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Abstract 

This paper examines the role of energy in long-term growth. The 

authors estimate a translog production function in capital, labour, and 

energy, using data on 38 countries from 1965-1990. It is found that 

separating the countries into two groups, the high growth group and the 

rest of the world (ROW), yields slope coefficients that are statistically 

different. Furthermore, there are dramatic differences in the estimated 

production elasticities, returns to scale, and bias in technical change for 

the two country groups. 

Based on the estimated coefficients, the authors approximate the 

contributions of the factors of production in explaining the observed 

growth in real GDP through a growth accounting exercise. Energy 

emerges as an important source of growth for both country groups, second 

only to increases in total factor productivity. 

In light of the negotiations over a Protocol to the Climate Change 

Convention, the authors estimate the capital and labour requirements for 

national energy reductions. 

Finally, the authors use the production function to provide 

analytical expressions for the elasticity of energy intensity with respect to 

other factor inputs, and also for autonomous energy efficiency 

improvements (AEEI). It is found that the deceleration of the AEEI in the 

ROW countries more than offsets the combined acceleration witnessed in 

Hong Kong, South Korea, and Thailand. 

-
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1. Introduction 

This paper revisits an issue that was the subject of intensive 

research among economists in the three decades following the second 

World War. The central concern of this oeuvre was the quantification of 

the sources of economic growth using the concepts of a production function 

and growth accounting.1 The most well known studies among these 

include Abramovitz (1956), Solow (1957), Kendrick (1961), Denison (1967), 

Griliches and Jorgenson (1966), Jorgenson and Griliches (1967), and 

Kuznets (1971). 

Suppose that output, Y, in any time period is a function of two 

inputs, say capital, K, and labour, L, and time, t. That is 

Y = A(t){(K,L) (1) 

where A(t) represents Hicks neutral technical change. The total 

differential of the above equation gives us the following identity, relating 

the growth of output to the growth in the factors of production, and total 

factor productivity or technical change: 

dY dA dK dL 
+ 11K- + 11L- (2)

Y A K L 

where 17K and 17£ are the production elasticities ofK and L, respectively. 

The common thread unifying this work involves the estimation of 

-
production elasticities for capital and labour inputs under the assumptions 

See Jorgenson (1995, chapter 1) and Christensen et at (1980) for an overview of
 
the chronological development of the literature.
 



2 

of constant returns to scale and perfectly competitive product and factor 

markets. Under this pair of assumptions, the production elasticities are 

numerically equal to the equilibrium value shares for the inputs, and sum 

to unity. In this way, price and quantity data were used in this literature 

to obtain estimates of these elasticities without necessitating the 

specification nor econometric estimation of the physical production 

function underlying the analysis. Furthermore, the production elasticities 

were typically assumed to be independent of the levels of factor use, and 

also constant over time. 

The literature published in the last two decades has raised the 

analysis to a more sophisticated level. Included now are the impacts of 

factors such as the heterogeneity of capital and labour inputs, quality 

changes in inputs, and the impact of education on growth and productivity. 

Jorgenson (1995) provides a good overview. 

In terms of methodology, a major shift in the literature came with 

the work of Christensen et al. (1980). While retaining the assumptions of 

perfect competition and linear homogeneity of the production function, 

they allowed the production elasticities to vary with the level of capital 

and labour use by employing a translog production function. In addition, 

they also relaxed the assumption of Hicks neutral technical change. The 

optimum value shares thus vary not only with the levels of factor inputs, 

but also with time. Their analysis was carried out for nine industrialized 

•countries: Canada, France, Germany, Italy, Japan, Korea, Netherlands, 

UK, and USA. For eight of these countries, time series were developed 

from 1955-1973, while for Korea the first data point'was 1960. An 
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important result obtained from their analysis was that growth in factor 

inputs, i.e., capital and labour, was closely associated with growth in 

economic product. This was in contrast to the earlier literature, for 

example Kuznets (1971), which found that the growth in total factor 

productivity, A(t), was the key factor in explaining the growth in total 

output. 

Kim and Lau (1994) took the analysis a step further by relaxing two 

assumptions that have remained unquestioned in the literature: they did 

not assume a homogenous production function, nor did they assume perfect 

competition. Instead, they estimated a system of two equations consisting 

of a translog production function in capital and labour, and the labour 

share equation that would hold under perfectly competitive product and 

factor markets. Their sample comprised of data from at least 1966 to 1990 

for nine countries: Hong Kong, Singapore, South Korea, and Taiwan (the 

Little Dragons of East Asia), and France, West Germany, Japan, and the 

United Kingdom (the Group-of-Five industrialized countries). 

The Kim and Lau work reveals a clear dichotomy in the results for 

the four East Asian countries and the remaining countries included in 

their data set. The estimated production elasticities for capital are 

consistently higher for the Little Dragons as compared to the Group-of­

Five countries; the estimated production elasticities for labour are 

consistently lower for the Little Dragons. Furthermore, they found that 

while capital accumulation was the chief source of economic growth for the ­
Little Dragons, for the Group-of-Five countries technical progress 

accounted for the bulk of growth in national output.· 
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This dichotomy in the results obtained by Kim and Lau lead us to 

explore the differences in the growth experience of the rapidly growing 

economies of East Asia as compared with that of the rest of the world. 

Table 1 below shows summary statistics on national level data from 1965­

1990 for a sample of 38 countries.2 The countries are organized into two 

groups: the first group comprises Hong Kong, South Korea, and Thailand, 

and the second group, the rest of the world (ROW). The statistics 

presented are the averages for each group. 

Table 1
 

Average Annual Growth Rates, 1965·1990 (% per year)
 

Hii!h Growth Rest of the World 

Real GDP per worker 5.62 1.98 

Capital stock per worker 6.23 3.64 

Ener2'Y per worker 6.67 2.54 

Labour force 2.6 1.67 

It is evident that the high growth countries of East Asia have 

witnessed significantly higher growth in output per worker than the ROW 

countries. Furthermore, this is supported by still higher growths in the 

capital and energy inputs on a per worker basis, even though, on average, 

these countries experienced a more rapid growth in their labour force than 

the remaining countries in the sample. ­
See appendix 1 for details on data and data sources, and definitions of the country 

groups. 
2 
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These differences between the two country groups raise a set of 

related questions. First, is it correct to assume, as Kim and Lau do, that 

the high growth countries operate on the same production surface as the 

ROW countries? Second, is the high growth in output per worker the 

result of the growth in factor inputs alone, or is due in part to technological 

advances that raise the total factor productivity? Third, does technical 

change playa greater or smaller role in explaining the growth in output in 

the case of the ROW countries than in the case of the high growth 

countries? We attempt to answer these questions by estimating a translog 

production function with biased technical change in which the slope 

coefficients vary by country group. Instead of forcing the estimated slope 

coefficients to be identical for the two groups, a priori, we test whether the 

differences in the estimated coefficients are statistically significant. We 

will show that separating Hong Kong, South Korea, and Thailand from the 

rest of the countries in the sample leads to dramatically different results 

than those obtained by Kim and Lau, with obvious policy implications. 

A conspicuous feature of the growth accounting literature is its 

focus on capital and labour as the only two significant inputs in the 

production process.3 An additional purpose of the present paper is to 

There is a substantial literature that compares the roles of capital, labour, and 
energy in the production process. However, the focus of this work is different from the 
current analysis. For instance, Berndt and Wood (1975) estimate the cost shares 
corresponding to a translog cost function in capital, labour, energy, and materials in order 
to analyze the degree of substitutability/complementarity between the factor inputs for •
the US manufacturing industry; Hudson and Jorgenson (1974) combine an econometric 
model of producer behavior with a growth model for the US economy to project energy 
utilization from 1975-2000; Berndt et ai. (1993) focus on the role of embodied and 
disembodied technical change in explaining productivity growth in the manufacturing 
sectors of the US, Canada, and France. 
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extend the Kim and Lau type analysis to include energy as a third factor of 

production. Furthermore, in doing so we employ a much larger data set, 

including countries from Africa, South Asia, and Latin America. 

The recent statements by several Heads of State detailing 

reductions in national carbon dioxide emissions (Cushman 1997) have 

squarely focussed attention on the role of energy in economic growth. 

Apart from estimating the historically observed contributions of the 

energy, capital, and labour inputs in explaining the growth in real GDP 

through a growth accounting exercise, we also estimate the capital and 

labour requirements for national energy reductions. Finally, we provide a 

theoretical underpinning for the observed decline in the energy to GDP 

ratio, and explore the impact of technological development on autonomous 

energy efficiency improvements. 

2. The Model and Results 

We use a translog production function in three inputs, capital, 

labour, and energy. Technical change is captured by the time trend. The 

production function is assumed to be non-homogenous and symmetric in 

factor use. Interactions between factor use and time are allowed, i.e., we 

do not assume Hicks neutral technical change.4 The estimating equation, 

Note that in case of a flexible functional form of the type specified above, the 
production elasticity for any factor input depends on the interaction term between that 
input and time. If the estimated coefficient is negative, it is possible that the production -

elasticity will become negative after a sufficiently long period of time. See figure 4.2. 
This is a theoretically unappealing consequence of modeling technical progress as a 
simple time trend. Yet, it is a commonly used method. See, for instance, Christensen et 
al. (1980), and Kim and Lau (1994). Appendix 3 presents an alternative way of modeling 
technical change that might be used in further research. 
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and analytical expressions for the production elasticities, elasticities of 

substitution, and bias in technical change are shown in appendix 2. 

A few comments follow on the data. Figure 1 shows data on real 

GDP, capital stock, labour force and energy consumption for Germany and 

Kenya. It reveals some problems that arise in using national level time 

series data for econometric analyses. First, nations typically do not collect 

data on these variables annually. Often data are collected at 5 or 10 year 

intervals. For the interim years, the data are "generated" using some form 

of interpolation. This is particularly obvious in the case of the series on 

labour force. By definition, this method of data "collection" creates an 

autocorrelated series. Second, changes in the definitions used to 

determine highly aggregated variables, such as the national capital stock 

and GDP, are another possible source of error since they do not reflect any 

real change in the physical variable being measured. For instance, in the 

case of Germany, there is a sudden jump in capital stock between 1970 and 

1971. If this is due to a change in the underlying definition of the national 

capital stock, or of some component that makes up the national aggregate, 

this should ideally not be reflected in the coefficients of the physical 

production function estimated using these data. However, in most cases, it 

is nearly impossible to "clean" the data set of such anomalies. Finally, 

there is the issue ofmulti-collinearity. Even a cursory look at figure 1 

shows that the variables tend to track each other fairly well. In the 

presence ofmulti-collinearity, the statistical quality of the estimated ­
coefficients is suspect. A small change in the data can cause a substantial 

change in the estimated values. We discuss our econometric results 
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subject to these qualifications. 

In the first instance, we re-estimated the Kim-Lau model using 

ordinary least squares for the pooled data from 1965-1990 for the 38 

countries in our sample, and obtained very similar results. While the 

specific numerical values for the estimated coefficients are expectedly 

different, the estimated production elasticities are quite similar.5 Not only 

do we get the same qualitative trends over time, the elasticities for the 

countries in the Kim-Lau data set are in the same range. The addition of 

energy as a third input did not effect these results. 

Next, we allowed the estimated slope coefficients to vary with 

country groUp.6 To begin with, we tested, separately, several hypotheses 

concerning the production function that have traditionally remained the 

maintained hypotheses in the growth accounting literature. The 

calculated F-statistics and the corresponding decision to reject or not reject 

the null are shown in table 2. The analytical restrictions imposed under 

hypothesis are shown in appendix 2. 

5 There are some key differences between the Kim and Lau study and our attempts 
which account for the difference in the estimated coefficients. Not only do Kim and Lau 
have a much smaller data set from us, they also estimate a system of two equations using ­a number of instrumental variables. Both studies correct the errors for first degree 
autocorrelation. 

6 Throughout, the model was estimated using SAS (version 6.12) on a RS/6000 
machine using the "autoreg" procedure. 
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Table 2
 

Hypotheses Tests
 

Null hypothesis F-stat Probability> F Decision 

Homogeneity 1.6156 0.1396 Do not reject 

Cobb-Douglas 

production function 

3.1187 0.0002 Reject 

Neutral technical 

progress 

6.8130 0.0001 Reject 

Single production 

function 

8.3487 0.0001 Reject 

Since the only hypothesis that could not be rejected was that of a 

homogenous production function, the model was re-estimated subject to 

these restrictions. Once again, the errors were corrected for first degree 

autocorrelation. Note that even though we allow the slope coefficients to 

vary, we do not estimate the model as two separate regressions. Rather, 

we estimate a single equation, so that the error terms are common. Table 

A.l in appendix 2 shows the estimated coefficients, standard errors, t-

ratios, and other regression statistics for the homogenous translog model. 

Based on the estimated equation we calculated the production 

elasticities, returns to scale, and the bias in technical progress for each 

country in the data set. For ease of analysis and presentation, we 

developed a representative data set for the high growth and ROW 

countries based on the summary statistics presented in table 1. Each ­
variable, i.e., real GDP, capital stock, labour force, and energy 

consumption was assumed to start at the average 1965 value for each 
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country group. Using the average annual growth rate for each country 

group, we extrapolated the values for 1966 through 1990. In this way, we 

generated a data set that was representative of the average nation in each 

country group. 

Figure 2 shows the production elasticities for each factor input for 

the average high growth and average ROW country.7 There are dramatic 

differences, not only in the numerical values, but more significantly in the 

sign of the slopes of the representative elasticities. For the average high 

growth country, TJK and TJL are falling over time, whereas 'IE is rising. 

Exactly the opposite occurs for the average ROW country. This implies 

that at the competitive equilibrium, the value shares for capital and labour 

have, on average, been falling in the rapidly growing countries of East 

Asia, while for the ROW these have been rising in general. 

-

Appendix 4 shows the 1965 and 1990 values for the production elasticities for each 

country in the data set. 
7 
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This is in sharp contrast to the results obtained by Kim and Lau (1994). 

According to their analysis, TJK is falling and TJL is rising for all countries in 

their data set. Furthermore, Kim and Lau find that TJK is higher for the 

Little Dragons while TJL is higher for the Group-of-Five countries. Once 

again, the opposite is true in our case: TJL is higher for the average rapidly 

growing economy and TJK is higher for the representative ROW economy for 

the first half of the time horizon of our analysis. For energy, the difference 

between the two country groups is equally dramatic. The difference in the 

estimated TJE for the two groups is intensified over time as TJE rises for the 

high growth group and falls for the ROW group. 

Having a different model for the high growth and ROW countries 

begs the question of reversibility. What if a high growth country were to 

experience a slowdown in its growth rate? Would this mean that the 

country would now experience the same growth model as the ROW 

countries? In an attempt to answer this question, we re-estimated the 

production elasticities for K, L, and E for the high growth countries using 

the data set created for the representative ROW country and the estimated 

coefficients for the former group. Similarly, we also re-estimated the 

production elasticities for the low growth group using data for the average 

high growth country. The results are shown in panels A and B of figure 3. 

The elasticities depicted by the solid lines in these figures are identical to 

the production elasticities in figure 2, and are included for the sake of 

comparison. The dashed lines show the production elasticities recalculated • 

under the changed growth rates. 
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It is clear from these figures that a change (acceleration or 

deceleration) in the growth rate of real GDP, capital stock, labour force, 

and energy consumption is by itself not enough to transfer a country from 

one model or production surface to the other. While there is the 

anticipated change in the numerical value of the elasticities, there is no 

change in the sign of the slope with time under the changed growth 

scenario for both groups of countries. This implies that it is some other 

aspect, such as a change in the shares of manufacturing imports and 

export in total GDP that has accompanied such growth in the past, is the 

crucial factor in determining the growth experience, and correspondingly, 

the production surface that a country operates on. The export-led growth 

of Honk Kong, South Korea, and Thailand is perhaps what sets them apart 

from the rest of the countries in the sample.8 

Figure 4 shows the degree of homogeneity for both groups of 

countries. For the average high growth country, our results are very 

similar to those obtained by Kim and Lau. Both analyses find that the 

degree of homogeneity is numerically close to 1, and is falling over time. 

For the ROW countries, however, our results contradict those of Kim and 

Lau. Not only do we get a much lower numerical value, we also find that 

the scale elasticity is increasing rather than decreasing over time. The 

only similarity is that both studies find decreasing returns to scale in all 

time periods for this latter set of countries. It is not surprising that we 

-

Of course, trade in energy intensive manufactured goods can have an important
 

impact on domestic commercial energy consumption and on productivity. See Suri and
 
Chapman (1996) and Chapman (1991) for an analyses on these issues.
 

8 
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get very different scale elasticities as compared to the Kim-Lau study. The 

scale elasticity is defined as the sum of the production elasticities for all 

the factors of production. AB noted before, our estimated production 

elasticities vary considerably from those obtained by Kim and Lau. On the 

contrary, it is somewhat surprising that the degree of homogeneity for the 

high growth countries is so similar in the two studies: the addition of 

energy as a factor input is offset by the change in the numerical values and 

trends in the production elasticities for capital and labour. 

The bias in technical progress is another policy variable of interest. 

It compares the percentage change over time in the production elasticities 

for any pair of factor inputs. AB shown in figure 2, the estimated 

production elasticity of capital for the average high growth country 

becomes negative in period 26. This not only creates sharp peaks and 

troughs in the calculated BiasKL and BiasKE for this group of countries, it is 

also inconsistent with economic theory. For this reason, we ignore the 

estimated bias for the high growth countries for the last period. 

Figures 5 and 6 reveal another principal difference in the growth 

experience between the two country groups. For the high growth 

countries, BiasKL > 0, BiasLE < 0, and BiasKE starts out negative, but 

eventually becomes positive as TJK approaches 0. In other words, technical 

change has been either energy intensive or capital intensive, but not 

labour intensive. For the ROW countries we get the exact opposite results: 

BiasKL < 0, BiasLE > 0, and BiasKE > 0. In the case of these countries, ­
technical change is either labour or capital intensive, but not energy 

intensive. 



-
Figure 5
 

Bias in Technical Progress: Average ROW Country
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The divergence in results obtained for the high growth and ROW countries 

suggests some difference in economic structure, in addition to the obvious 

difference in the technology in place in the two sets of countries. Perhaps 

the hypothesis set out by Alexander Gerschenkron (1962, pp. 353-359) in 

the context of the historical development of Europe finds some support 

here. It is possible that the late developers (the high growth group of 

countries) had the advantage of a set of mature technologies available to 

them to import, rather than developing technologies indigenously. In 

addition, once we distinguish energy as significant factor of production, it 

seems that the late developers tend to adopt technologies that are 

relatively energy intensive. This, in tum, implies that these countries 

established the necessary institutional mechanisms to ensure a relatively 

secure energy supply during a period when the global economy was subject 

to two major oil shocks. Figure 4.7 shows energy use for the high growth 

countries a few ROW countries. Note that commercial energy consumption 

in Hong Kong, Korea and Thailand is relatively unaffected by the oil 

shocks of the 1970s and the 1980s. 

-
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What, if anything, does this mean for the relatively less developed 

countries in the ROW group, such as India? Very crudely, it suggests that, 

indeed, these countries have the opportunity for rapid growth, provided 

they are able to take advantage of the existing technologies, especially in 

the energy sector, and are able to complement this with an appropriate 

institutional structure. (With due respect for Gerschenkron's warnings 

against the use of terms such as preconditions for development, we do not 

imply that the shift to energy intensive technologies is a necessity for the 

development of the presently less developed countries. Instead, we are 

speculating a possible course that the development process in these 

countries might take.) At the same time, it is imperative to note that the 

neo-classical approach underlying this paper obscures the problem of 

unemployment which is a major economic issue for developing countries. 

If, as hypothesized above, these countries follow a relatively energy 

intensive growth path similar to that witnessed in the high growth 

countries, it is likely that the current unemployment problem of 

developing countries would get exacerbated in the future. Further 

research should examine the growth of the energy sector and its role in 

process of economic growth and development. 

3. Implications for Environmental Policy 

In this penultimate section, we examine some issues relating to 

global environmental policy. Each of these is discussed below. ­
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3.1 Growth Accounting 

First, we carry out a growth accounting exercise to determine the 

contributions of capital, labour, energy, and total factor productivity (TFP) 

to the growth in GDP, as set out in equation 2.9 Table 3 shows the average 

results for the high growth and ROW countries over the period 1965-1990. 

Table 3
 

Sources of Growth in GDP, 1965·1990 (% shares)
 

Group Labour Capital EnerJff TFP 

HiJzh 2l"owth 21.98 19.00 26.69 29.32 

ROW 8.82 24.91 27.00 39.27 

Note:	 The table presents the average for all countries in each group. 

For this reason, the row sums do not necessarily add up to 100, 

but are close to that figure. For details on individual countries, 

see appendix 5. 

It is apparent from the above table that energy has been a 

significant source of growth in real GDP in the high growth and the ROW 

countries. In both cases, it is second only to increases in TFP, accounting 

9 The continuous growth rate for each variable is approximated as follows (Hulten 
1992, p. 969, footnote 10): 

tax :::: Ln[ X1 
X X t _1 

The continuous production elasticity for any factor at period t, if, is approximated as -
(ibid.): 

+ T]t-IT]t T]t :::: -'-_!",,­
2 
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for almost a third of the total growth. Interestingly enough, labour has 

been much more important to the growth in real GDP in the high growth 

countries as compared to the ROW countries. This is because, on average, 

the former group of countries witnessed a much higher growth rate in 

labour force (see table 1), and also had a much higher production elasticity 

oflabour between 1965 and 1990 (see figure 2). However, if the growth 

rate in labour force slows down in the future, and the declining trend in TIL 

is not reversed, it is likely that in future the contribution of labour might 

decrease significantly. Furthermore, if past trends in production 

elasticities and growth rates continue, energy is likely to become the most 

important source of growth among the factors of production being 

considered. 

Note that our study aggregates over the differences in input quality. 

Christensen et al. (1980) have shown that analyses that do not account for 

the heterogeneity of capital and labour tend to assign a much higher share 

to the growth in TFP in explaining the growth in real GDP. It is likely 

that this conclusion would be corroborated ifwe were to take cognizance of 

the different forms of commercial energy input -- coal, oil, and natural gas, 

for instance. While these alternative energy forms are substitutable for 

one another to some degree, they are not perfect substitutes as our 

analysis implicitly assumes. 

3.2 Capital and Labour Requirements for Energy / Emissions Control • 

With energy emerging as a major source of growth in real output, 

the recent meetings of the Conference of Parties to the United Nations 
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Climate Change Convention take on an added significance. These 

meetings have greatly emphasized the reduction of energy use, especially 

for large countries like USA. We examine the economic consequences of 

such a reduction through the following thought experiment. Suppose that 

each country in our sample reduces its energy consumption in 1990 by 10% 

in an attempt to reduce global carbon dioxide emissions. By how much 

would it have to increase the capital and labour inputs so as to maintain a 

constant real GDP? In other words, we estimate the movements along the 

1990 production isoquant for capital and energy, and labour and energy, 

respectively. It was found that a 10% decline in energy use required a 5­

15% increase in either the capital or the labour input on order to maintain 

the level of gross domestic product. 

In addition, two intuitively appealing results emerge. First, at 

lower levels of GDP per capita, it is much easier to substitute labour than 

capital for energy. Second, as the level of GDP per capita rises, this 

dichotomy is eroded. These results are indicative of the change in the 

underlying structure of the economy that occurs with a growth in income, 

from a predominantly agricultural and informal sector economy to one that 

is dominated by the manufacturing and service sectors. 

The implication for future energy/climate change policy is that 

countries at low levels of GDP per capita might be able to meet national 

emissions targets at relatively lower costs than high income countries. 1o 

-

This conclusion is based on a partial equilibrium analysis. Ex-post, the economic 

impacts of energy/emissions control will be determined by the simultaneous change in the 
capital and labour inputs and productivities. The overall conclusion should, however, 
remain unaffected. The Intergovernmental Panel on Climate Change (1996, chapter 7) 

10 
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Moreover, enhancing labour productivity through say, education, might be 

an effective means of arresting the escalation in abatement costs as these 

countries grow. 

3.3 Changes in Energy Intensity and Autonomous Energy Efficiency 

Improvements 

Energy intensity is a parameter that finds its way into most 

national or global level economic studies on climate change. It is defined 

as the ratio of energy use to total economic output. One of the most 

common ways of modeling changes in energy intensity is simply by 

estimating the ratio over time and extrapolating the observed trend into 

the future (see, for instance, Nordhaus 1994, p. 66-67). This is a purely 

empirical exercise with no obvious theoretical underpinnings. A 

production function enables us to associate a change in energy intensity 

with a change in factor inputs. The analytical expressions for the 

elasticity of energy intensity with respect to capital, labour, and energy, 

respectively, for the translog production are shown in equation (3) below: 

-

arrived at a similar conclusion: in general it is cheaper to reduce future carbon dioxide 
emissions in developing countries than in currently developed countries. Further 
research is necessary to confirm these conclusions (see Khanna and Chapman 1996, pp. 
61-62). 
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aLn(EIGDP)
 
aLn(K) = -(cx + PnLn(L) + Pn;Ln(E) + 2*Pu Ln(K) + PKtt) .. - '1x
 

aLn(E/GDP) (3)
aLn(L) = -(cL + PnLn(K) + PuLn(E) + 2*Pu Ln(L) + Put) = - '1L 

aLn(E/GDP)
 
aLn(E) = -(CE + Pn;Ln(K) + PuLn(L) + 2*Pu;Ln(E) + PElt) • (1-'1~
 

Note that the elasticity of energy intensity w.r.t. capital and labour is 

negative by definition. However, in the case of energy, the sign of the 

elasticity depends upon whether TJE is greater than or less than 1: if TJE >1, 

then output increases more than proportionately with an increase in the 

energy input, and energy intensity declines as a consequence; otherwise 

the energy intensity increases. 

The change in energy intensity in response to a change in factor 

input occurs due to substitution between the inputs as a result of a change 

in their relative price ratios. Another source of change in the energy to 

output ratio is technical progress. This is a change that occurs 

independent of input price changes, and is sometimes referred to. as 

autonomous energy efficiency improvements (AEEI).l1 Using the translog 

production function, we can estimate AEEI as the percentage change in 

energy intensity over time, ceteris paribus, according to the following 

expressIOn: 

-

Manne and Richels (1992) distinguish between price iriduced and non-price 

related changes in energy use. See chapter 2, pp. 32-34, and chapter 7, pp. 121-133. 
11 



28
 

oLn(EIGDP) = _(<< + 2.« t + P~Ln(K) + PuLn(L) + pBtLn(E» (4)at I." 

We estimated the AEEI for each country in our data set. The total for each 

country group and the sample total were estimated as a weighted average, 

where the weights are the country shares in sample real GDP. The results 

are shown in table 4. The table also shows an approximation of the rate of 

change in AEEI between 1987-1989 and 1988-1990. This is calculated as 

the weighted average of the change in national AEEls between these 

years. 12 

Table 4
 

Autonomous Energy Efficiency Improvements
 

AEEI: annual % change 

in energy intensity· 

(1988·90) 

Rate of change in AEEI" 

(1987·89 to 1988·90) 

HiJ!h growth total • 13.53*10'4 4.5*10'5 

ROW total - 11.35*10'3 - 6.8*10.5 

Sample total - 12.70*10.3 - 2.3*10,5 

Note: * see footnote 12 for details 

-

These calculations are based on the average AEEI and average GDP shares 

between 1988-90. For the rate of change in AEEI, we calculate the difference in the 
average AEEI between 1987-89 and 1988-90 for each country, and then weight it by the 
average GDP shares between 1988-90. 

12 
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The magnitudes reported in the above table are not as important 

the signs of estimated changes. The table shows that while both high 

growth and ROW countries have been experiencing a decline in energy 

intensity with time, ceteris paribus, the rate of decline has been slowing 

down for the sample as a whole. The deceleration of the AEEI in the ROW 

countries more than offsets the combined acceleration witnessed in Hong 

Kong, Thailand, and Korea. Surprisingly, this empirical evidence is not 

reflected in many influential energy models. For instance, in their Global 

2100 model, Manne and Richels assume a uniform AEEI of 0.5% per year 

throughout the world from the second half of the 2pt century onwards 

(Manne and Richels 1992, p. 34). 

Ex post, the decline in energy intensity is the result of the combined 

effect of the change in relative factor price ratios and technical progress. 

An extrapolation of the historically observed trend may yield inaccurate 

forecasts as it does not explicitly recognize the underlying interactions. 

Furthermore, future world energy intensity depends not only on the 

energy intensity of individual countries, but also on their shares in world 

GDP. If the countries with rapidly increasing energy to GDP ratios also 

witness a rapid increase in their share of world economic product, it is 

possible that the observed trend in global energy intensity might be 

reversed. 

4. Conclusions ­
This paper extends the growth accounting literature to include 

energy as a third factor of production, in addition to·capital and labour. A 
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homogenous translog production function with biased technical change 

was estimated using pooled data for 38 countries from 1965-1990. 

Countries were classified as either high growth or ROW countries, and the 

estimated coefficients were allowed to vary by country group. 

We found that the estimated coefficients are statistically different 

between the two groups indicating that countries do not operate on the 

same production model. In addition, other parameters ofpolicy interest: 

production elasticities, returns to scale and the bias is technical progress 

also differ significantly: not only are the magnitudes very different, but 

more importantly, opposite trends over time are observed. 

The paper also explores some policy issue relating to future 

energy/environmental policy. The estimated production elasticities were 

used in a growth accounting exercise. This revealed the growth in energy 

use to be a major source of the growth in real GDP, with the percentage 

share of energy in total GDP growth higher than that for capital in both 

country groups. Increases in total factor productivity had the highest 

percentage share in both high growth and ROW countries. 

We also estimated the capital and labour requirements of potential 

environmental regulations by estimating movements along the 1990 

production isoquants for capital and energy, and labour and energy. We 

found that the substitutability between the factors of production changes 

with the level of per capita GDP. 

Changes in energy intensity were estimated for each country in the -

data set using a production function approach. The observed change in 

energy intensity was separated into two components: one part due to 
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changes in relative factor prices, and a second part due to technical 

change. Forecasts of energy intensity need to take to take account of both 

components. It was found that while the global energy intensity has 

indeed been declining, the rate of decline has been slowing down. While 

this result is also obtained if the ratio of energy use to GDP is simply 

estimated over time, we are able to provide a theoretical grounding for the 

observed trend. 

-
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Appendix 1
 

Data and Data Sources
 

Our sample consists of data on real GDP, capital stock, labour force, 

and commercial energy consumption from 1965-1990 for 38 countries. 

Data on real GDP and capital stock were obtained from the Penn World 

Tables (version 5.6) which are available on-line at the National Bureau of 

Economic Research anonymous ftp server: 

ftp:/Inber.harvard.edul/pub/pwt56/. All monetary units are in 1985 

international prices (see Summers and Heston 1991 for details). Labour 

force data were calculated by the authors using the series on real GDP per 

worker, real GDP per capita, and population from the same source. 

Commercial energy consumption data were obtained from World Bank 

(1995) for the years 1970/71 to 1990. For 1965 to 1970/71 these data were 

obtained from United Nations (1976). Note that the our energy 

consumption data excludes all forms of non-commercial energy, such as 

firewood collected by households. 

The countries in our sample are divided into two groups. The high 

growth group comprises countries with an annual average growth rate 0 

real GDP greater than 7% per year between 1965 and 1990. All other 

countries are in the rest of the world group. A complete list of countries 

included in the analysis is available in appendix 4.4. 

-
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Appendix 2
 

-Model and Econometric Details
 

A. Estimating Equation 

Ln(GDP) = country dummies + «:t + «~t2 +
 

«~Ln(K) + «iLn(L) + «~Ln(E) +
 

(1)
~~Ln(K)Ln(L) + P~Ln(K)Ln(E) + P~Ln(L)Ln(E) + 

P~(LnK)2 + P~(LnL)2 + P~£(LnE)2 + 

where i refers to the country group; GDP refers to the gross domestic 

product; K, L, and E refer to capital, labour, and energy inputs, 

respectively, and t refers to the time trend. 

B. Production and Substitution Elasticities, and Returns to Scale 

11~ = «~ + PhLn(L) + P~Ln(E) + 2 P~Ln(K) + P~tt > 0 

i i 
i 11K + 11£°u = --------.......;:.------ > 0
 

i i 
po 

(2)iii i 11£ i"
11K + 11£ + 2Pu - 2Pu - - 2PEE_·'_~ 

i I 

11K 11£ 

IJ'r[I iii i 
lUoJ = 11K + 11L + 11£ > 0 

-

where '1K and 'IE are the production elasticities for capital, labour, and 

energy, respectively; uKL is the elasticity of substitution between capital 

and energy; and RTS refers to the returns to scale or degree of 
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homogeneity. Analogous expressions for TIL> TIE' aKL and aLE can be obtained 

easily. For a complete derivation, see Boisvert (1982). Note that since the 

production elasticities are a function of time, so is the degree of 

homogeneity (also called scale elasticity). Therefore, while the production 

function may be homogenous of degree r in a any given time period, the 

degree of homogeneity may change over time. 

C. Bias in Technical Change 

Following Hicks, the bias in technical change between two factors, 

say capital and energy, is defined as the proportional change in the 

marginal rate of technical substitution between these two factors over 

time, as shown in the equation below (Ferguson 1979, p. 225): 

a [ F~] 
at F~ > 

Biaslm = = 0 (3) 
F i 

<K -
F i 

E 

where FK and FE are the marginal productivities of capital and energy, 

respectively, 

F = (aDP)
K 11K K 

(4) 

F = (aDP)
L 11L L -
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Then, the marginal rate of technical substitution (MRTS) is: 

Fx L (Px + PnLn(L) + PaLn(E) + 2 PaLn(l() + PKtt ) (5) 
FL = K PL + PnLn(K) + PuLn(E) + 2Pu Ln(L) + pLtt 

The change in MRTS with time is defined by the derivative w.r.t. t: 

1.£.(FK) =! [PKI(P L + PnLn(L) + Pu:Ln(E) + 2 PuLn(L) + putr ] ­
at FL . K
 

(6)
~[PU(PK + PnLn(~) + Pn;Ln(E) + 2Pa Ln(K) + PKlt)* 

(P + PnLn(K) + Pu;Ln(E) + 2Pu Ln(L) + pu tr 2
]

L 

Dividing equation (5) by equation (6), and after a few algebraic 

manipulations, BiasKE works out to the following expression: 

Pkt Pkt
Biaslm - ­

"K
i 

"E
i 

(7) 

a"k a"kwhere pkt -- Pkt - ­
at at 

Thus, the direction of the bias in technical progress between capital and 

energy is determined by the relative magnitudes, and signs of the 

proportional change in the production elasticities of these two factors over 

time. Analogous expressions for BiasKL and BiasLE can be obtained. 

D. Hypotheses Tests -

D.1 Homogenous Production Function 

Under the null hypothesis of a homogenous production function, the 
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rows and columns of the matrix of the second order derivatives of equation 

(1) must sum to zero (Boisvert 1982, p. 11). Given the assumed symmetry 

of the production function, the following set of restrictions must hold 

simultaneously for each region, i: 

p~ + pia, + p~ = 0 

pia, + P~L + P~E = 0 (8) 

P~ + P~E + P~E = 0 

D.2 Cobb-Douglas Production Function 

In the case of a homogenous translog production function the 

individual production elasticities vary with the level of factor use, but their 

sum remains constant. The Cobb-Douglas production function is a special 

case of a homogenous translog function where the individual production 

elasticities are independent of input levels. The translog function 

collapses to the Cobb-Douglas form if, in addition to the restrictions shown 

in the equation above, the estimated coefficients 00 all the cross-product 

terms are simultaneously zero. That is, in addition to the restrictions 

under the homogeneity hypothesis, the following must hold: 

pia, = P~ = P~ = 0 (9) 

-
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D.3 Hicks Neutral Technical Change 

For each region, i: 

pkt = P~t = P~t = 0 (10) 

D.4 Single Production Function 

Under this null hypothesis, all the estimated coefficients are 

statistically identical across all regions in the model. 

-
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Table A,I
 
Estimated Parameters for the Homogenous Translog Production
 

Function
 

Variable Country nOll]) Estimated coefficient Std. error t-ratio 

Trend High growth 
ROW 

0.021 
0.027 

0.061 
0.005 

0.341 
5.396 

Trend2 High growth 
ROW 

-0.0001 
-0.0001 

0.0001 
0.0009 

-0.086 
-0.874 

Ln(K) High growth 
ROW 

0.918 
0.034 

0.868 
0.053 

1.059 
0.637 

Ln(L) High growth 
ROW 

0.617 
0.166 

0.465 
0.068 

1.326 
2.457 

Ln(E) High growth 
ROW 

-0.055 
0.208 

0.099 
0.029 

-0.548 
7.199 

Ln(K)Ln(L) High growth 
ROW 

0.109 
-0.006 

0.159 
0.012 

0.682 
-0.540 

Ln(K)Ln(E) High growth 
ROW 

0.038 
-0.023 

0.110 
0.016 

0.343 
-1.427 

Ln(L)Ln(E) High growth 
ROW 

-0.102 
0.003 

0.088 
0.013 

-1.156 
0.238 

(LnK)2 High growth 
ROW 

-0.146 
0.029 

0.191 
0.011 

-0.767 
2.792 

(LnL)2 High growth 
ROW 

-0.007 
0.003 

0.173 
0.022 

-0.041 
0.139 

(LnE)2 High growth 
ROW 

0.064 
0.020 

0.063 
0.007 

1.007 
2.976 

t Ln(K) High growth 
ROW 

0.002 
-0.002 

0.022 
0.002 

0.105 
-1.056 

t Ln(L) High growth 
ROW 

-0.012 
0.003 

0.007 
0.001 

-1.850 
4.810 

t Ln(E) High growth 
ROW 

0.010 
-0.003 

0.010 
0.001 

1.010 
-2.559 -
Sum of squares of errors =1.197; W =0.99; DW statistic =1.86 
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Appendix 3 

Non-linear Technical Change 

Modeling technical progress as a time trend can produce empirical 

results that are inconsistent with economic theory. In this appendix we 

explore another possible way modeling technical change that might avoid 

some of these problems. Let technical progress in each country group be a 

logistic function of time, Ai(t): 

e yi + fit 
AiCt) = ---­ (1)

yi fhI +e + 

where (j determines the curvature of the logistic function, and 'I 
determines which part of the curve the country group is operating on. 

By construction, the logistic curve lies in the CO, +1) range. We can 

estimate a coefficient, l-li" a scale parameter that expands or shrinks the 

curve beyond the (0, +1) range. So long as the estimated l-li is positive, Ai(t) 

will always be asymptotic to the x-axis at the lower end, and l-li at the 

upper end, regardless of how far into time we extrapolate the estimated 

curve. If the estimated l-li is negative, then the entire curve will lie below 

the x-axis. Negative values for l-li can be rejected, a priori, since they imply 

that technical change has a negative impact on output in all cases. 

We tried to estimate the parameters in equation (1) and also l-li for 

both country groups, in the context of a translog production function. 
.. 

Despite several attempts using various starting values, convergence ­
criteria, and search methods, however, we were unable to obtain 

convergence. 
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Appendix 4 
Estimated Production Elasticities, 1965 and 1990 

Labour Capital Energy 
1965 1990 1965 1990 1965 1990 

High Growth 
Hongkong 0.825 0.461 0.261 0.082 0.046 0.516 
Korea 0.684 0.428 0.365 -0.227 0.110 0.704 
Thailand 0.756 0.447 0.464 0.017 -0.088 0.483 

Rest ofthe World 
Argentina 0.168 0.246 0.176 0.176 0.245 0.178 
Australia 0.162 0.241 0.207 0.211 0.248 0.188 
Austria 0.165 0.238 0.157 0.193 0.236 0.156 
Belgium 0.163 0.240 0.182 0.189 0.250 0.178 
Canada 0.166 0.243 0.204 0.225 0.279 0.208 
Colombia 0.163 0.243 0.192 0.195 0.201 0.149 
Denmark 0.161 0.237 0.170 0.186 0.232 0.148 
DR 0.164 0.242 0.085 0.119 0.157 0.112 
Ecuador 0.158 0.238 0.170 0.175 0.142 0.118 
Finland 0.159 0.237 0.188 0.188 0.210 0.161 
France 0.168 0.244 0.231 0.248 0.272 0.202 
Germany 0.169 0.243 0.244 0.271 0.284 0.201 
Greece 0.163 0.240 0.171 0.177 0.198 0.157 
Honduras 0.159 0.241 0.105 0.098 0.133 0.095 
India 0.183 0.262 0.203 0.215 0.266 0.211 
Ireland 0.162 0.238 0.117 0.134 0.218 0.152 
Italy 0.167 0.244 0.242 0.243 0.252 0.193 
Japan 0.174 0.246 0.234 0.292 0.277 0.207 
Kenya 0.168 0.253 0.118 0.094 0.166 0.125 
Malawi 0.176 0.252 -0.014 0.036 0.152 0.082 
Mexico 0.168 0.249 0.201 0.207 0.237 0.198 
Netherlands 0.163 0.241 0.191 0.195 0.247 0.185 
New Zealand 0.156 0.236 0.169 0.158 0.197 0.150 
Norway 0.154 0.235 0.215 0.189 0.201 0.152 
Panama 0.156 0.234 0.113 0.139 0.151 0.082 
Philippines 0.168 0.251 0.182 0.165 0.196 0.158 
Portugal 0.166 0.243 0.143 0.151 0.199 0.159 
Spain 0.168 0.243 0.194 0.222 0.239 0.183 
Sri Lanka 0.160 0.238 0.190 0.206 0.140 0.066 
Sweden 0.162 0.239 0.186 0.197 0.244 0.174 
Switzerland 0.156 0.233 0.231 0.234 0.201 0.138 
Turkey 
UK 

0.170 
0.172 

0.250 
0.248 

0.179 
0.207 

0.187 
0.223 

0.211 
0.301 

0.182 
0.211 -USA 0.174 0.251 0.266 0.278 0.336 0.259 

Zimbabwe 0.161 0.246 0.153 0.118 0.176 0.132 
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Appendix 5
 
Contribution to Growth: Country Averages (1965·1990)
 

Labour Capital Energy TFP 
Rest ofthe World Argentina 6.67 25.27 21.23 46.83 

Australia 13.73 30.27 23.54 32.46 
Austria 5.78 30.45 25.03 38.74 
Belgium 4.38 25.45 29.75 40.42 
Canada 13.08 34.13 27.39 25.39 
Colombia 12.55 24.30 21.77 41.39 
Denmark 6.10 22.75 28.23 42.91 
DR 13.00 26.01 36.96 24.03 
Ecuador 11.77 12.40 26.88 48.96 
Finland 4.53 24.22 35.59 35.65 
France 5.81 34.49 29.63 30.07 
Germany 4.96 39.67 25.29 30.08 
Greece 3.96 21.62 32.92 41.51 
Honduras 14.27 13.59 19.07 53.07 
India 9.33 24.59 24.60 41.48 
Ireland 5.55 21.91 24.86 47.68 
Italy 3.95 31.12 30.00 34.93 
Japan 4.33 46.96 26.27 22.43 
Kenya 18.64 7.27 19.56 54.53 
Malawi 11.10 5.88 17.05 65.97 
Mexico 13.30 25.18 34.36 27.16 
Netherlands 8.79 25.19 33.94 32.09 
New Zealand 10.22 20.19 28.10 41.49 
Norway 11.35 20.17 25.84 42.64 
Panama 11.09 22.29 22.69 43.92 
Philippines 10.74 17.52 28.07 43.66 
Portugal 7.69 20.87 24.67 46.78 
Spain 4.48 34.88 27.45 33.20 
Sri Lanka 8.24 23.15 18.01 50.60 
Sweden 5.08 23.22 37.09 34.61 
Switzerland 5.70 30.96 26.85 36.49 
Turkey 9.20 24.44 30.32 36.04 
UK 4.16 33.62 23.70 38.53 
USA 11.38 39.00 30.57 19.04 
Zimbabwe 13.89 8.72 27.54 49.85 

High Growth Hongkong 23.15 11.92 25.68 39.25 
S. Korea 18.03 23.09 31.08 27.79 
Thailand 24.76 22.00 32.31 20.93 

Note: The average for each country was calculated using only those years for -

which the growth rates and estimated production elasticities were positive. Also, 

"<
 
for most countries, the oil shock years witnessed a decline in energy use. These
 
were excluded since this yields a negative contribution to' growth in GDP.
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