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ABSTRACT 

Valuing Electricity Assets in Deregulated Markets:
 
A Real Options Model with Mean Reversion and Jumps
 

Valuation of electricity generating assets is of central importance as utilities are forced to 

spin-off generators with the introduction of competitive markets. A continuous-time 

mean reverting price path with stochastic upward jumps is proposed as an appropriate 

model for long-run competitive electricity prices faced by a generator. A real options 

model is derived via dynamic programming using infinite series solutions. The derived 

model produces asset values which are uniformly higher than those produced by existing 

models, and which accurately predict observed generator sale prices. The model has 

favorable implications for stranded cost recovery and generator entry in competitive 

markets. 

Keywords: real options, electricity deregulation, mean reversion, jump processes, asset 

valuation. 
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I. Introduction and Overview 

The recent sale of the Homer City electricity generating plant by New York State Electric 

and Gas (NYSEG) and GPU, Inc. to Edison Mission Energy surprised many industry 

observers with its high sale price of $1.8 billion. For example, the $955/KW sale price of 

Homer City (a 1884 MW coal plant on the New York-Pennsylvania border) is nearly 

triple that of the (older and less well-located) Dunkirk and Huntley plants recently sold 

by Niagara Mohawk Power Corporation (NMPC) in upstate New York. At fIrst glance, 

the Homer City sale might seem to be an example of the Winner's Curse (e.g. Kagel and 

Levin 1986), with Edison Mission the unlucky winner. This paper argues that if the 

proposed electricity-specific real options model is appropriate, the price paid by Edison 

Mission is reasonable. The proposed model takes into account the unusual character of 

electricity supply and transport in selecting a price path. The electricity-specific model 

produces higher asset values than do traditional real options models. An implication is 

that many plants sold to date which seem appropriately valued by traditional models 

could well have been undervalued because traditional models fail to capture the true, 

favorable nature of competitive electricity prices. Under-valuation, while a boon to 

buyers, would negatively impact existing utilities, their shareholders and ratepayers. 

The sale of the Homer City plant was prompted by the deregulation of the electricity 

industry in both New York and Pennsylvania. I As competition is introduced, existing 

regulated utilities are being forced to spin off their generating assets in competitive 

auctions to prevent combined generating and transmission corporations from exercising 

the potential market power which would come with the ability to shut out competitors via 

the transmission network. The spread of competition means that well over $300 billion in 

utility generating assets could ultimately be sold at auction.2 

What is the value of a generating unit which is able to compete in deregulated electricity 

markets? An appropriate tool for asset valuation in a world of uncertain prices is a real 

options model (Dixit and Pyndick 1994, Trigeorgis 1996). Such models generally 



produce higher asset values than traditional discounted cash flow techniques. Given that 

the detailed asset valuation models currently used by the industry can easily cost 

hundreds of thousands of dollars to implement, a sparsely parameterized real options 

model is a useful tool. A prerequisite for valuing a generating asset with a real options 

model is a stochastic price path appropriate for electricity prices in a wholesale market.3 

A continuous-time mean reverting process with stochastic upward jumps is presented as 

an appropriate model of prices faced by generators in competitive wholesale electricity 

markets. Such a process has not be employed in the real options literature, and comes at a 

time when alternatives to the standard assumption of geometric Brownian motion (GBM) 

have drawn increased interest. Lund (1993), for example, argues that GBM is an 

inappropriate price path characterization for exhaustible resources. Mean reverting price 

paths have been suggested as more appropriate for commodities such as oil and copper 

(Pindyck and Rubenfeld 1991, Schwartz 1997, and Baker, Mayfield and Parsons 1998). 

The price path used here encompasses both GBM and mean reversion as special cases, 

while allowing random, and temporary, upward jumps in prices. The special 

characteristics of electricity production, transmission and demand suggest a price path 

which has these characteristics, and that is generally distinct from that of other 

commodities. As shown by Schwartz (1997), price path specification significantly 

influences resulting asset values. 

A quasi-analytic real options asset valuation model is derived via dynamic programming 

using the proposed mean reverting price process with jumps. The mean reverting with 

jumps price path has not previously been examined in a real options framework. The 

solution requires solving a non-homogeneous functional differential equation with the use 

of linearly independent infinite series, with the model easily implemented in a 

spreadsheet. The model developed here adds to the limited portfolio of analytic real 

options models and demonstrates a flexible solution technique using infinite series which 

might be used to develop future models. The calculated asset values are much higher -
...under the mean reverting with jumps specification when compared with the nested 

models of GBM and simple mean reversion. One interesting result is that while at low 
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prices increased volatility in electricity prices increases asset values, at high prices 

increased volatility lowers asset values. This is in contrast to GBM based models, where 

increased volatility generally increases values. Using plausible price parameter values 

and using the Homer City plant physical characteristics, the derived model produces asset 

values close to the observed sale price for Homer City. The derived model implies higher 

than anticipated levels of electricity industry investment, increased stranded cost recovery 

and delayed nuclear plant retirement when compared with conventional models. 

While much work has been done on real options generally (e.g. Dixit and Pindyck 1994, 

Trigeorgis 1995, 1996), little has been done in the electricity sector. Pindyck (1993) 

explored investment in nuclear power plants with cost uncertainty. However, until 

recently revenue uncertainty has not been an important issue in utility investment 

planning. Generally the electricity-specific option models developed for competitive 

markets have been focused on financial options or sholt-run Monte Carlo models (Deng, 

Johnson and Sogomonian 1998, Deng 1998, Tseng and Barz 1998), though each has 

recognized the unique character of electricity price paths. 

The next section provides the stochastic price path and detailed justification, as well as 

model set up and assumptions. Section III presents the model derivation, numerical 

evaluation of the model, and a comparison of asset values under alternative stochastic 

processes with calculations specific to the Homer City plant. Section IV presents 

conclusions. 

ll. The Model 

It is assumed that the price for a unit of electricity sold by a generator evolves according 

to a mean-reverting process with jumps. The stochastic process differential is given by: 

dP = ry(P - P)Pdt + aPdz + Pdq (1) ­

3
 



where dt is a small increment of time, dz is an increment of a standard Wiener process 

and: 

owI prob. (1- A)dt
dq= {u wI prob. Adt u > ° 

P is the average yearly on-peak price of electricity in S/KWh, P is the reverted-to 

electricity price, II is the rate of reversion, u is the jump size (scaled by P), Ais the jump 

frequency, and 0' is the standard deviation (scaled by P). If A=O, the price process 

becomes simple mean reversion. If ll=O as well, then the model becomes GBM without 

drift. Thus the model is a general price process which will allow flexible 

parameterization. Note that in this formulation the actual rate of mean reversion is high 

when P is high and low when P is low. This might imply, for example, relatively rapid 

industry entry when high prices are observed, but relatively slow exit. 

Choosing the Price Path 

This price path combines elements of a simple form of jump diffusion with geometric 

mean reversion, each of which has been explored separately (Dixit and Pindyck 1994, 

Schwartz 1997, Saphores and Carr 1998). Why is this an appropriate price path 

specification for electricity? The mean reverting component is consistent with other 

commodity price paths. Pindyck and Rubenfeld (1991), Schwartz (1997), and Baker, 

Mayfield and Parsons (1998), among others, note that the real prices of commodities such 

as oil and copper are mean reverting in the long run.4 Strong mean reversion is also 

widely assumed for short and medium tenn (daily and monthly) prices in competitive 

electricity markets (see Pilipovic 1997, Barz and Johnson 1998, or Deng, Johnson and 

Sogomonian 1998). This is because the entry of new generating capacity, through either 

greenfield installations, increased capacity from existing generators, or increased sales 
• 

from adjacent grid areas, suggests the persistence of competitive markets. The history of 
~. 

electricity production under regulation suggests stable electricity prices, not the 

unbounded growth provided by GBM. The mix of available fuelS (coal, oil, gas, solar, 
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wind, etc.) and an existing generator stock which utilizes this range of options allows 

primary fuel substitution, thus insulating electricity prices from the long term vagaries of 

commodity markets and oligopolistic behavior in those markets (e.g. OPEC in oil 

markets in the 1970's). 

But there are complications caused by the transmission grid, especially when node 

specific on-peak, not just average regional, prices are considered.5 Electricity markets 

facilitate exercise of market power in general (see, for example, Rudkevich, Duckworth, 

and Rosen 1998), and create isolated regions where market power might exist in an 

otherwise competitive system. It is important to note that each generator is likely to face a 

node-specific locational price. Nodal prices are much more volatile than system average 

prices and allow a generator to have market power which significantly influences its own 

price but not that of competitors.6 The PJM region, for example, uses locational spot 

prices which have large variability both spatially and through time (Hogan 1998). 

California uses zonal average prices which allow regional variation. 

Price jumps are enabled by two other characteristics of electricity markets. First is that 

electricity storage is generally infeasible, thus there is little or no ability to arbitrage 

across time. This reduces the ability of markets to dampen price shocks. Second, inelastic 

demand means that there is little consumption reduction in response to a rise in prices. 

The yearly price elasticity of electricity demand in New York State, for example, has 

been estimated at -0.042 for the residential sector to -0.261 for the industrial sector 

(Ethier and Mount 1998). 

Upward, localized (either nodal or zonal) jumps in electricity prices could happen for a 

number of reasons. Plant shutdowns, like the Millstone nuclear plant shutdowns in New 

England in the summer of 1997, would temporarily raise electricity prices for an entire 

region. 7 Locational prices faced by individual generators would fluctuate more 

dramatically. Line constraints or outages also create load pockets, allowing generators ­
inside the pocket to exploit market power. Bernard et al (1998) show that dramatic price 

differentials can occur between a load pocket and the remainder of a region. There is 
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strong evidence of market power within a load pocket being exploited in the England and 

Wales market by an individual generator when line constraints are present (Newbery 

1995, p.58). In this case, offer prices, and subsequent payments, increased by a factor of 

nearly five and persisted before being addressed by regulators. Changing demand patterns 

or new load can also create load pockets. Oligopolistic behavior may also develop, 

evidenced through capacity withholding or inflated offer prices. Evidence of oligopolistic 

behavior in the England and Wales electricity market suggests that this might happen in a 

systematic fashion before it is recognized and reigned in by regulators (see Wolak and 

Patrick 1997). This too would lead to a significant price rise. 

The stylized facts above suggest that while long-run electricity prices might be mean 

reverting, generators are likely to also experience localized (or even plant specific) 

upward jumps which allow temporarily increased profits. Capturing this in the stochastic 

price path will prove to have a large effecl on assel values. 

Modeling Generating Assets 

A generating plant has operating costs of C ($/Kwh) per unit of output. The yearly profit 

function for the plant can then be written: 

II(P) = (P-C) M (2) 

where M is total on-peak electricity production per year. P and C must be the average 

yearly on-peak price and cost of electricity to the generator, including amortized capital 

costs for repair and refurbishment in $/Kwh. Thus M is on-peak Kwh per year. The 

implicit assumption is that off-peak hours are 'break even' hours for the plant, which 

given the low and stable off-peak prices observed in off-peak electricity markets, is not 

particularly restrictive. Clearly this ignores complexities involved in electricity 

production, such as generator ramping constraints (the speed at which a generator is -

physically able to increase or decrease production) and start-up costs. 
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Note that increased detail might be incorporated in the model by breaking up a year into 

smaller time blocks (e.g. quarters), with operation each quarter viewed as functionally 

independent of other quarters. Thus there would be a separate price parameterization for 

each quarter, with M (and C) adjusted accordingly. This would allow a richer variety of 

price processes, some without jumps (for fall and spring, perhaps), and others with jumps 

(summer and winter). It would also allow patterns in seasonal generation, input prices, or 

outages. The value of the plant would then be the sum of the value in each quarter.8 For 

simplicity the model presented uses a yearly value. 

To calculate plant value by dynamic programming, the value function for an operating 

generator V(P) must satisfy the Bellman equation: 

OV(P)=TI(P)+ ~tE,{dV} (3) 

with discount rate D, so the yearly return to the plant's value equals the yearly profit plus 

the expected capital gain. Note that this assumes an infinitely lived plant. While that is 

not strictly true, if the plant can be expected to last many years, modeling a finitely-lived 

plant as infinitely lived is a reasonable approach. Dixit and Pindyck (1994) finds the 

difference to be negligible for a life span greater than ten years (pAOI). The fmitely lived 

plant problem involves a functional partial differential equation which requires numerical 

solution. The focus here is on obtaining an analytic formula. 

To solve the Bellman equation (3), dV can be expanded as: 

Substituting for dP from above, and applying Ito's Lemma, results in: -
... 

[
av 
at 

- av
ap 2 

I 2 2 a
ap

2V] 
2 

av
ap 

av
ap . dV = -+71(P-P)P-+-CT P - dt+CTP-dz+P-dq 
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Taking the expectation operator, where ~ equals zero and E{dz}=O leads to: 

- av I 2 a2V]E{dV} = ry(P - P)P-+ -cr p - dt+ Edq {A[V(P+UP,t) - V(P,t)]}dt
2[ ap 2 

2 

ap 

Substituting back into the Bellman equation and using V and V' to denote the fIrst and 

second derivatives of V(P) yields: 

8\!(P) =D(P) + ry(P - P)PV'(P) + .!..cr2p 2V"(P) + A[V(P+ uP) - V(P)]
2 

Rearranging and combining terms gives: 

.!..cr 2 p 2V"(P) + ry(P - P)PV' (P) - (8 + A)V(P) + AV((l +u)P) =-D(P) (4)
2 

which is a non-homogeneous functional differential equation to be solved for V(P).9 

The General Solution. 

Standard practice is to solve the homogeneous equation first to fInd the 'general' solution 

to the equation. 10 The homogeneous equation corresponding to (4) is: 

.!.cr2p 2V"(P) + ry(P - P)PV'(P) - (8 + A)V(P) + AV((l +u)P) =0
 
2
 

A solution to the homogeneous equation is given by the infinite series representation: ­
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V(P) = Ianpn+r 

n=O -
V'(P) =Ian (n + r)pn+r-l 

n=O -
V"(P) =Ian (n + r)(n + r _l)pn+r-2 

n=O 

Substituting V(P) into the homogeneous equation, combining powers of p, reindexing 

and rearranging results in: 

[~ (j2aor(r -1) + rryPao - (A. + 8)ao+ Mo(l +u)']r 

~[(.!..(j2an (n + r)(n + r -1) + ryPan(n + r) - (A. + 8)an+ M n(l + ur+
r l~ +r 

+£.J 2 )r =0 
n-l 
- -ryan_len + r -1) 

For the above equation to hold for all P>O requires: 

1 2 ­
-(1 r(r-l)+rT]P -(A,+8)+A,(l+u)' =0 
2 

for ao not equal to zero. This equation can be solved numerically for r. It can be shown 

that r is strictly increasing for r greater than (less than) the positive (negative) solution to 

the implicit equation for r and that two roots result. The following equation must hold for 

every n>O: 

Solving recursively for an as a function of ao leads to: ­
~. 
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Because ao appears in every term, it can be moved outside the summation. The factorial 

operator indexes every n inside the brackets and excludes n=O. It is shown in the 

Appendix using the ratio test that the terms of V(P) converge to zero as n becomes large 

for all u > -2. The restriction on u is not a problem for this model, as we anticipate only 

positive (u>O) jumps. The general solution is of the form: 

V(P)=cI VI(P) + C2 Vz(P). 

where the subscripts denote solutions associated with rI and r2, and CI and C2 are free 

coefficients, which can incorporate ao. Thus substituting the definition of an into V(P) 

leads to: 

(5) 

A Particular Solution. 

The particular solution to the non-homogeneous equation is an infinite series of the form: 

-


10
 



"" 
V(P) = Lanpn 

n=O 
"" 

IV'(P) = Lannpn­
n=1
 

""
 
v "(P) = L ann(n _1)pn-2 

n=2 

which is linearly independent of the general solutions to the homogeneous equation. 

Substituting into the non-homogeneous equation, combining powers of P, reindexing and 

rearranging as before results in: 

-(A+8)ao+Nlo-CM + [TJPa l -(A+8)a j +Nl1(l+u)+M]P 

+i [~(12 ann(n -1) +TJPann -TJan-1(n -1) - (8 + A)an+ Aan(l +ur ]p lI 

n=2 2 
=0 

For the above equation to equal zero, each coefficient for each power of P must equal 

zero. For the first term (coefficient of f'J=1) solving for ao gives: 

-CM 
ao = 

8 

The second term (coefficient of P) solved for aj gives: 

M 
at = -------==--­

8 -TJP -AU 

And the third, and recursive, term (coefficient of P") rearranged and solved for an as a 

function of aj gives: 

-
..-. 
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a" =[I"2CT2n(n-I)+7JPn-(o+A)+A(l+u)" ]! 

So the complete expression for \I(P) is: 

For \I(P) , the expected present value of the future proiits from the generating plant, to 

be positive and increasing for P>O and thus to make economic sense, the following 

regularity conditions must hold: 

(7)
 

and 

for n> 1 which ensures that the infinite series terms are greater than zero. If they are not 

greater than zero, then for some (large) values of P the entire term may become negative. 

Discussion ofRegularity Conditions 

The regularity conditions (7) and (8) ensure that \I(P) is positive and increasing for all 

values of P. Clearly this is desirable from an economic point of view; it is difficult to 

think of conditions under which one would expect the present value of the plant to 

decrease for an increase in P. The first condition (7) is similar to the condition for GBM, 

-

(8)
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o>a, where the interest rate is greater than the underlying growth rate of the price of the 

asset. Otherwise, investing in the asset is a risk-free 'money machine' where money can 

be borrowed at 0, invested at a, and produce unlimited profits. In this case, 0 must be 

greater than an 'expected growth rate' each period, which is the movement 11 P toward 

the mean price level plus the expected rise due to a jump AU. If this constraint is violated, 

the expected growth in price each period is greater than the growth in asset value which 

would occur at the discount rate, again creating a 'money machine'. 

The need for the second regularity condition is more complicated. If the first condition 

holds, V (P) may well be positive, especially for small values of P. However, as P rises 

the infinite series terms for 11> 1, which are made negative by the violation of the second 

condition, take on increased weight. This can cause V (P) to be downward sloping in P 

or even cause the value to turn negative. This violates economic logic. Looking at the 

second condition (8) for n=2 gives: 

The left hand side is a modified variance term, with the model variance adjusted by the 

mean reverting term and jump terms. The second regularity condition is violated when 

the modified variance is too small. Thus to move away from violating the second 

regularity condition, we must increase the variance in price by increasing A, u, or cr, or 

increase the expected movement in price toward the mean level by raising 11 P . This is 

nearly the converse of the interpretation of the first condition, which is violated when 

there is too much price movement. An interpretation of the second regularity condition is 

that if these parameters are not sufficiently large, then the model is inappropriate. That 

the model is potentially unstable for small values of A, u, and 11 P is not likely to be a 

problem in real world use. This is because for any price path which generated small -
values for these parameters, it would likely be difficult to distinguish from GBM using 

econometric techniques. 
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Combining the General and Particular Solutions 

So the complete solution to the non-homogeneous functional differential equation is the 

sum of the general and particular solutions: 

as defmed above in (5) and (6). So the full equation for V(P) is: 

-

Note that if there is neither mean reversion nor jumps (ll=O, A=O, u=O) the model 

becomes: 

which is the same as the GBM model provided by Dixit and Pindyck (1994, p.18?) if 

price and cost are both discounted at the same rate. 

If the generator can be costlessly shut down when P falls below C, the value function can 

be separated into two parts, one of which solves the homogeneous equation and the other 

of which solves the non-homogeneous equation. Following the logic of Dixit and 
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Pyndick (1994), we would expect the value of the option to generate to go to zero as P 

goes to zero, and for the value of the option to shut down to go to zero as P becomes very 

large. Defming the roots of our implicit equation for r as rj>O and r2<0, we can break up 

the value function for different values of P: 

This is the value of the generator as a function of P with costless shutdown and restart. 

To determine Cj and b2 we use the value-matching and smooth-pasting conditions where 

p=c. The interpretation is that the value of the option to generate must equal the value of 

the option to shut down plus the value of output when P=C, and that the rate of change of 

these conditions (high order contact conditions) also be equal. These conditions are: 

Cl~(C) = b2V2(C) +V (C) 

Cl~'(C) =bY2'(C)+ V'(C) 

(10) 

(11) 

The parameters Cj and b2 must be solved for numerically. Once they are determined, the 

value of the generator V(P) can be found. 

Evaluating the Model: Changing Volatility, Rate ofMean Reversion and Jump Size 

Consider the following numerical examples with base parameter values summarized in 

Table 1. The calculated parameter values for the model are provided in Table 2. For 

model evaluation jump size u was varied from 0.4 to 1. As expected, increasing the size 

of jumps generally increased the value of a generating asset. This is shown in Figure 1. 

One interesting result of the model is that for a low jump size value (0.4), higher price 

levels produced asset values which rose above those produced by jump sizes of 0.6 and 

0.8. Note that at this value, the second regularity constraint is close to being violated. 

Thus for this parameterization, the model is unstable for small jump sizes. 

-
~. 
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The effect of varying the rate of mean reversion Tl from 0 to 0.4 is shown in Figure 2. If 

the rate of mean reversion is zero, the model collapses to geometric Brownian motion 

with jumps. As expected, asset value increased with increasing rates of mean reversion. 

What was surprising was that the rate of mean reversion had such a significant effect on 

asset value. Doubling the rate of mean reversion (from 0.2 to 0.4, for example) 

approximately doubles asset value. This suggests that accurate determination of both 

whether a price process is mean reverting and the rate of mean reversion is important for 

asset valuation. 

The standard deviation was varied from 0.05 to 0.4, with the effects shown in Figure 3. 

The results were interesting in that at low prices, a high standard deviation produced 

higher asset values, but at high prices, lower standard deviation produced higher values. 

One interpretation is that at low price levels, a high standard deviation is more likely to 

get you "back in the money", while at high price levels, is more likely to take you out of 

the money. However, the standard deviation of the stochastic process had a small effect 

on asset values relative to the other parameters. The relative insensitivity of V(P) to the 

size of the standard deviation is potentially useful. It suggests that parameterizing the 

model with a high standard deviation will not strongly affect asset values, but can help in 

satisfying the regularity conditions. 

III. Application to the Homer City Plant 

The Homer City plant sale price is widely viewed by industry analysts, utility executives 

and regulators as being well above expectations. For example, while Homer City sold for 

approximately $955/KW of capacity, NMPC recently sold its Huntley and Dunkirk coal 

plants for $281/KW (net of two Huntley units slated for retirement). In part this is 

because Homer City is an especially desirable plant. It is a relatively new (the newest unit 

came on line in 1977) and efficient baseload coal plant near large coal supplies, with 

direct connections to two different regional electricity markets (Pennsylvania-New ­
Jersey-Maryland and western New York). Is the Homer City value reasonable, or is it 

dramatically overvalued? Using the real options model developed in the previous section, 
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with realistic parameter values, the Homer City price is close to the calculated plant value 

while the NMPC units appear undervalued. The model was parameterized for the Homer 

City plant as in Table 3. 

The reverted-to price level is $0.034/KWh, which is the average on-peak summer price 

level in PJM East from 1996 to 1998. The cost of production of $0.038/KWh (double 

reported variable production costs in 1996, from Load and Capacity Data 1997) is 

assumed to include all fixed and variable costs not covered during off-peak hours. This 

would include amortized capital costs for repair and refurbishment. The plant is assumed 

to simply cover variable costs dUling the remainder of the week on average. The output 

per year in Kwh assumes a 90% capacity factor for on-peak hours for the plant's 1884 

Mw. The model is well behaved with these parameter values, with both regularity 

conditions satisfied. Remember that since we are using a model of an infinitely lived 

plant, the calculated plant value is higher than what would be calculated for a finitely 

lived plant. 

One interesting exercise is comparing asset values under different price path assumptions, 

i.e. mean reverting with jumps vs. mean reversion vs. GBM. Since the mean reverting 

with jumps model contains mean reversion and GBM as special cases, this is a 

straightforward process. To achieve mean reversion, ').. was set to zero. To achieve GBM, 

T\ was also set to zero. Figure 4 shows the value of the generating plant for a range of 

prices for each price path. Adding simple mean reversion to GBM (with the current 

parameterization) increases the calculated Homer City plant value from $931 million to 

$1.279 billion when evaluated at P. Using mean reversion with jumps increases plant 

value to $1.836 billion. GBM produces the lowest values over the range of P, while mean ­
reversion with jumps produces the highest. 
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Do these values make sense? It does make sense that mean reversion increases plant 

values, as the risk of low prices is lowered. Dixit and Pindyck (1994, p. 405) note that 

inclusion of mean reversion can easily affect asset values by 40%. That is consistent with 

these results. Adding jumps should also be expected to increase asset value, given that the 

jumps are only expected to be positive. Since in this case the jumps are to nearly double 

the current price level (1.75 times the current price level), large changes in asset value 

result. One mild surprise is that mean reversion always produces higher values than does 

GBM (with zero drift). This is surprising because one might expect that for high values of 

P and low values of P that GBM would produce higher values. This might be expected 

to occur because you expect that a mean reverting price process will revert toward the 

low P, but that GBM will not necessarily produce lower prices. 

Clearly model specification significantly affects plant value, with the differential 

increasing in electricity price, and the mean reverting with jumps plant value very close 

to the $1.8 billion purchase price of the plant. Remembering that the model overvalues 

assets by assuming an infinite life, this suggests that the actual sale price was high but not 

dramatically so. While other parameterizations would have generated different values, the 

current parameterization is a reasonable one, and produces a reasonable value. As 

important is that other price paths produce dramatically different asset values for 

common parameter sets, and these values are significantly lower than the observed sale 

price of Homer City. 

For comparison Table 4 provides parameters for a joint model of the Dunkirk and 

Huntley plants, with the same mean reverting characteristics as for Homer City but with 

less frequent and smaller jumps because of Dunkirk and Huntley's location in western -

New York, not at the intersection of two regions. The cost of generation is raised by 50% 

over the Homer City plant to reflect the relative inefficiency of these plants, and the on­
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peak capacity factor is dropped to 40%. Capacity is adjusted appropriately. Note that the 

mean price level is raised to $0.04/KWh while the expected number of jumps and jump 

size fall. The mean price level rises to reflect the reduced capacity factor, so while the 

plant is running less, the average price faced by the plant will be higher. The jumps 

decrease in frequency and size to reflect the less favorable location of the plant in western 

New York rather than between two regions, which might each experience price jumps. 

The resulting asset value of $450.8 million using the mean reverting with jumps model is 

well over the purchase price of $332 million (adjusted for retiring units). This result must 

be qualified by noting that with these plants, the buyer assumed a transition power 

contract with NMPC under which it is to sell electricity at guaranteed prices over the first 

four years of ownership, and that the model assumes an infinitely lived plant. Thus the 

plants will not face the (desirable) market price process in the ShOlt term, which might 

depress realized plant values. Still, the Dunkirk and Huntley plants would appear under­

priced at $332 million if the mean reverting with jumps model is appropriate. 

IV. Conclusions 

This paper has presented the derivation of a quasi-analytic solution to a real options 

model which is unique in the literature. The mean reverting with jumps specification is a 

flexible form which is potentially appropriate for a wide range of commodities and 

provides dramatically different valuation results when compared with standard models. 

The model is flexible enough to allow downward price jumps (-2<u<0), and the lack of 

restrictions on M allow a wide range of normalizations for P and C. 

The results presented here suggest that the mean reverting with jumps real option model ­
is a useful tool for electricity asset valuation, providing reasonable asset values for the 

given parameters. The model is relatively simple to parameterize and use despite the need 
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for some numerical solutions. It is an inexpensive supplement to more detailed and time­

consuming asset valuation methods, and incorporates the important notion of option 

value. Sensitivity testing of model parameters is straightforward. Unfortunately, while 

asset sales are occurring now, useful price data which would allow econometric 

parameter estimation are years away_ But the price path is grounded in the realities of 

electricity markets and price histories of other commodities. Incorporating these realities 

is demonstrated to strongly influence calculated asset values. Once a number of asset 

sales have taken place in a region, it will be possible to calculate implied price parameters 

in a consistent and flexible framework. 

The sale of electricity generating assets will have important effects on existing utilities 

and ratepayers. If the model developed here is appropriate, utilities should receive much 

more for generating assets than would be expected under traditional model assumptions. 

This will help to mitigate stranded costs and ultimately benefit ratepayers. The model 

also has implications for nuclear plants considering early retirement (e.g. Maine Yankee 

and Yankee Rowe in New England). If the real electricity price process is as favorable to 

investment as the mean reverting with jumps model suggests, early retirement should 

become less likely. High asset values will also induce higher than anticipated levels of 

capital investment in the electricity sector. This has favorable implications for electricity 

consumers in the form of highly competitive electricity markets and larger numbers of 

new, efficient plants. 

-
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APPENDIX
 

- n rLemma: V (P) = Lan p + , with an as defined in the text for the general solution, 
n=O 

converges for all rand u>-2. 

pn+r+l 
Proof: Using the ratio test, if an

+ 
1 :s; cas n ~ 00 , where c is a constant such that 
Pn+r 

an 

O<c<1, then V(P) converges. Using the definition of all above: 

Pn+r+l a _n+1 

Pn+r 
an 

r+-"r(" (r + n) lao[ ±", (n + r -1) + ryp n + r) - (). + 8) + ).(1 + ur+'} 
pWry" (r + n -l)!ao[( ~ ,,' (n + r) + ryp }n + r + I) - (). + 8) +).(1 + ur+'''} 

Simplifying: 

P n+r+l 
an+1 

Pn+r 
an 

pn+r+1 
n 1Clearly there exists an n* large enough such that for all n>n*, a + pn+r :s; c , where c is 
an 

-

a constant such that O<c< 1. Thus V (P) = Lan pn+r converges. 'v' 

n=O 

-
Lemma: V (P) =Lan pn , with an as defined in the text for the particular solution, 

n=O -

converges for u>-2. 
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p n+1 

Proof: Using the ratio test, if an 
+

1 S cas n ~ 00, where c is a constant such that 
anpn 

O<c<l, then V (P) converges. Using the definition of an above: 

a"+.P"+' ; P"+>1)"+'(n)!a.[( ~"'(n -1)+1)P In) -(A+5) + A(I + u)" } 

a"P" P"1)" (n -I)!a.[( ~ ,,' (n) + 1)P In + I) - (A + 5) + A(I + u)"+'} 

Simplifying: 

a n+
1
pn+l PTJI1 

=-:-----------'--------------=
 

a"P" [( ~", (n)+1)P In+ I) - (A+5) +A(I + u)"+>]
 

pn+l 

Clearly there exists an n* large enough such that for all 11>11*, an 
+

1 
" S c, where c is a 

a"P 

-
constant such that O<c<l. Thus V(P) = La"P" converges.V 

n=O 
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Table I. Parameter Values Used for Comparisons 

Variable 
prO) 

P 

11 
u 
(J 

A 
o 
C 
M 

Definition
 
Initial Price in $/Kwh
 

Mean Price of Electricity in
 
$/Kwh
 

Rate of mean reversion
 
Size of random jump
 

Std. Deviation of electricity
 
prices (yearly)
 

Frequency of jumps
 
Interest rate
 

Cost of production
 
Output per year in Kwh
 

Value 
$0.021 
$0.025 

0.2 
0.8 
0.1 

0.05
 
0.06
 

$0.021
 
350,000,000
 

-

..­
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Table 2. Calculated Parameter Values 

Parameter Value 
rl 1.221847296 
r2 -4.61931422 
b2 0.088818206 
cl 43,171,481,446 

• 
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Table 3. Homer City Parameter Values 
Variable 

prO) 

P 

11 
u 
0' 

A. 
o 
C 
M 

Definition
 
Initial Price in $/Kwh
 

Mean Price of Electricity in
 
$/Kwh
 

Rate of mean reversion
 
Size of random jump
 

Std. Deviation of electricity
 
prices (yearly)
 

Frequency of jumps
 
Interest rate
 

Cost of production
 
Output per year in Kwh
 

Value 
$0.034 
$0.034 

0.10 
0.75 
0.35 

0.025 
0.09 

$0.038 
7,073,074,286 

-

... 
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Table 4. Dunkirk and Huntley Parameter Values 

Variable Definition Value 
pro) Initial Price in $/Kwh $0.040 

Mean Price of Electricity in $0.040P 
$/Kwh 

Rate of mean reversion 0.1011 
u Size of random jump 0.5 
0' Std. Deviation of electricity 0.35 

prices (yearly) 
A
 
8
 

Frequency of jumps 0.02 
Interest rate 0.09 

C
 Cost of production $0.057 
M Output per year in Kwh 1,968,914,286 
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l In the United States, individual states have the power to deregulate at their own pace, and most are 
moving in that direction. California, for example, has a competitive wholesale market already in existence, 
with plans for retail competition. The Pennsylvania-New Jersey-Maryland region has had a functioning 
wholesale market since the spring of 1998. New York State plans to gradually introduce full competition by 
2001. 
2 The total value of generating assets nationwide, assuming an average value of $4501KW, is $314 billion. 
There are currently 697,100 MWs of installed capacity in the United States (EIA 1997). 
3 While a generator can potentially operate in many electricity-related markets (real power, reactive power, 
spinning reserve, capacity), the primary market, especially for baseload plants such as the Homer City 
units, is the real power market. Real power, in cents/KWh, is the unit in which a typical homeowner is 
charged. though the costs for other aspects of electricity are bundled into the real power marginal rate. 
4 There are potentially interesting issues when considering stochastic price paths used in real option models 
as endogenously determined in ml equilibrium context While Lund (1993) argues that GBM can not be an 
equilibrium price path for exhaustible resources, Laughton (1998) notes that there are problems with meml 
reversion as ,Ul equilibrium price path. Because of a lack of storability, Laughton's arguments seem to be 
less relevmlt for electricity. 
5 On-peak prices are the high load 16 hours per day, generally 6mn to IOpm, five d.1YS per week. 
6 For a discussion of why nodal prices are appropriate, see Schweppe et al. (1988). 
7 In a still regulated market, meml wholesale on-peak prices increased by 11.6% over the combined 1995, 
1996, and 1998 average (data from Power Markets Weekly). In a volatile competitive market it is likely 
that this change would have been much gre..lter. For exmnple, Mount (1999) suggests that fairly small 
chmlges in capacity can produce large price chmlges in competitive markets. 
8 The size of the relevant production period can be arbitrarily small as the model can be shown to be 
homogeneous of degree zero in M. However, the effect of different estimation periods on the price process, 
mld their effect on asset value, has yet to be explored. 
9 Note that similar versions of this equation, generated by related price paths (e.g. dropping the P 
coefficient of the meml reversion or jump components) do not seem to have convergent series solutions. 
lO For ml introduction 'Uld overview to the solution using infinite series solutions, see Boyce and Diprima 
(1992). 

-

... 

34 



ER A.R.\t"E. RKlNGPAPERS 

WPNo 

99-02 What Difference do Polarization Measures Make? 
Application to China 

An 

99-01 Does Food Aid Stabilize Food Availability? 

98-16 Agricultural Land Use in Northwest Uzbekistan: A Linear 
Programming Model for Mapping Producer Incentives 

98-15 Smallholder Technical Efficiency with Stochastic 
Exogenous Production Conditions 

98-14 Non-Linear Utility Pricing and Targeting the Poor 

98-13 Income Distribution and Development 

98-12 Constraining Phosphorus in Surface Water: 
Resource Use and Profitability 

Dairy Farm 

98-11 Fishery Management: The Consequences of Honest 
Mistakes in a Stochastic Environment 

98-10 Which Regional Inequality? The Evolution of Rural-Urban 
and Inland-Coastal Inequality in China, 1983-1995 

98-09 The Kyoto Protocol, CAFE Standards, and Gasoline Taxes 

98-08 Estimates of Individual Dairy Farm Supply Elasticities 

98-07 Effects of Amendments to the Safe Drinking Water Act on 
Local Government Finance and Rural Residents in New 
York 

98-06 The Shoreham Deal: A View from Upstate 

98-05 Redirecting Energy Policy in the U.S.A. to Address Global 
Warming 

98-04 Angola -- Current Situation and Future Prospects for the 
Macroeconomy 

98-03 The Empirical Impact of Bovine Somatotropin on a Group 
of New York Dairy Farms 

Author{s) 

Kanbur, R. and X.B. Zhang
 

Barrett, C.B.
 

Chabot, P. and S. Kyle
 

Sherlund, S.M., C.B. Barrett and
 
A.A. Adesina
 

Kanbur, R., R. Tarkiainen and
 
M. Tuomala
 

Kanbur, R.
 

Hanchar, J.J., W.A. Knoblauch and
 
R.A. Milligan
 

Conrad, J.M., A. Lopez and
 
T. Bjorndal
 

Kanbur, R. and X.B. Zhang
 

Agras, J. and D. Chapman 

Tauer, L.W. 

Tsao, L., T.M. Schmit and 
R.N. Boisvert 

Mount. T. 

Mount, T.D. 

Kyle, S. 

-
Stefanides, Z. and L.W. Tauer 

To order single copies of ARME publications, write to: Publications, Department of Agricultural, Resource, and Managerial Economics, 
Warren Hall, Cornell University, Ithaca, NY 14853-7801. Visit our Web site at http://www.cals.comell.edu/deptlarme/for a more 
complete list of recent pUblications. 


