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Fishery Management: 

The Consequences of Honest Mistakes in a Stochastic Environment 

ABSTRACT 

A recent article by Lauck et al. (1998) questions our ability to manage
 

marine fisheries in the face of "persistent and irreducible scientific
 

uncertainty." This paper examines the role that a safe minimum biomass
 

level (SMBL) might play when stochastic recruitment is compounded by
 

unbiased (honest) observation error. Specifically, a bioeconomic optimum is
 

combined with a 5MBL to formulate a linear, total allowable catch (TAC)
 

policy. In a deterministic world such a policy may asymptotically gUide an
 

overfished stock to the optimum. In a stochastiC model, the TAC policy will
 

result in a distribution of stock and harvest about the bioeconomic optimum.
 

The approach is applied to the Norwegian spring-spawning herring, a once
 

abundant and highly migratory species in the northeast Atlantic. The
 

effectiveness of the proposed 5MBL for spring-spawning herring is
 

examined with stochastic recruitment, and observation error. Observation
 

error greatly increases the coeffiCient of variation for harvest, and may allow
 

the stock to (unknowingly) fall below the 5MBL.
 

Keywords: fishery management, bioeconomics, stochastic recruitment,
 

observation error, linear TAC policies, Norwegian spring-spawning herring. ­



Fishery Management:
 

The Consequences of Honest Mistakes in a Stochastic Environment 

I. Introduction and Overview 

The sorry state of the world's fisheries has lead to a questioning of our 

ability to manage commercially valuable species in a complex and stochastic 

marine environment. Lauck et al. (1998) go so far as to suggest that there is 

a "persistent and irreducible scientific uncertainty" in such systems. This 

uncertainty. combined with the rent-seeking behavior of fishers [Gordon 

(1954) and Homans and Wilen (1997)] and the political influence of the 

fishing industry. is viewed as a recipe for overfishing. The unforeseen 

collapse of the cod fishery in the Canadian Maritimes and off the east coast 

of the United States would seem to indicate that even developed countries. 

with the best fishery scientists. can be completely wrong in their 

assessment of a fish stock. As a "hedge" against such ignorance. Lauck et al. 

propose the creation of marine reserves. where fishing would be prohibited. 

In a stochastic model. Conrad (1997) has shown that a reserve. adjacent to a 

fishing grounds managed under a regime of regulated open access, can 

increase the average harvest from the grounds while reducing its variation. 

The increased yield in this model was the result of migration of fish from 

the reserve to the grounds. while the reduced variation occurred if the 

fluctuations in the fish population in the reserve were uncorrelated and 

could partially offset. fluctuations on the grounds. There was an opportunity 

cost to the marine reserve. in the fonn of foregone harvest. While harvest ­
on the grounds might increase. the overall harvest was likely to be lower 

than under regulated open access of both areas. 
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The policy twist in this paper is the combination of a safe minimum 

biomass level (SMBL), as might be identified by fisheries biologists, with the 

optimum from a b1oeconomic model, to formulate a linear total allowable 

catch (TAC) policy. In a deterministic model this linear TAC policy could 

asymptotically gUide an overfished stock to the bioeconomic optimum. In a 

stochastic model, this linear TAC policy will result in a distribution of 

biomass and harvest about the deterministic optimum. Two frequently 

mentioned sources of uncertainty are stochastic recruitment and 

observation (or measurement) error. How would the linear TAC policy 

perform with one or both sources of uncertainty present? This question is 

not easily answered analytically; in the sense that it does not appear possible 

to derive closed-form distributions for biomass and harvest. Instead we 

conduct numerical analysis of the Norwegian spring-spawning herring, a 

once abundant and highly migratory species found in the northeast Atlantic. 

This population is recovering from overfishing and biologists have proposed 

a safe minimum for spawning biomass to avoid overfishing in the future. 

The remainder of the paper is organized as follows. In the next 

section we construct a biomass model with delayed recruitment and pose 

and solve a problem to maximize the present value of net benefits. The 

linear TAC policy is derived. The model is then modified to introduce 

stochastic recruitment and observation error when adaptively setting the 

TAC. 

In the third section the model is applied to the Norwegian spring­

spawning herring. The linear TAC policy is shown to be stable. The effects 

of stochastic recruitment and observation error are analyzed via simulation. ­
The fourth and final section summarizes the major conclusions and makes a 

suggestion when setting the TAC for Norwegian spring-spawning herring. 
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ll. The Models 

In this section we (a) construct a bioeconomic model with delayed 

recruitment, (b) define the concept of a safe minimum biomass level. (c) 

derive a linear TAC policy that might gUide an overfished stock to the 

bioeconomic optimum and (d) introduce two important sources of 

uncertainty present in most marine fisheries. 

Let Xt denote the "fishable biomass." measured in metric tons. in 

period 1. We will assume that the fishable biomass corresponds to the adult 

or spawning biomass. and that there is a lag of 't+ 1 periods from spawning 

until recruitment to the adult. fishable population. These assumptions are 

more or less consistent with the biology and harvest of the Norwegian 

spring-spawning herring. It is relatively easy to construct a model where 

both juveniles and adults are subject to harvest [see Conrad and BJ0rndal 

(1991)]. 

With no random components in recruitment or harvest the fishable 

biomass in period t+1 would be 

( 1 )
 

where M is the rate of natural mortality. and (1 - M)(Xt - ytl is the adult 

stock which escapes harvest and survives to period t+ 1. The fishable 

biomass surviving to period t+ 1 is augmented by new recruits spawned 't+ 1 

periods earlier. 

Suppose that the net benefit from harvest in period t is given by the 

concave function UlYtl and that the objective of fishery management is to 

maximize the present value of net benefits. This problem may be stated 
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mathematically as 

Maximize I, ptU(Yt ) 
t=o 

Subject to Xt+1 = (1- M)(Xt - Ytl + F(Xt_'t) (2) 

Xo given 

where p = 1/(1 + 0) is the discount factor and 0 is the per period rate of 

discount. The Lagrangian for this problem may be written 

L = I,pt{U(ytl+PAt+d(l-M)(Xt -Ytl+F(Xt-'t)-Xt+1]} (3) 
t=o 

where At+1 is the multiplier or shadow price on a marginal unit of biomass 

(in the water) in period t+ 1. The first-order conditions, when Yt, Xt. and 

At+1 are positive, require 

... 

Evaluating these conditions in steady state results in the following three 

equations which can be solved for the bioeconomic optimum, (X- ,Y,A-) 

A =[ (1 + 0) JUf(Y) (7)
(1- M) 
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F'(X) = (0 + M)(1 + 0)1: (8) 

y =[F(X) - MX] 
(9)

(l-M) 

For example, if the delayed recruitment function takes the fonn 

F(Xt-1:) = rXt-1:(l- Xt-1:/K), then 

X. = K[r-(0+M)(I+0)1:] 
(10)

2r 

y. =[r - M - rX·/K]X· 
(11)

(l- M) 

The safe minimum biomass level is a lower bound which results in a 

zero harvest rate. Specifically, if Xs is designated as the safe minimum 

biomass level, and if Xt S Xs, then Yt =O. For Xt > Xs we assume that 

management authorities set a total allowable catch (TAC) according to 

Yt =a + ~Xt where 0 =a + ~Xs, and Y* =a + ~X· imply that ~ =Y·/(X· - Xs ) 

and a =- ~Xs, and it is also assumed that X· > Xs' Figure 1 shows a plot of Y 

=[F(X) - MXl/(l - M) = [r - M - rX/K]X/(l - M) when r=O.4, M =0.15, and 

K= 18,500, and Y =a + ~X for a = - 835 and ~ = 0.334. The values of a and ~ 

are implied by Xs =2,500, X· =5,000, and Y* =835, and are the values that 

emerge from one specification of the model of the Norwegian spring­

spawning herring (with 0 =0.02 and t =3). Note that for Xt < X*, mortality 

adjusted net growth exceeds harvest as detennined by the TAC policy and 

fishable biomass will increase with a lag of t+1 periods. For Xt > X*, harvest ­
from the TAC policy will exceed mortality adjusted net growth and fishable 
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biomass will decrease. Based on this observation we would expect that a 

linear TAC policy defined by the points (Xs,O) and (X· ,Y) should result in an 

asymptotically stable approach from Xo > 0 to X· .I 

Up to this point the model has been completely deterministic. 

Suppose now that equation (1) is modified to become 

(12)
 

where the Zt are independently and identically distributed random variables 

with expectation E{ztl=l and finite variance 0;. This is a delayed­

recruitment version of a model considered by Reed (1979), and will give 

rise to a distribution for Xt when harvest is set according to a linear TAC 

policy like Yt = ex + ~Xt. In equation (12) recruitment is said to be stochastic. 

It is usually the case that fishable biomass can only be imperfectly 

observed and that the TAC in any period is based on an estimate of Xt given 

by 

(13)
 

where Ut is another independently and identically distributed random 

variable. The TAC in period t is then determined by Yt =ex + ~UtXt. If 

E{utl =1, we say that the management authority is making "honest mistakes" 

in its stock assessment. If the random variable Ut has a finite variance it will 

likely increase the variation of Xt about X* and may actually result in the 

management authority unknowingly setting a positive TAC when fishable ..biomass is actually below Xs. 
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The fishable biomass, with both stochastic recruitment and 

observation error, would evolve according to 

(14) 

when UtX't > Jes, and according to 

(15)
 

when UtX't ~ Xs ' The combined effect of these sources of uncertainty, when 

harvest is set according to our linear TAC policy, will be examined within 

the context of the Norwegian spring-spawning herring fishery, only now 

recovering from significant overfishing in the 1950s and 1960s. 

III. The Norwegian Spring-Spawning Herring 

In the 1950s and 1960s, the Norwegian spring-spawning herring 

(Clupea harengus) was a major commercial species, harvested by vessels 

from Norway, Iceland, the Faroe Islands, the former Soviet Union and other 

European nations. Before depletion from overfishing, the species was highly 

migratory. The migratory pattern and number of components to the stock 

changed between 1950 and 1970. In the 1950s and early 1960s, adults 

would spawn off the south-central coast of western Norway (near M0re) from 

February through March. The adults would migrate west and southwest 

through international waters toward Iceland (April and May), spending the ­
summer (June through August) in an area north of Iceland. In September 

the adults would migrate south to a wintering area east of Iceland before 
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returning to western Norway for spawning. Juveniles, including the recently 

spawned "zero cohort," would migrate north, but remain in Norwegian 

waters until sexually mature, around age four or five, when they would join 

the adult migratory pattern. 

In the mid-1960s a second, more northerly, stock component 

appeared. This component would spawn south of the Lofoten Islands (which 

are north of M0re) with the adults migrating northwest into the north 

Norwegian Sea, then northeast into the Barents Sea, and finally south where 

they would winter west of the Lofoten Islands before moving south to spawn. 

By 1966 the northern component was the largest of the two. Because of 

overfishing and poor recruitment, the spawning biomass of both 

components fell precipitously in 1968 and 1969, leading to near extinction 

by 1972 (see Figure 2). In its depleted state the adult population ceased 

migration and both adults and juveniles remained in Norwegian waters year 

round. 

Recruitment remained weak throughout the 1970s, and it was not 

until the strong year class of 1983 joined the adult population in 1986 that 

the stock began to recover. The main component of the stock has 

reestablished itself on the spawning grounds off M0re. Mter spawning the 

adults now migrate west through international waters (called the "Ocean 

Loop"), but because of extended jurisdiction in the mid- and late-1970s, the 

migrating adults will also pass through the Exclusive Economic Zones of the 

Faroe Islands and Iceland on their way to the summer feeding area near Jan 

Mayen Island. In the 1990s the herring have followed the southern edge of -

the cold East Iceland stream, north and northeasterly, crossing into the 

Barents Sea before turning south and southeast to winter in the fjords of 

northern Norway. 
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The migratory pattern of the Norwegian spring-spawning herring 

takes on importance since, as a "straddling stock," the herring are exposed 

to territorial and distant water fleets with strong incentives to harvest the 

population before it moves elsewhere (Bj0rndal et al. 1998). If a cooperative 

management policy (with an equitable distribution of harvest) cannot be 

agreed upon, Norway, Iceland, the Faroe Islands, Russia, and distant water 

vessels fishing in the Ocean Loop, may resort to strategic overfishing which 

could jeopardize continued recovery. 

In the remainder of this section we seek to define an adaptive, 5MBL­

based, harvest policy which might be used to determine the annual total 

allowable catch. Total allowable catch must then be distributed, in a 

cooperation-inducing manner, among the countries with territorial or 

historical claims to harvest. Fishery scientists have already specified a 5MBL 

of 2,500 (x103 ) metric tons for the adult spawning biomass (Bj0rndal et al 

1997). Given the presence of both stochastic recruitment and observation 

error, will the linear TAC discussed in the previous section keep the actual 

spawning biomass from dropping below the 5MBL? To answer this question 

we must estimate a form for the delayed recruitment function, F(Xt-·tl, derive 

the 5MBL-based linear TAC, and specify the stochastic processes generating 

Zt and Ut. 

Table 1 contains estimates of total biomass, spawning biomass, and 

harvest from 1950 through 1996 as reported in Patterson (1998). All data 

are measured in thousands of metric tons. The data on spawning biomass 

was plotted in Figure 2. In estimating delayed recruitment, it will be -

assumed that't = 3 implying that herring reach sexual maturity at age four. 

This can be determined through examination and aging of herring harvested 

on the spawning grounds. Age at sexual maturity is known to vary with 
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overall biomass density. In the 1950's. when total biomass was nearer its 

carrying capacity. herring were thought to spawn for the first time at age 

five. The greater competition for food and slower weight gain resulted in a 

longer time to age at first spawning. With overfishing and more abundant 

food for herring that escaped harvest. age at first spawning was lowered to 

about four. 

There are many possible forms for the recruitment function. F(Xt-'t). 

Three forms were estimated using constrained nonlinear maximum 

likelihood. The forms were (a) logistic. where F(Xt-'t) = rXt_'t(I- Xt-dK). 

(b) Gompertz. where F(Xt-'t) = rXt-'t In (K/Xt-'t ), and (c) exponential. where 

F( Xt-'t) =yXi-'t' Annual adult mortality was fIXed at 0.15. to be consistent 

with the value reported in Patterson (1998). With t = 3 and M = 0.15. it is 

possible to make predictions for [X1954.....X1996] based on each functional 

form and to search for the values of rand K (for the logistic and Gompertz 

forms) or y and 11 (for the exponential form) which minimize the sum of the 

squared residuals. Goodness of fit might be roughly gauged by calculating 

R2 = I-SSR/SST. where SSR is the sum of the squared residuals and SST is 

the sum of the squared variations about mean spawning biomass from 1954 

through 1996. The constrained maximum likelihood estimates and the 

implied values for X· and Y* when 0 = 0.02 are reported in Table 2. 

For the logistic form the intrinsic growth rate is estimated to be 

r = 0.293 while the carrying capacity is estimated at K = 25.165 (xl03 mt). 

The R2 for this form is 0.92 and the implied optimal biomass and harvest. at 

B = 0.02. are 4.835 (xl03 mt) and 493 (xl03 mt). respectively. 

The Gompertz function gives the same fit (R2 =0.92) but with ­
r = 0.112 and K = 45,413. implying X· = 3.337 and Y* = 559 when B = 0.02. 

The exponential has an R2 = 0.93 with estimates of y = "29.6 and 11 = 0.44. 
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implying an optimal spawning biomass of X· =2083 and harvest of V- =637. 

The implication of the high R2 for all functional forms is that the data 

in Table 1 are having difficulty discriminating between possible concave 

recruitment functions and, as it turns out, for the logistic form when r is 

increased and K is lowered. If r is increased to 0.40 and K is reduced to 

18,500 with 't and M fixed at 3 and 0.15, respectively, the fit declines 

slightly in the third decimal, but still rounds to R2 =0.92. These are 

perhaps "more plausible" parameter estimates, as discussed below. The 

predicted values of Xt for these parameter values lie on the dashed line in 

Figure 3.2 

A K value of 18,500 seems plausible, given that spawning biomass in 

1950 (at 12,066xl03 mt) is regarded as being in excess of K/2 by most 

fishery biologists. At the same time an r-value of 0.293 seems low, given 

that the intrinsic growth rate for the North Sea herring (Clupea harengus L), 

as deSCribed by Bj0rndal and Conrad (1987), had an estimated r-value of 0.8. 

This causes us to regard the values r = 0.4 and K = 18,500 as a more 

plausible (MP) parameter combination for the logistic form. These values 

imply X· = 5,078 and V- = 838 when 8 = 0.02. If we round X· to 5,000 and V­

to 835, and combine them with the 5MBL of 2,500, we obtain ex = - 835 and 

~ = 0.334, and the (deterministic) sustainable harvest function and linear 

TAC policy appear as they were drawn in Figure 1. The MP Logistic 

parameter set becomes r = 0.4, K = 18,500, 't = 3, M = 0.15, ex = - 835 and 

~ = 0.334. We will use this parameter set to explore the consequences of 

observation error and stochastic recruitment. -

Table 3 lists the MATLAB (Version 5) program used to simulate the 

linear TAC policy when both observation error and stochastic recruitment 

are present. It is possible to "disable" the stochastic elements to 
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numerically assess the stability of the TAC policy in a deterministic 

environment. This was done as follows. In lines 13 and 14 of the code, 

change OBX(t,i) to X(t,i). This causes the TAC to be set based on the actual 

(realized) values of spawning biomass, instead of on the observed values 

[OBX(t,i)] which are displaced by a uniform random variate, 2 > Ut > 0, with 

an expected value of one and a variance of one-third. To disable the 

stochastic recruitment simply delete z in the equation for X(t+ 1,1) in line 

26. When this is done, and the program is executed, spawning biomass 

approaches X· =5,000 and harvest approaches Y* =835 as shown by the bar 

charts in Figure 4. 

The effect of stochastic recruitment can be assessed by reintroducing 

z back into the equation for X(t+l,i) in line 26. The value of z in a particular 

period is determined by the outcome of another uniform variate, now 

ranging between zero and one. If the variate exceeds 0.9 (which will happen 

with a probability of 0.1), z =2. If the variate is less than 0.1 (again with a 

probability of 0.1), z =O. If the variate is less than or equal to 0.9 but greater 

that or equal 0.1 (With a probability of 0.8), z =1. The expected value of z is 

one and its variance is 0.2. The effect of this stochastic process on 

spawning biomass and harvest is shown in Figure 5 for the first realization 

performed by MATLAB. Spawning biomass ranges between 6,886 and 2,649 

(thousand mt) while harvest ranges between 1,464 and 49 (thousand mt). 

The sample mean, standard deviation, and the coefficient of variation for 

spawning biomass and harvest are given in Table 4 under the column Zt. 

Removing z once more from line 26 and substituting OBX(t,i) for X(t,i) 

in lines 13 and 14 will permit us to run the model with observation error .. 
but deterministic recruitment. The first MATLAB realization is shown in 

Figure 6. In comparison to Figure 5. the mean and standard deviation for 
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spawning biomass both decrease and the coefficient of variation increases 

slightly from 19.02 to 19.51. The 5MBL of 2.500 is "mildly" violated since 

the minimum spawning biomass level is 2.351. The major change. however 

occurs in the distribution of harvest under the linear TAC policy. Harvest 

now ranges from 2,401 to zero. The average harvest increases from 697 to 

736 but the standard deviation increases to 730. more than doubling the 

coefficient of variation to 99.18. As shown in Figure 6. fishers would 

alternate between a bonanza and a moratorium where observation error 

might cause management authorities to set a TAC higher or lower than it 

should. based on the "true" spawning biomass. For example. in Figure 6, in 

t=47. the actual spawning biomass is )47 = 3,945 while the observed 

biomass was 1.365 < 5MBL. The TAC set by the management authorities 

would have been Y47 = 0 when they could have allowed 

Y47 = - 835 + 0.334(3,945) = 483. 

In Figure 7 we show the first realization with both stochastic 

recruitment and observation error. Spawning biomass ranges from a high of 

6,939 to a low of 1.821 < 5MBL. with a mean of 4.011. a standard deviation 

of 1.034 for a coeffiCient of variation of 25.78. The distribution for harvest 

exhibits a smaller mean and standard deviation than with observation error 

alone. although the coefficient of variation increases when both stochastic 

processes present. 

Figures 4-7 and Table 4 show the results for the first realization. 

When the number of realizations. N. is increased to 1.000. we observe the 

following frequencies. With stochastic recruitment and no observation error 

Oust ztl, 335 out of the 1,000 realizations would result in Xt falling below the ­
5MBL at some time dUring the 99 year horizon. t=6..... 104. When there is 

observation error and deterministic recruitment Oust Ut), 283 out of the 
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1,000 realizations result in Xt falling below the 5MBL, and when stochastic 

recruitment and observation error are both present (Zt and Ut), 949 out of 

1,000 realizations will result in Xt falling below the 5MBL. Stochastic 

recruitment and observation error resulted in a high probability (greater 

than 0.9 in our model) that actual spawning biomass would fall below the 

5MBL dUring a 99 period simulation of the linear TAC. 

IV. Conclusions 

This paper has accomplished two things. First, it has shown how to 

construct a linear TAC policy for a delayed-recruitment fishery when 

biologists have identified a safe minimum biomass level. The bioeconomic 

optimum for such a model is easily computed (in our example there was a 

closed-form solution for X*). The bioeconomic optimum (X* ,Y*) can then be 

combined with the safe minimum biomass level (Xs,O) to form a linear, 

adaptive TAC policy Yt =a + pXt, where p =Y* fOC - Xs) and a =- pXs. Baring 

cyclical or chaotic dynamics (often associated with intrinsic growth rates in 

excess of two), our linear TAC policy can smoothly gUide an overfished stock 

to the optimum. 

Second, if we admit the presence· of stochastic recruitment andfor 

observation error, the linear TAC policy will result in a distribution for (Xt,Ytl 

about the bioeconomic optimum. Observation error by itself has the 

potential to drastically alter the distribution of allowable catch. Fishers 

might alternate between a bonanza or a moratorium. With observation error, 

management authorities can make two types of mistakes, setting the TAC 

too high or too low compared to the level which would be set if the stock .. 
could be accurately assessed. StochaStiC recruitment and observation error 

can jointly result in a high probability that Xt will fall below the 5MBL during 
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a simulation horizon of 99 periods. Thus, announcing and incorporating a 

5MBL into a TAC policy is no guarantee that a fish stock can be maintained 

above the 5MBL. This result might reinforce Lauck et al (1998) 

recommendation that marine reserves be used as a hedge against the 

uncertainty inherent in a marine ecosystems. 

The application of this approach to the Norwegian Spring Spawning 

herring may be of some interest in assessing current management practices 

and in setting a TAC which would then be distributed among the countries 

harvesting this straddling stock. In comparing the actual 1996 TAC of 

1,197 (thousand metric tons) from a stock estimated at 5,483 (thousand 

metric tons), as reported in the last entry of Table 3 in this paper, we would 

have advocated a TAC of Y1996 = - 835 + 0.334(5,483) = 996, or about 200 

(thousand metric tons) less that what was harvested. Such harvest rates 

might impede the recovery of the herring stock and could cause it to 

decline back toward Xs. We suggest that the actual management of the 

Norwegian spring-spawning herring would benefit from an explicit 

discussion of the alternative adaptive rules that might be used to set total 

allowable catch. 

-
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Endnotes 

INo optimality claims can be made for a linear TAC policy based on Xs and 

X. It is the offspring of a minimum safe standard, based on the expert 

opinion of biologists, and a desirable steady-state stock from a simple 

bioeconomic model. If such a linear TAC policy is employed from an initial 

condition, Xo, which is significantly in excess of X·. there Is a potential for 

the TAC to allow an initial harvest. Yo, so large as to drive Xl below Xs. Since 

most commercial fisheries are operating below the likely value for X·, this 

property of the linear TAC policy is not likely to be of practical importance. 

2For the logistic form, the escapement-survival term, (l - M)(Xt - ytl 

dominates the one-period forecast "explaining" 70 percent of the biomass in 

period t+ 1. As can be seen from Figure 3, the complete model, with logistic 

delayed recruitment, predicts best when biomass levels are low 

(Xt < 2,000x103 mt). 

-
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Figure 2. Estimated Spawning Biomass (xl0A 3 mt), 1950­
1996. 

14000 

12000 

10000 

8000 

6000 

4000 

2000 

0 

-0 C\I ~ <0 co 0 C\I ~ <0 co 0 C\I ~ <0 co 0 C\I ~ <0 co 0 C\I ~ <0 
It) It) It) It) It) <0 <0 <0 <0 <0 l"- I"- l"- I"- I"- co co co co co m m m m 
m m m m m m m m m m m m m m m m m m m m m m m m .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... 

Year 



Figure 3. Spawning Biomass from Table 1 and the Fit with
 
Delayed Logistic Recruitment (Tau=3, r=O.4, K=18,500, and
 

M=O.15)
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Figure 4. The Asymptotic Approach to X· =5,000 and r =835 from Xo =2,500 Under a Linear TAC 
Polley with 5MBL in a Determlnlstic Environment 
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Figure 5. Spawning Biomass and Harvest with Stochastic Recruitment But No Observation Error 

Spawning Biomass 

6000 

x 
4000 

3000 

2000 

1000 

10 20 30 40 50 
t 

60 70 80 90 100 

1500 I i I I I 

Harvest 
i I i j i I 

>­

500 

10 20 30 40 50 60 70 80 90 100 
t 



I 

Figure 6. Spawning Biomass and Harvest with Observation Error and Detennlnlstic Recndtment 
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Figure 7. Spawning Biomass and Harvest with Observation Error and Stochastic Recruitment 
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Table 1. Total Biomass. Spawning Biomass. and Harvest of Norwegian 
Spring-Spawning Herring (xl03 mt). 1950-1996 

Year Total Biomass Spawning Btomas Harvest 
1950 17.677 12.066 933 
1951 17.484 10.881 1.278 
1952 19.092 9.979 1.255 
1953 16.636 8.302 1.091 ~ 

1954 17.363 7.800 1.645 
1955 15.083 8.705 1.360 
1956 13.434 10.585 1.659 
1957 10.726 9.311 1.320 
1958 9.322 8.506 987 
1959 7.825 6.933 1.111 

1960 7.321 5.547 1.102
 
1961 7.508 4,120 830
 
1962 6.615 3.297 849
 
1963 6.786 2.517 985
 
1964 6.540 2.575 1,282
 
1965 5.982 3.042 1.548
 
1966 4.328 2.580 1.955
 
1967 2.872 1.158 1.677
 
1968 885 221 712
 
1969 125 78 68
 

1970 78 31 62
 
1971 107 8 21
 
1972 71 2 13
 
1973 101 75 7
 
1974 155 87 8
 
1975 299 93 14
 
1976 361 149 10
 
1977 432 288 23
 
1978 588 361 20
 
1979 644 393 13
 

1980 761 481 19
 
1981 812 518 14
 
1982 742 517 17
 
1983 1.230 590 23
 
1984 2.553 615 54
 
1985 2,364 509 170
 
1986 2.280 456 225
 
1987 4.101 1.202 127
 
1988 4.660 3.874 135
 
1989 5.324 4.711 104
 

1990 5.994 4.654 86
 
1991 6.793 4.814 85
 
1992 7.494 4.591 104
 
1993 7.835 4.396 232
 
1994 8.471 5.098 479
 -
1995 8.952 5.531 902 
1996 8.096 5.483 1.197 

Source: Patterson (1998) 
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Table 2. Constrained Maximum Ukellhood Estimates of r and K or 'Y and 11 
when't = 3 and M = 0.15 are given and the Implied Values ofX· and r When 

0=0.02 

Logistic Gompertz Ex.ponential MP Logistic 

r 0.293 0.112 0.4 

K 25,165 45,413 18,500 

29.6'Y 

0.4411 

R2 0.92 0.92 0.93 0.92 

X 4,835 3,337 2,083 5,078 

Y 493 559 637 838 

'" 

-
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Table 3. A Listing of the MATLAB Program for Simulation of Observation Error with Stochastic 
Recruitment 

% Stochastic Simulation of the Norwegian Spring-Spawning Herring Stock under a Linear TAC Policy with a 5MBL 
T=l05;N=l; % (T-l)=terrninal period in realization when t=O is intitial period, N=the number of realizations. 
r=0.4;K=l8500;M=0.l5;tau=3;SMBL=2500;alpha=-835.5;beta=0.334; 
X=[T:N);OBX=[T:N);Y=[T:N); 
for i=l:N % Initial Conditions for the tau+l values of spawning biomass 
for t=1:5 
X(t,i)=2500; 
end 
end 
for i=l:N 
for t=5:T-l 
OBX(t,i)=2*rand*X(t,i); % Possible Observation Error 
if OBX(t,i»SMBL 
Y(t,i)=alpha+beta*OBX(t,i); 
else 
Y(t, i) =0; 
end 
u=rand; % Possible Stochastic Recruitment 
if u>0.9 % This will occur with probability 0.1 
z=2; 
elseif u<O.l % This will occur about with probability 0.1 
z=O; 
else % This will occur with probability 0.8 
z=l; 
end 
X(t+l,i)=(l-M)*(X(t,i)-Y(t,i))+z*r*X(t-tau,i)*(l-X(t-tau,i)/K); 
end 
end 
t=(6:l:T-l); % Time Interval for Bar Graphs 
i=l; % Realization You Wish to Graph, N~~l 

.figure
 
subplot(2,1,1);
 
bar(X(t,i)),xlabel('t'),ylabel('X'),title('Spawning Biomass under the Linear TAC Policy with 5MBL')
 
subplot(2,1,2);
 
bar(Y(t,i)),xlabel('t'),ylabel('Y'),title('Harvest under the Linear TAC Policy with 5MBL')
 
disp('Maximurn Spawning Biomass ='),disp(max(X(t,i))),
 
disp('Minimurn Spawning Biomass ='),disp(min(X(t,i))),
 
disp('Median Spawning Biomass ='),disp(median(X(t,i))),
 
disp('Mean Spawning Biomass ='),disp(mean(X(t,i))),
 
disp('Standard Deviation of Spawning Biomass ='),disp(std(X(t,i))),
 
disp('Maximurn Harvest Rate ='),disp(max(Y(t,i))),
 
disp('Minirnurn Harvest Rate ='),disp(min(Y(t,i))),
 
disp('Median Harvest Rate ='),disp(median(Y(t,i))), 
disp('Mean Harvest Rate ='),disp(mean(Y(t,i))), 
disp('Standard Deviation of Harvest Rate ='),disp(std(Y(t,i))), 



Table 4. Descriptive Statistics for the Distributions of Spawning Biomass .. and Harvest with Stochastic Recruitment (zt), Observation Error (utl or Both 
(Ztt utl 

Zt ut Zt, Ut
 

X MAX 6,886 6,197 6,939
 

2,649 2,351 1,821
XM1N
 

X 4,589 4,368 4,011
 

Sx 873 852 1,034
 

CVx 19.02 19.51 25.78
 

1,464 2,401 2,981Y MAX
 

49 0 0
YM1N 

y 697 736 634
 

Sy 291 730 694
 

CVy 41.75 99.18 109.46
 

-I 
I 

-
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