 
(0.4178) 

148.04 -213.36 0.2576  

Weibull 2.9802  
(0.2906) 

-1.5641 
(0.1579) 

147.76  -213.50 0.2571 

Pinched 
Weibull 

3.5017  
(0.4139) 

-1.7269 
(0.2182) 

147.94 -213.41 0.2574  

Normal 1.5790 
0.1486 

-0.2763 
(0.0263) 

143.98 -215.39 0.2505 

Log-Normal 1.8604 
(0.1941) 

-1.1575  
(0.1172) 

141.77 -216.49 0.2467 

Pinched 
Normal 

2.7454 
(0.5268) 

-1.5472 
(0.2985) 

146.34 -214.21 0.2546 

 



  
Appendix 3.  Likelihood Functions and Coefficient Estimates for Various Parametric Forms Used 
in This Comment. (Note: Ui denotes the upper bound; Yi=1 if WTPi ≥ bidi): 
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Log-Logistic 
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Pinched Log-Logistic 
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Table 1: Results from the Dichotomous Choice Survey and Conversion of Open-Ended Responses 
to Dichotomous Choices 

 
Dichotomous Choice Converted Open-Ended  

 
Price 

 
Total Number of 

Observations 

 
Percentage that 

Accepted the Posted 
Price 

 
Average Number of 

Observations 

Average Percentage 
that Would have 

Accepted the Posted 
Price 

 
$1 

 
94 

 
93.62% 

 
77 

 
88.00% 

 
$4 

 
174 

 
67.82% 

 
143 

 
55.92% 

 
$6 

 
31 

 
32.26% 

 
25 

 
16.12% 

 
$8 

 
87 

 
24.14% 

 
71 

 
8.43% 

 
$12 

 
35 

 
11.43% 

 
29 

 
4.90% 

 
 
Source:  Taken from Table 3 in Balistreri et al., 2001. 



  
Table 2: Comparison of Mean and Median WTP Estimates 
 
Parametric Specifications, 
Assuming Non-Negativity 

Mean Std. 
Error 

95% 
C. I. 

Pr(= OE)c PR(=EA)d 

Log-logistic 
 

7.57 1.1837 [6.34, 10.56] <0.001 0.000e 

Truncated Log-logistic 
 

6.69 0.4008 [5.99, 7.55] <0.001 0.000e 

Pinched Log-logistic 
 

6.36 0.4417 [5.70, 7.42] <0.001 0.000e 

Log-normal 
 

7.25 0.8243 [6.15, 9.29] <0.001 0.000e 

Truncated Log-normal 
 

6.86 0.4595 [6.03, 7.82] <0.001 0.000e 

Pinched Log-normal 
 

6.27 0.4668 [5.62, 7.43] <0.001 0.000e 

Weibull 
 

6.04 0.3558 [5.46, 6.85] <0.001 0.000e 

Truncated Weibull 
 

6.04 0.3574 [5.46, 6.45] <0.001 0.000e 

Pinched Weibull 
 

6.60 0.4713 [5.88, 7.71] <0.001 0.000e 

Non-Parametric Specifications      
Kriström  
 

5.87 0.3150 [5.23, 6.48] 0.003 0.000e 

Turnbull 
 

4.56 0.3079 [3.96, 5.16] 0.961 0.009 

Parametric Specifications, 
Allowing for Negativity. 

     

Linear Logistic 
 
   Mean 
 
   Non-Negative Meana 

 

 
 

5.63  
 

5.77 

 
 

0.2640 
 

0.2672 

 
 

[5.14, 6.18] 
 

[5.30, 6.35] 

 
 

0.006 
 

0.002 

 
 

0.000e 

 

0.000e 

Linear Normal 
 
   Mean 
 
   Non-Negative Meanb 

 
 

5.72 
 

5.80 
 

 
 

0.2644 
 

0.2679 

 
 

[5.22, 6.26] 
 

[5.33, 6.38] 

 
 

0.003 
 

0.001 

 
 

0.000e 

 

0.000e 

a  Non-negative mean calculated using formula in HS footnote 13. 
b Non-negative mean calculated using numerical integration. 
c  OE (open ended) values are mean=4.58, standard error=0.2894, 95% CI=[4.01, 5.15]. 
d EA (English Auction) values are mean=3.66, standard error=0.1595, 95% CI=[3.34, 3.97]. 
e The two vectors being compared do not overlap. 



  
Table 3: Mean Willingness to Pay Estimates  for Various Bid Vectors 

 
Data Description 
[Bid Vector] 

Turnbull   Kriström Pinched Log-
Logistic 

Pinched 
Weibull 

Pinched Log-
Normal 

Full Bid Vector 
[$1,$4,$6,$8,$12] 

4.56 5.87 6.36 6.60 6.27 

Jackknife Bid Vector 
[$1,$4,$6,$8] 

4.10 5.67 6.26 6.25 6.06 

Jackknife Bid Vector 
[$1,$4,$6,$12] 

4.30 5.89 6.58 6.96 6.62 

Jackknife Bid Vector 
[$1,$4,$8,$12] 

4.39 6.15 6.52 6.77 6.41 

Jackknife Bid Vector 
[$1,$6,$8,$12] 

3.49 5.60 6.04 6.32 5.92 

Jackknife Bid Vector 
[$4,$6,$8,$12] 

4.30 5.84 6.24 6.57 6.19 

Mean Squared Errora 0.30 0.04 0.04 0.07 0.06 
 

a  Using value for “Full Bid Vector” as the reference level.  



  

 
 

 

Figure 1: Survival Functions (F($)): Raw Open-Ended, Open-
Ended at DC Thresholds, and DC
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  Footnotes 

 
                                                           
i HS cite an earlier working paper by Balistreri et al. in their study.  The difference between the two versions is largely 
editorial. 
 
ii Throughout, two-tailed tests and 5 percent levels of significance are used.   
 
iii The linear logistic function and the derivation of the mean WTP values from this function are provided in Footnote 13 in 
HS. 
 
iv In making this conversion Balistreri et al. sought to maintain independence in the converted OE responses across prices.  
To accomplish this, each OE value was allocated randomly to one of the five prices in a way that produced sample sizes 
proportional to the DC samples for each price.  It should be readily apparent that the results from such an exercise are 
dependent on the random allocation. To get a proportion at each price that was not dependent on a particular allocation, 100 
random allocations were used; the average proportions from these 100 allocations are reported in the last column of Table 1. 
 
v It is interesting to point out that no such irrationalities occurred in the actual money decisions made in the English Auction 
treatment.  This may be attributed to either the fact that the realities of actual money insured rationality, or that the group 
auction mechanism used provided information to otherwise irrational respondents, or both.   
 
vi   Interestingly, while HS show that the specification errors lead to differential mean squared errors in the Monte Carlo 
simulations, they do not indicate the direction that any bias would take.  
 
vii   In the laboratory experiment, the DC respondents all received the same (hypothetical) endowment from which to 
purchase insurance against an expected loss; there is also no differentiation between nonuse and use values; and, the 
participants are undergraduate students and as such constitute a more or less homogenous population with similar relative 
prices and income levels.  Hence, the Monte Carlo simulation results are irrelevant to our situation. 
 
viii Conceptually, we realize that the Turnbull lower bound estimator for the open-ended responses is simply that associated 
with the “continuous” survival function provided in Figure 1.  We use this term in the text simply to demonstrate our point. 
 
ix In introducing the Balistreri et al. paper, HS assert that this “study is notable in considering the importance of bid design 
for the performance of the [dichotomous choice] approach” (p. 190). 
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