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Wildemess: Options to PreselVe, Extract or Develop 

Abstract 

Wilderness is characterized by the presence of extractable resources 

[R(t)=I] and the absence of development [D(t)=O]. In its unexploited, 

undeveloped state, wilderness provides a flow of amenity services at rate 

E=E(t), where E is assumed to evolve according to a process of geometric 

Brownian motion, dE = yEdt + O'EEdzE. If resources are extracted, or if the 

wilderness is developed at t='t, environmental amenities are lost forever 

[E(t)=O for t ~ 't]. If the wilderness is developed at t='t, before resource 

extraction, the resources are no longer aVailable, and the option to extract is 

lost [R(t)=O for t ~ 't]. Suppose that the value of the resources at instant t 

[P=P(t)) and the return on a completed development [V=V(t)] also evolve 

according to geometric Brownian motion, with dP = IlPdt + O'pPdzp, and 

dV = aVdt + O'vVdzv, and where the increments dZE, dzp, and dzv are 

assumed to be uncorrelated. Let the cost of resource extraction be C, the 

cost of development with resources present [R(t)=1] be KI and the cost of 

development with resources absent [R(t)=O] be Ro. The option value of 

wilderness is identified along with the stochastically evolving barriers, P*(t) 

and vi (t). Wilderness will be preserved provided that P(t) never catches 

P*(t) and V(t) never catches vi(t). A numerical example illustrates how to 

calculate the barriers P*(t) and vi(t) given the discount rate (8), the drift 

rates (y, J1, a), standard deviation rates (O'E, O'p, O'v). the cost of extraction (C), 

the alternative costs of development (KI, Ro), and the realizations E(t), P(t), ..I
and V(t). 
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I. Introduction 

The extension of option theory to the analysis of real investments has 

provided economists with new insights into the proper way to evaluate 

decisions which are risky and costly to reverse (Dixit and Pindyck, 1994). 

This approach has the potential for widespread application to problems in 

the field of resource and environmental economics. Brennan and Schwartz 

(1985) have used option theory to examine the optimal time to develop and 

abandon a copper mine. The stylized problem introducing the paper by 

McDonald and Siegal (1986) was to determine the value and optimal timing 

of a project to extract petroleum from shale. Dixit's (1989) model of exit 

and entry provided a rich framework from which to evaluate decisions that 

were costly or impossible to reverse. Clarke and Reed (1989) consider the 

forest rotation problem when tree growth and timber price are stochastic. 

Reed (1993) considers the decision to cut or preserve an old-growth forest 

when timber value and amenity value are evolving according to geometric 

Brownian motion. Conrad has applied option theory to determine the 

timing of an investment to slow global warming (1997). 

This paper applies option theory to the decision to extract resources 

and/or develop a wilderness area. As such, it follows in the now extensive 

and somewhat confuSing literature on option value which sprang from the 

seminal article by Weisbrod (1964). [See Chavas and Mullarkey (1997) for a 

partial survey of this literature and an attempt to "reunite the children of -
Weisbrod."] The model in this paper takes the perspective of a social 

planner or public lands manager trying to determine the desirability and 

timing of decisions to extract resources from and/or develop a wilderness 
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area. The model, while similar in spirit to the model of land development in 

Clarke and Reed (1990) and the sequential investment models in Dixit and 

Pindyck (1994), exhibits important differences. Wilderness amenity value, 

the future value of the extractable resource, and the return on a completed 

development all evolve according to uncorrelated geometric Brownian 

motions. If resources are extracted, or the wilderness is developed, amenity 

value is lost forever. The resources could be extracted first, and 

development could take place at a later date. Alternatively, development 

could take place with resources still in situ. but if this happens, the 

resources are presumed lost or unavailable for future extraction. The cost of 

development will depend on whether the resources have been previously 

extracted. Starting with wilderness, the decision to extract or develop will 

involve the loss of some options and the acquisition of others. The option 

value of preservation is shown to be a separable function of amenity value 

[E=E(t)), resource value [P=P(t)), and the return on development [V=V(t)). 

The value-matching and smooth-pasting conditions imply stochastically 

evolving barriers, P*(t) and vi(t), which must be determined simultaneously. 

Preservation remains optimal provided that neither P(t) nor V(t) reach (or 

catch) P* (t) and vi (t), respectively. 

The rest of the paper is organized as follows. The next section 

formally presents the model, emphasizing the contemporaneous possibilities 

and potential irreversibilities. This is followed, in Section III, with the 

derivation of the option value of wilderness preservation and the conditions 

under which resources would be extracted or the wilderness directly • 

developed. Section N presents a numerical example to illustrate how the 

barriers P*(t) and vi (t) are calculated. The paper concludes with Section V. 
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n. The Model 

Consider a wilderness area containing natural resources (perhaps 

timber or coal) that could be extracted. The area could also be developed 

into a resort community. The state of the area will be described by two 

indicator variables, R(t)=O,l and O(t)=O,1. R(t)=l indicates that the 

resources are still present and available for extraction, while R(t)=O 

indicates that the resources have been previously extracted or, because of 

previous development, are unavailable for extraction. O(t)=O indicates that 

the area is undeveloped, while O(t)= 1 indicates that the area has been 

developed. The model assumes that extraction is different than 

development and that the preservation of wilderness requires both R(t)= 1 

and O(t)=O. 

In its unextracted, undeveloped state, wilderness is assumed to 

provide a flow of amenity services at rate E=E(t). If resources are extracted 

or the area developed, the amenity flow is lost forever. Symbolically, if at 

t = t, R(t)=O or O(t)=l, E(t)=O for t ~ t. If the wilderness is preserved, 

future amenity value is assumed to evolve according to a process of 

geometric Brownian motion given by 

( 1 )
 

where y is the mean rate of drift, (JE is the standard deviation rate and dzE is 

the increment of a standard Wiener process. 

Let P=P(t) denote the value of the resources indicated by R(t)=l. It is • 

assumed that P also evolves according to geometric Brownian motion as 

given by 
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dP = J.1Pdt + (JpPdzp (2) 

where J.l is the mean drift in the value of resources contained in the 

wilderness area and (Jp is the standard deviation rate. If a decision is made 

to extract the resources at t = t. the net revenue will be P(t) - C. where C is 

the known and constant cost of extraction. 

It is possible to develop the area after the resources have been 

extracted or to develop the wilderness directly. leaving the resources in 

situ. Development is regarded as irreversible. and the direct development 

of wilderness results in not only the permanent loss of amenities. but also 

"kills" the extraction option. SYmbolically. if the wilderness is developed at 

t = t. D(t)=l and R(t)=E(t)=O for t ~ 'to The rate of return from the 

completed development is denoted as V=V(t) and is also assumed to follow 

geometric Brownian motion as given by 

dV = aVdt + (JvVdzv (3) 

with mean drift rate a and standard deviation rate (Jv. The cost of 

development is assumed to depend on whether the resources have been 

extracted. If the wilderness is developed directly [from R(t)=l) the cost is 

KI' If the resources have previously been extracted [R(t)=O) the cost of 

development is Ro. Depending on the resources and the type of 

development. KI could be greater than or less than Ro. 

It seems plausible that while E. P and V are all evolving according to 

geometric Brownian motion. they are uncorrelated. Formally. it is assumed • 
,­

that E{dzE.dzp} = EldzE.dzv} = E{dzp.dzv} = O. 

If the initial state is wilderness [R(O)=l, D(O)=O)" there are four 
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possible scenarios: (a) pennanent preservation [R(t)=1. O(t)=O, t > 0], (b) 

extraction at t = t but no development [R(t)=0, O(t)=O, t ~ t], (c) 

development at t = t without prior extraction [R(t)=O, O(t)=I, t ~ t], and (d) 

extraction at t = tl and subsequent development at t = t2 [R(t)=O, o (t)=O, 

't2 > t ~ tl and R(t)=O, O(t)=1. t ~ t2]. Preservation of wilderness provides a 

dividend in the fonn of E(t) and also preserves the option to extract or 

develop. If resources are extracted frrst, one looses the amenity dividend 

and the option to develop at KI' but one gains the one-time net revenue, 

P(t) - C, and the option to develop at cost Ko. In the next section we will 

solve for these option values and the barriers when they would be exercised. 

m. Option Values and Barriers 

As with the sequential investments conSidered by Oixit and Pindyck 

(1994), it will be necessary to consider the timing and value of terminal 

options first. In our case, this means detennining when to exercise the 

option to develop, given that resources have been extracted previously, 

[R(t)=O, O(t)=O]. This is a standard option which has been thoroughly 

covered by Oixit and Pindyck (1994). It is reviewed here because it will be 

needed when solving for the extraction and development options from a 

state of wilderness [R(t)=I, O(t)=O]. 

The option to develop when R(t)=O is denoted as FoM and must 

satisfy the Bellman equation 5Fo(V) = (1/dt)Et ldFol. where 5 is the discount 

rate and Etle) is the expectation operator [not to be confused with 

wilderness amenities, E=E(t)]. Ito's Lemma is used to take the stochastic 

differential and given equation (3) implies ­
5Fo(V) =aVFo(V) + (cr~/2)V2Fo(V) (4) 
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where Fa is the first derivative and Fa is the second derivative of Fo(V). 

This famlliar ordinary differential equations is satisfied when F0 (V) = AoV~ , 

where Ao is a constant to be determined and 

J3 = (1/2 - a/a~) + ~(a/cr~ -1/2)2 + 2'O/cr~ (5 ) 

For the development to have a finite value, '0 > a, in which case J3 > 1. 

The value-matching and smooth-pasting conditions are boundary 

conditions which must hold at V~, the critical value that "triggers" 

development. These conditions imply 

AoVP = V -Ko (6)
('0 - a) 

J3A V(P-l) = 1 ( 7) 
o ('O-a) 

Equation (6) is the value-matching condition and requires that the option to 

develop at V~ must equal the expected present value of the completed 

project less the development cost, Ko. Equation (7) is obtained from the 

smooth-pasting condition which requires that the slopes of the value 

functions, at V~, be the same. This implies that Fa =1/('0 - a). Equations 

(6) and (7) can be solved for V~ and Ao yielding 

V· - )3('0 - a)Ko (8)
0- ()3-1) 

and 
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[~(5 - a)Ko r-PJ 

_ (~-1) 
A 0- (9) 

~(B - a) 

To summarize, if the resources have been extracted from the wilderness 

area, the decision to develop is simply the irreversible investment (or entry) 

decision as described by Dixit (1989) or Dixit and Pindyck (1994), and 

requires that the stochastically evolving V(t) reach V~, which can be 

calculated from estimates of a, CJv, B, and Ko. Knowing how to optimally 

behave if resources have been previously extracted, we can now consider the 

more complex options from a state of wilderness. 

With the wilderness still intact [R(t)=l,D(t)=O) , there are three 

options available: continued preservation, extraction, or direct development. 

The value of continued preservation should intuitively depend on E(t) , P(t), 

and V(t). Let H(E,P,V) denote the value function for wilderness. On the 

continuation region (where preservation is optimal) the Bellman equation 

requires that BH(E,P,v) = E + (1/dt)Et {dH} and, given our assumption of 

uncorrelated geometric Brownian motions, Ito's Lemma implies 

-

where HE = i)H(-)/i)E. HEE = i)2H(-)/i)E2, and so forth. The solution to this 

partial differential equation, interpreted as the value of wilderness. is the 

separable form 

H(E.P, V) =E/(B - y) + BpE + A1VP (11 ) 
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The terms on the RHS of (11) have a straightforward interpretation. The 

term E/(o - 'Yl is the expected present value of wilderness amenity flows, 

given that the current (observable) level is E = E(t). Because E(t) is log 

normally distributed with an expected value of E(t)ey('t-t), t > t, a drift rate of 

"y > 0 causes a reduction the effective rate of discount when calculating 

expected present value. 

The second term, Bp£, is the value of the option to extract, where 

B=B(t) will be a time-varying coeffiCient (discussed in greater detail below) 

and 

£ =(1/2 - ~/ cr~) + ~(~/ cr~ - 1/2)2 + 20/cr~ (12) 

With 0 > ~' £ > 1. 

The third term, AlV~, is the value of the option to directly develop 

(foregoing extraction), where ~ is defined by equation (5), and Al = Al (t) is 

also a time-varying coefficient. At any instant. it will be possible to 

determine B(t), Adt) and the two barriers p·(t) and yilt). These 

coefficients and barriers will depend on the currently observable values for 

E(t), 1>(t) , and V(t) and are determined simultaneously from the following 

value-matching and smooth-pasting conditions. 

E/(0 - "y) + Bp£ + AI V~ = P - C + AoV~ (13) 

(14) •
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p(l-£) 

B=-­ (15) 
£ 

(16)
 

Equation (13) is the value-matching condition where the land manager 

would be indifferent between continued preservation and resource 

extraction. If the resources are extracted, the manager gives up the 

expected present value of wilderness amenities and kills the options to 

extract and to develop at a cost of KI . In exchange, the manager would 

receive the one-time cash flow, P - C, from sale of the resources, and gain 

the option to develop at cost Ko. 

Equation (14) is the value-matching condition for indifference 

between continued preservation and direct development. In exchange for 

the expected present value of wilderness amenities, the options to extract 

and to develop, one would obtain the expected present value of the 

completed project, V/(0 - (X) less development cost KI. 

Equation (15) is obtained from the smooth-pasting condition that 

requires Hp = I, and which must hold at p·(t), where the land manager is 

indifferent between continued preservation and extraction. Equation (16) is 

obtained from the smooth-pasting condition requiring Hv =1/(0 - (X) which 

must hold at vi (0, where the land manager is indifferent between 

continued preservation and direct development. 

When the land manager observes E(t), P(t) , and V(t) she must use ­
equations (13) - (16) to instantaneously solve for B =B(t), Al =Adt), p·(t), 

and yilt). Then a comparison of P(t) with p·(t), and V(t) with Yilt) must 
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reveal that P(t) < p. (t), and V(t) < vi (t) for preservation to remain optimal. 

In this problem the barriers p. (t) and vi (t) stochastically evolve along with 

the realizations E(t) , P(t), and V(t). Wilderness is lost (through extraction or 

direct development) the first time that P(t) catches p. (t) or V(t) catches 

Vi(t). A numerical example might be helpful to illustrate the calculation of 

p·(t) and Vi(t) and to identify the effect on p·(t) and Vi(t) from changes in 

the drift rates, standard deviation rates, the discount rate, the cost of 

extraction and the alternative costs of development, Kl and Ro. 

IV. A Numerical Example 

Numerical analysis of the options to preserve, extract or develop 

requires the formulation of a discrete-time analog to the model of Section 

III. Equations (1) - (3) are approximated by 

(17)
 

Pt+1 = [1 + Il. + crpZp,t+l ]Pt (18) 

Vt+l = [l + a + crvZV,t+l]Vt (19) 

where ZE.t+lo ZP.t+l, and ZV.t+l are independent standard normal variates. 

From the value-matching and smooth-pasting conditions given in equations 

(13) - (16), when can write P; and Vi,t as 

p. _ £[(Au - Ao)V~ + C + Et!(B - 1)] • 
(20)

t - (£-1) 
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(21 )
 

In equation (20). Au depends on the value of vi.t. and in equation (21). Bt 

depends on the value of P;. The equations for Au and Bt are given by 

~(o - aUKI + BtPf + Et/(o - 1)]](l-~) 
[A _ (~-1) (22)u - =--------~-(-o---a-)-------=­

E[(Au - Ao)Vr + C + Et/(o - 1)] ](1-£)
 
[ (E -1)
 

B t =.=....-_-----------=­ (23) 
E 

The algorithm used to generate P; and vi.t worked as follows. First. 

generate the realizations Et+I. Pt+I. and Vt+I according to equations (17) ­

(19). from initial values Eo. Po. and Va. Second. for each period (including 

t=O) make a guess for Bt and Au. Third. substitute the guess for Bt and the 

realized values for Pt and Et into equation (22) and the guess for Al,t and the 

realized values for Vt and Et into equation (23). These equations Yield 

calculated values for Au and Bt. Fourth. compare the calculated values to 

the guesses for Bt and AI.t. Fifth. change the guesses until they numerically 

coincide with the calculated values. Sixth. calculate and save the values P; 

and vi.t. One can then plot Pt and P; and Vt and vi.t to see if the 

realizations ever catch the barriers. 

A MATLAB (Version 5) program. based on the above algorithm. is • 

listed in the Appendix. The drift and standard deviation rates were assigned t' 

the values of )'=0.03. 1l=0.01. a=0.02. <JE=0.3. <Jp=0.2. and <Jv=O.l. The 
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program then generates sample realizations from initial conditions Eo = I, 

Po = 20, and Vo = 3. The remaining parameter values of B = 0.05, C = 50, 

Kl = 120 and Ko = 100 allow for the immediate calculation of ~, E, Ao, and 

the barrier V~. These values are summariZed in Table 1. 

The program specifies a horizon of T = 101 periods, and was run N = 

1,000 times. A sample realization (Run #5) is shown in Figure 1. In this 

run, Pt reaches P; at t =64 and resources are extracted. For t > 64 the 

relevant barrier for Vt becomes V~ = 6. This is reached at t = 80, at which 

time the area is developed at a cost of Ko = 100. 

In the program, if Pt reached P; before Vt reached vi.t (so tp < tv),Vt 

was immediately compared with V~. IfVt ~ V~ it was arbitrarily assumed 

that extraction would take precedence. and development would be delayed 

one period to tv = tp + 1. If Pt failed to reach P; and Vt failed to reach vi.t 

by t=100, then wilderness was preserved. In this case the program also sets 

tv = tp + I, and wilderness preservation (WP) would be indicated by tp = 100 

and tv = 101. Extraction followed by development (ED) would be indicated 

by tp < tv < 100, extraction with no development (END) is indicated by 

tp < tv = 100, and direct development (DD) is characterized by 100 ~ t p > tv. 

The results of the 1,000 realizations are also reported in Table 1. 

Extraction was followed by development in 727 runs. Extraction with no 

development occurred 27 times. Direct development took place 92 times 

and wilderness was preserved 154 times. 

How are the barriers affected by changes in the underlying 

parameters? We can numerically address this question by seeing how the 
.. 

barriers would change in a single period, based on a change in a single 

parameter. while leaving the other parameters, and the realizations 

unchanged. Table 2 summarizes the comparative statics for P; and Vi,t. 
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Tab;, 1. Numerical Results from 1,000 Realizations 

Parameters:
 

'Y = 0.03 Jl = 0.01 a = 0.02 (JE = 0.3 (Jp = 0.2 (Jv=O.1 

5 = 0.05 C = 50 Kl = 120 Ko = 100 

Calculated Values: 

13=2 £ = 1.8508 V o 
• =6 Ao = 2.7778 

Outcomes: 

Extraction with Subsequent Development (ED) 727 

Extraction with No Development (END) 27 

Direct Development (DD) 92 

Wilderness Preserved (WP) 154 

Table 2. Comparative Statics of P; and Vi,t 

'Y (JE Jl (Jp a (Jv C Kl Ko 5 

P; + 0 + + + + + 

Vu
• + 0 + + + + + 

The economic intuition behind these results is as follows. If 'Y 

increases, one expects the amenity value of wilderness to increase more 

rapidly in the future. It would reqUire higher values for both P; and vi.t 

before extraction or direct development would be optimal, since either 

causes a permanent loss of the amenity dividend. If one holds constant the 

realizations Et, Pt, and Vt (the realizations are not recalculated with changes 

in drift or standard deviation rates), then a change in (JE has no direct affect 

on Pt or Vu . 

If Jl increases both P; and vi.t increase. This may at first seem 

counter-intuitive, since in the standard model of an irreversible investment, 
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Figure 1. The Sequence of Extraction and Development in Run #5 
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an increase in the drift rate lowers the critical barrier or trigger value. It is 

important to remember that Pt is the price of the resource, and its 

extraction provides only a "one-shot" net revenue. If the expected drift rate 

of the resource price increases, one would wish to postpone both extraction 

and direct development to see if there might be an above average run-up in 

price which would provide for a large, one-time, net revenue, [Pt - C). 

Because direct development causes resources to become permanently 

unavailable, an increase in Jl also increases vi.t. An increase in op increases 

both P; and vi.t since a higher standard deviation rate might result in an 

unexpected run-up in Pt, and if it doesn't occur, then one still has the option 

of direct development plus the amenity dividend to partially cover the 

downside risk of small or negative changes in Pt. 

If ex increases, both P; and vi.t decline. This is the standard result 

from irreversible investment theory for vi.t. The decline in P; is the result 

of the fact that the area can still be developed, at cost Ko < Kl' even if 

resources are extracted first. An increase in Ov causes both P; and vi.t to 

increase since waiting for a run-up in the now more variable Vt is partially 

protected by the option to extract and the amenity dividend. 

If the cost of extraction, C, goes up, one would require a higher 

resource price to induce extraction, while a lower critical vi.t would induce 

direct development. An increase in Kl has the effect of lowering P; while 

raising vi.t, while an increase in Ko (the cost of development after resources 

have been extracted) will raise P; and lower vi.t. 
Finally, an increase in 0 lowers P; while raising vi.t. The one-shot -


nature of [Pt - C) means that an increase in the discount rate is likely to 

induce earlier extraction, while direct development, with a lower expected, 

discounted value, would necessitate a higher vi.t. 
15 



V. Conclusions 

This paper has examined the optimal timing of preservation, resource 

extraction, and development of a wilderness. The fact that resource 

extraction or development often results in an irreversible loss of wilderness, 

and that the benefit and opportunity cost of such actions are uncertain, 

means that wilderness preservation also preserves options. This does not 

mean that wilderness should never be disturbed, but that the decision to 

extract or develop needs to be fonnulated in tenns of threshold or critical 

values, where if the price of extractable resources or the return on 

development reaches a critical level, it becomes optimal to extract or 

develop, based on expected present value. 

If there are sequential possibilities, such as extraction followed by 

development, the options and critical values become more complex to 

determine. The model of this paper allowed wilderness to be directly 

developed or to be developed after resource extraction (at a possibly 

different cost). In this paper development was possible after resource 

extraction, but if direct development took place, the unextracted resources, 

along with the wilderness amenity flow, were presumed lost forever. 

The option value of preservation depended on current amenity value, 

the price of extractable resources and the rate of return on the site, if it 

were developed. This resulted in an unusual feature: the critical values 

(stopping barriers) were stochastically evolving along with amenity value, 

resource price, and the return on the development project. At any instant, 

the critical barriers could be calculated if current amenity value, resource • 

price and project return were known. Wilderness was preserved (it had a 

higher expected present value) provided that price and the project's rate of 
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return remained below their stochastically evolving barriers. 

While spot prices for wilderness resources (for example. coal. timber. 

copper. or gold) are readily observable. the current rate of return. or 

dividend. on a development project (say. a ski resort) would have to be 

based on observable returns to comparable and possibly neighboring projects 

(say other ski resorts in the viCinity). 

A numerical example showed how the critical barriers could be 

computed. The numerical model also permitted an analysis of the sensitivity 

of price and return barriers to changes in the underlYing parameters. An 

increase in the expected drift rate for the price of the resource caused both 

the price and return barriers to increase. This was a result of the "one-shot" 

nature of the net revenue from resource extraction. and implied that both 

extraction and development might be postponed if one expected resource 

prices to increase more rapidly in the future. 

An increase in the cost of extracting resources from the wilderness 

would raise the price barrier (making extraction less likely). but lower the 

development barrier (making development more likely). An increase in the 

discount rate lowers the price barrier (making extraction more likely) while 

raising the development barrier (making development less likely). 

Given the seminal work by Weisbrod (1964) and Arrow and Fisher 

(1974). it is not surprising that modern option theory should provide 

important conceptual insights and the appropriate methodology to evaluate 

decisions to preserve or develop wilderness. Empirical analysis of actual 

sites and projects will be hampered by a lack of time series data on site­ ­
specific amenities and the return on site-specific developments which 

would be needed to estimate mean drift and standard deviation rates. It 

would be possible to numerically explore the frequency of preservation. 
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extraction. and development for alternative sets of parameters and initial 

conditions (by repeated use of a program such as that listed in the 

Appendix). and this may allow a more comprehensive analysis of the price 

and return conditions that would result in extraction or development. 
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" Wilderness Stopping Barriers Appen" u ­
N-1000; , Number of Realizations ~
 
tp-[N:1];
 
tv-[N:1];
 
for k-1:N
 
garnma-0.03;mu-0.01;alpha-0.02;sigmaE-0.3;sigmaP-0.2;sigmaV-0.1;T-101;
 
E-[l:T];
 
P-[l:T];
 
V-(l:T];
 
E(l,l)-1;P(l,l)-20;V(l,l)-3; , Initial Conditions
 
for i-1:100 , Sample Realizations
 
E(l,i+1)-(1+gamma+sigma£*randn)*E(l,i);
 
P(l,i+1)-(1+mu+sigmaP*randn)*P(l,i);
 
V(l,i+1)-(1+alpha+sigmaV*randn)*V(l,i);
 
end
 
delta-0.OS;C-SO;Kl-120;KO-100;
 
beta-(1/2-alpha/(sigmaVA2))+sqrt«alpha/(sigmaVA2)-1/2)A2+2*delta/(sigmaVA2));
 
epsilon-(1/2-mu/(sigmaPA2))+sqrt«mu/ (sigmaP A2)-1/2)A2+2*delta/(sigmaPA2));
 
Vstar-(beta*(delta-alpha)*KO)/(beta-1);
 
AO-«Vstar)A(l-beta))/(beta*(delta-alpha));
 
A1-(l:TJ;
 
8-(l:T];
 
Alhat- (1 :T];
 
Bhat-[l:T];
 
Pstar-[l:T];
 
Vlstar-[l:T];
 
for j-1:100 " Solving for consistent B(t) and A1(t) and P*(t) V1*(t)
 
A1hat (1, j) -10;
 
Bhat (1, j) -1;
 
Al(l,j)-« (beta*(delta-alpha)*(K1+Bhat(l,j)*(P(l,j)Aeps ilon)+E(l,j)/(delta-gamma) )/(beta-1)) )A(l-beta))/(beta*(delta­
alpha) );
 
B(l,j)-«(epsilon T ( (A1hat(l,j)-AOl*(V(l,j)Abeta).C+E(l,j)/(delta-gamma)))/(epsilon-l))A(l-epsilon))/epsilon;
 
while abs(A1(l, j)-Alhat(l, J) )+abs(B(l,j)-Bhat(l,j))>O.OOOOOl
 
Alhat (1, j) - (A1 (1, j) +Alhat C., j) ) /2;
 
Shat (1, j)- (B(1, j) +Bhat (1, j)) /2;
 
end
 
Pstar(l, j)-(epsi1on*«A1(1,j)-AO)*(V(l,j)Abeta)+C+E(l,j)/(delta-gamma)))/(epsilon-1);
 
Vlstar(l,j)-(beta T (de1ta-a1pha)*(K1+B(l,j)*(P(1,j)Aeps i10n)+E(l,j)/(delta-gamma)))/(beta-l);
 
end
 
tp(k,1)-100;
 
tv (k, 1) -100;
 
for j-l:100 " Determining the first time P(t) catches P*(t)
 
if P(1,j»-Pstar(l,j)
 
tp(k,l)-j-l; " The time period is the index less one
 
break
 
end
 
end
 
for j-l:100 " Determining the first time VItI catches Vl*(t)
 
if V(l,jJ>-V1star(1,jJ
 
tV(k,1)-j-1;
 
oreak
 
end
 
end
 
if tp(k,l)<tv(k,l) , If eXL~action first, then the crita1 barrier is Vstar
 
for j-tp(k,1)+1:100
 
if V(l,j»-Vstar
 
tv(k,l)-j-1;
 
break
 
end
 
end
 
end
 
if tv(k,l)--tp(k,l) , If tp(k,l)-tv(k,l), then tv(k,l)-tp(k,l)+l
 
tv(k,l)-tp(k,l)+l;
 
end
 
disp«(k tp(k,l) tv(k,l)])
 
end
 
DD-O;END-O;WP-O; , Counting the Outcomes
 
for k-1:N
 
if tv (k, 1) --101
 
WP-WP+1; , WP-Wilderness Preserved
 
end
 
end
 

- for k-1:N 
if tv(k,l)--100 
2ND-END+1; , END-Extraction out No Development 
end ­
end ,.fer k-,-:N
 
if tp(k,~»tv(k,l)
 

OD-DD+1; , DD-Di~ect Development
 
er:.d 
end
 
2D-N-(WP+END+DD),END,DD,WP, , £D-£xt~action then Development
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