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INTRODUCING RECUSIVE PARTITIONING TO AGRICULTURAL CREDIT SCORING 

The fium financiat crisis in the mid 1980's brought increased interest in credit scoring models. 

Many agricultural lenders and financiat advisors have adopted formal credit scoring models to monitor 

and forecast financiat performance (LaDue et at.). Various nonparametric and parametric methods 

have been utilized to estimate the models, such as: experience-based atgorithms (Alcott, Splett et at.); 

mathematical programming (Hardy and Adrian, and Ziari et at.); logistic regression (M:ortensen et at.); 

probit regression (Lufburrow et at. and Miller et at.); discriminate analysis (Hardy and Weed, Dunn and 

Frey, and Johnson and Hagan); and linear probability regression (Turvey). There is not unanimous 

agreement as to the best method for estimating credit scoring models and new methods continue to be 

researched. 

Most recently, the logistic regression has dominated the agricultural credit scoring literature 

(Miller and LaDue, Turvey and Brown, Novak and LaDue, Splett et at.). The logistic regression 

succeeded discriminant analysis as the parametric method ofchoice, primarily based on it's more 

favorable statistical properties (M:cFadden). Turvey reviews and empirically compares agriculture 

credit scoring models using four parametric methods with a single data set. He recommends the 

logistic regression over the probit regression, discriminant analysis and the linear probability regression 

based on predictive accuracy and ease ofuse, in addition to the more favorable statistical properties. 

While the logistic regression improves on some ofthe statistical properties ofthe discriminant analysis 

and linear probability regression, it still possesses numerous statistical problems common to most 

parametric methods. These problems include: 1) the selection ofthe explanatory variables; 2) ­



identifYing the individual variable's relative importance; 3) reduction ofthe infonnation space's 

ldimensionally; and 4) explicitly incorporating misclassification costs . 

Non-agricultural studies have used Recursive Partitioning Algorithm (RPA) to classify 

financially stress finns. RPA is a computerized, nonparametric classification method that does not 

impose any a priori distnbution assumptions. The essence ofRPA is to develop a classification tree, 

that partitions the observations according to binary splits ofcharacteristic variables. The selection and 

partitioning process occurs repeatedly until no further selection or division ofa characteristic variable is 

possible, or the process is stopped by some predetennined criteria. Ultimately the observations in the 

terminal nodes ofthe classification tree are assigned to classification groups. RPA was originally 

developed by Friedman. A thorough theoretical exposition ofRPA is presented in Breiman, et al. A 

more practical exposition ofthe computational aspects ofRPA is presented in the CART software 

documentation (Steinberg and Colla). RPA has not been applied to agricultural creditworthiness 

classification. 

The results ofseveral non-agricultural financial stress classification studies indicate RPA out 

penonns the other parametric and judgmental models based on predictive accuracy. The problem with 

these studies is none ofthem use intertemporal (ex ante) model validation methods. Marais, Patell and 

Walfson compared RPA with a polytomous probit regression to classify commercial loans for publicly 

and privately held banking firms. Frydman, Altman and Kao compare RPA with discriminant analysis 

to classify finns according to their financial stress. In another study, Srinivasan and Kim Compare RPA 

with discriminant analysis, logistic regression, goal programming, and a judgmental mode~ Analytic 

-

lEach ofthese problems will be discussed in detail later in the text. 
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Hierarchy Process, to evaluate the corporate credit granting process. Each ofthese studies use within 

sample observations to estimate predictive ability, but a "true" estimate ofRPA's prediction ability 

should also consider intertemporal (ex ante) predictions. The most practical use of financial stress 

classification and credit scoring is to focused towards future financial stress or creditworhtiness, and 

. not only current financial stress or creditworthiness. 

The purpose ofthis study is to introduce RPA as a method for classifYing creditworthy and less 

creditworthy agricultural borrowers. This study uses the agricultural firm's debt repayment capacity as 

the indicator ofcreditworthiness. Due to the relative newness ofthe method in application to 

agricultural credit scoring, RPA is presented in detail to provide a thorough background. Secondly, 

this study compares RPA to the logistic regression. The comparison considers relative misclassification 

costs, an aspect ofborrower classification not fully explored in previous agricultural credit scoring 

studies. This study also challenges the RPA's superior prediction accuracy, as purported in the 

financial stress classification literature. The study uses within-sample cross-validation to select the 

models and intertemporal (ex ante) predictive accuracy, based on the minimization ofmisclassification 

costs, to compare the models. The financial stress classification literature only uses within-sample 

cross-validation to select and compare the models. 

The remainder ofthe paper is divided into five sections. The first section presents the specifics 

ofthe RPA This is followed by a section that discusses the advantages and disadvantages, as well as 

the differences between, the RPA and logistic regression. The third section descnoes the data. The 

fourth and fifth sections present the creditworthiness models and empirical results, respectively. The 

final section summarizes the paper's results. ­
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Recursive Partitioning Algorithm 

In this section, a hypothetical RPA tree growing process is presented and the terminology is 

introduced. Following a briefintroduction, a more detailed explanation ofthe optimal splitting rule, 

assignment ofterminal nodes, and selection ofappropriate tree complexity is presented. 

To understand the tree growing process, a hypothetical tree is illustrated in Figure 1. It is 

constructed using classification groups i and j, and characteristic variables2 A and B. Throughout the 

paper the classification groups are limited to two. But, in general, classification groups can be greater 

than two. To start the tree growing process all the observations in the original sample, denoted by N, 

are contained in the parent node which constitutes the:first subtree, denoted To (not really a tree, but 

we will call it one anyway). To possess no binary splits and can be referred to as the naive classification 

tree. All observations in the original sample are assigned to either group, j or ~ based on an assignment 

rule. The means to assign To to either group i or j depends on the misclassification costs and prior 

probabilities. When misclassification costs are equal and prior probabilities are equal to the sample 

proportions ofthe groups, To is assigned to the group with the greatest proportion ofobservations, 

minimizing the number ofobservations misclassified. When misclassification costs are not equal and 

prior probabilities are not equal to the sample proportions ofthe groups, To is assigned to the group 

that minimizes the observed expected cost ofmisclassification3
• Later, it is demonstrated that 

2 Characteristic variables are analogous to independent variables in a parametric regression. 

3 Observed expected cost of misclassification is calculated using the misclassification rate of group 
assignments, sample probabilities, cost of type I errors (classifying a less creditworthy borrower as -

creditworthy) and cost of type n errors (classifying a creditworthy borrower as less creditworthy). An 
exact definition ofobserved expected cost ofmisclassification will be given later in the text. 
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minimizing the observed expected cost ofmisclassification is the same as minimizing the number of 

observations misclassified, when misclassification costs are equal to each other and prior probabilities 

are equal to the sample proportions of the groups. 

To begin the tree growing process, RPA searches each individual characteristic variable and 

split value ofthe characteristic variable in a methodological manner. The computer algorithm then 

selects a characteristic variable, in this case A, and a split value ofcharacteristic variable A, in this case 

ai, based on the optimal splitting rule. The optimal splitting rule implies that no other characteristic 

variable and split value can increase the amount ofcorrectly classified observations in the two resulting 

descendent nodes. In this particular illustration, observations with a value ofcharacteristic variable A 

less that al will "fall" into the left node and the observations with a value ofcharacteristic variable A 

greater than al will "fall" into the right node. The resulting subtree, denoted by Tl, consists ofa parent 

node and, a left and right terminal nodes, denoted by tz. and tR. respectively. The terminal nodes in each 

subtree that are then assigned to groups, i orj, based on the assignment rule ofminimizing observed 

expected cost ofmisclassification. To and TI are the beginning ofa sequence oftrees that ultimately 

concludes with Tmax. However, in some cases, TI may also be Tmu; depending on the predetermined 

penalty parameters specified. IfTI is not Tmu; then the recursive partitioning algorithm continues. 

In this illustration, T1 is not Tmu;, so the partitioning process continues. Now, B is the 

characteristic variable selected and bl is the "optimal" split value selected by the computer algorithm. 

The right node becomes an internal node and the observations within it are partitioned again. 

Observations with a value ofcharacteristic variable B less that bl""fall" into a new left node and 

observations with a value ofcharacteristic variable B greater that bl "fall" into a new right node. The -

new left and right nodes become terminal nodes in T2, while the left node in TI still remains a terminal 
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model in T2. All three terminal nodes in T2 are then assigned to classification groups, i and j, based on 

the assignment rule ofminimum observed expected cost ofmisclassiiication. Here again, T2 does not 

minimize the observed expected cost ofmisclassification ofthe original sample, therefore the 

partitioning process continues. Variable A is selected again to develop T3. As stated above, when the 

recursive partitioning process is finished, the resulting classification tree is known as Tmu:. In this 

illustration, T3 = T..-. T..- is the tree that minimizes the expected observed cost ofmisclassification of 

the original sample. Obviously the development method will over fit the tree, therefore, a method is 

needed to prune back the tree, such as cross validation, discussed below Once the classification tree is 

developed and pruned back, it can be used to classify observations from outside the original sample. 

Optimal Splitting Rule: In essence, the optimal split rule" divides the observations in a parent 

node in to two descendent nodes according to characteristic variable A's cut-offvalue, aI, maximizing 

the amount ofcorrectly classified observations. More formally stated, the optimal splitting rule 

maximizes the decrease in the sum ofthe impurities ofthe two resulting descendent nodes compared 

with the impurity ofthe parent node. The sample impurity is represented by the Gini Impurity Index: 

I{t) = i{t)p{t) = [Cijp(ijt)p(jlt)+ Cji p(jlt)p{ijt)]p{t)] 

node t belongs to group ~ p{jl~) = (1tj nj (t) I Nj) I CE~.i 1tk nk (t) I Nk) is the conditional probability 

that an observation in node t belongs to group j, and p{t) = :E~.i 1tk n k(t) INk is the probability ofan 

" The univariate splitting rule implies splitting an axis ofone variable at one point. This study is limited 
to univariate splitting rules, however, CART has the capability to split variables using linear 
combinations ofvariables. The resulting classification trees are usually very cumbersome and difficult to 
ihterpret when linear combination splitting rules are used. 
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object falling into node 1. Ni~) is the number oforiginal observations from group iG). 1ti (1tj) is the 

prior probability ofan observation belonging to group i G). Cij (Cji) is the cost ofmisclassifying a group 

i 0) observation as a group j (i) observation. And, l1i(t) (I1j(t)} is the number ofgroup i 0) observations 

in node 1. 

The Gini impurity index is best illustrated when the same special case presented before is 

considered. That is, when the misclassifieation costs are equal (i.e. Cij =Cji =1) and the prior 

probabilities are equal to the sample proportion ofthe sample groups (i.e. 7ti =NVN and 1tj =NjN). In 

this case, p(ilt) and pOIt) reduce to l1i(tYN(t) and I1j(tYN(t), respectively. Where N(t) is the number of 

total observations in node t. Following through, the Gini Impurity Index for a nodes reduces to I(t) = 

i(t)p(t) =2 [(Ili(tYN(t)) (I1j(t)IN(t))]p(ti. The Gini Impurity Index equals its maximum value when all 

the observations in the node are equally divided between the groups (i.e. p(ilt) =Ili(t)IN(t) =0.5, pOlt) = 

I1j(t)IN(t) = 0.5, i(t) = 0.5 and I(t) =O.5p(t)) and equals zero when all the obseIVations in the node 

belong to the same classification group, (i.e. p(ilt) = Ili(t)IN(t) = I, p(jlt) = I1j(t)IN(t) = 0 and I(t) = 0). 

Put more intuitively, a node containing equal observations from the two classification groups has the 

most diversity and the Gini Impurity Index will obtain it's maximum value. The maximum value will 

depend on the number ofgroups and the probability ofan observation falling into node t. Conversely, 

a node with obsexvations representing only one group has no diversity, and the Gini Impurity Index 

measure will obtain it's lowest value, zero. 

5 Substituting P(i1t) = 1 - P (ilt) and p (ilt) = 1 - p(jlt) in equation I, and again assuming Cij = Cji =1, 1ti = 
NVN and 1tj = N,;IN, the Gini Impurity Index can also be expressed as I(t) = [1- p(ilt)2 - p(j~)2]p(t). Also, 
suppose group jls observations have a value of 1 and group ils obsexvations have a value of 0, then the 
measure ofimpurity, i(t), is also the sample variance, PG~Xl-p(j~)). 
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The decrease in the impurity between a parent node and two descendent nodes can be denoted 

by M(t) =let) - l(tL) - 1(tR) = i(t)p(t) - ~(tL)P(tL) - i(tR)P(tR), where 1, tt., and tR refers to the parent node, 

left descendent node, and right descendent node, respectively. M(t) is non-negative and its magnitude 

depends on the characteristic variable and split value selected. Selecting the optimal characteristic 

variable and corresponding split value for each node t maximizes M(t), and is consistent with selecting 

the characteristic variable and corresponding split value that decreases the impurity ofthe overall 

classification tree. When the impurity ofa tree can not be decreased any further the splitting process is 

tenninated and.TIIIIX is obtained. 

Assignment ofterminal nodes: The tenninal nodes for each subtree and Tmax are assigned to a 

group that minimizes the observed expected cost ofmisclassification 6 for the specific node and 

correspondingly for the entire tree. The observed expected cost of rnisclassification ofassigning node 

t to group i is defined as R(t) =CjiP(j,t), where: p(j,t) = ~Ilj(t)/!'Tj is the probability that an observation is 

from group j and falls into node t. Conversely, R;(t)= CijP(l,t). The tenninal node assignment rule 

follows a Bayesian Rule, R(t) = min[R;(t), R(t)]. That is, the node· is assigned to the group with 

minimum observed expected cost ofrnisc1assification. The observed expected cost ofmisclassification 

ofthe entire tree is defined as R(T) = Cjt"1tjM;~+eg1tiMi(T)INi, where Mt(T) (Mj(T) is the number . 

ofgroup i (j) observations misclassified in tree T' . 

6 The observed expected cost ofmisclassification is also known as "resubstitution risk". Where risk is 
another term for expected cost of misclassification, and resubstitution refers to the fact that risk is being 
evaluated with theoriginal sample. The selection process classifies the original sample the best, but the 
resulting model does not necessarily represent the population structure. ­

1 By substituting terms, the Gini Impurity Index can also be expressed as I(t) = R;(t)p(jlt) + 
R(t)p(i!t), since R(t) = Cijp(j~)p(t), R,(t) = Cjip(i~)p(t), p(j~) = p(j,t)/p(t) and p(iIO = p(l,t)/p(t). The 
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Again for exposition purposes, assume the costs ofmisclassi:fication are equal (i.e. CjFCiJ-l) 

and the prior probabilities are equal to the sample proportion ofeach group (i.e. 1ti-N/N and 

1tj"""'NjN). The observed expected cost ofrnisclassi:fication ofassigning node t to group i reduces to 

R(t) =Ilj(t)/N. Conversely) Rj(t) =l1i(tYN. The observed expected cost ofrnisclassification for group j 

(i) is equal to the sample proportion ofgroup i G) objects fiilling into node t. Therefore) the assignment 

rule becomes particularly simple. The terminal node is assigned to the group with the largest sample 

proportion ofobservations in the node. Mnirnizing the observed expected cost ofrnisclassification in 

this specific case is the same as assigning the terminal node to the classification group with the majority 

representation in the node) and observed expected cost ofrnisclassi:fication corresponds with 

minimizing the overall observed expected cost ofrnisclassi:fication ofthe tree. 

Selecting appropriate tree complexity: Tmax usually over fits the data, therefore, the observed 

expected cost ofmisclassi:fication underestimates the "true" risk. In other words, Tmax classifies the 

original sample the best, but it is not necessarily representative ofthe population structure. Therefore) 

a method is needed to select the appropriate tree complexity from the nested sequence oftrees. Some 

ofthe methods suggested are v-fold cross-validation, jackknifing, expert judgment, bootstrapping and 

holdout samples. In this study) cross-validation is used to select that appropriate correct tree 

. complexity and minimize over-fitting of the data. That is, the tree with the smallest cross-validation 

cost ofmisclassification is selected and used to predict out-of-sample observations. 

Cross-validation randomly divides all the observations in the original sample into' V groups of 

approximately equal size. The observations in V-I groups are used to grow a tree corresponding to 

-

relationship between the Gini Impurity Index and observed expected cost ofrnisclassi:fication can be seen 
in this new Gini Impurity Index expression. 
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the range ofpenalty parameters values for which the tree, based on the original sample, was optimal. 

The observations withheld are then passed thought the newly constructed tree and classified. The 

procedure is repeated V times. Each time the group withheld is passed through the newly constructed 

tree and classified. The misclassifieation risk is summed and averaged for all the V-fold cross­

validation trials to obtain an overall cross-validation expected cost ofmisclassification estimate. The 

appropriate tree is typically less complex than T_. 

While statistical resarnpling schemes, such as cross-validation, are sufficient to alleviate the 

statistical over-fitting bias, however, they do not account for intertemporal (ex ante) predictions, the 

basic objective ofcredit scoring models (Joy and Tofeson). Credit scoring models are not only used to 

classifY borrowers, but to classifY borrowers over time and predict future creditworthiness. Previous 

RPA financial stress classification studies have only evaluated the models based on their cross-validated 

expected cost ofmisclassification. In this study, the tree with the minimum cross-validation expected 

cost ofmiscIassification will be used to predict creditworthy and less creditworthy borrowers in the 

forthcoming period. The predicted borrower classifications will then be compared to actual borrower 

classifications in same out-of-sarnple period. The misclassification risk ofthe out-of-sample predictions 

are calculated and the models are ultimately evaluated with regards to the out-of-sample 

misclassification risk. 

RPA and Logistic RegTession Comparison 

In this section the advantages and limitations, as well as the differences ofthe RPA and logistic 

regression are discussed. The logistic regression is well documented and well received as a qualitative ­
choice model predicated on conventional parametric techniques, while RPA is a new parametric 
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method; a flexIble modeling tool that exploits the power ofcomputel'S. RPA substitutes a computer 

algorithm for the traditional method ofmathematical analysis to get a numerical answer. 

One basic difference between the two methods is the selection ofvariables. For credit scoring 

models there is no well-developed theory to guide the selection offinancial and economic variables. 

Most proceed heuristically. selecting variables suggested by expert opinions or based on previous credit 

scoring models. Credit scoring models developed using RPA do not require the variables to be 

selected in advance. The computer algoritlun selects the variables from a predetennined group of 

variables. This feature is especially advantageous ifthere are a large number ofvariables. In this 

context, RPA is somewhat analogous to forward stepwise regression, except RPA is not limited by the 

mathematical tractability or assumptions ofconventional statistics, like forward stepwise regression. 

In addition to selecting a group ofvariables. RPA analyzes univariate attnbutes of individual 

variables. providing insight and understanding to their predictive structure. The algoritlun selects the 

variable that best classifies the observations and the optimal spilt value ofthe variable. When selecting 

a variable RPA places no limit on the number oftimes a variable can be utilized. Often the same 

variable can appear in different parts ofthe tree. Fwthermore, RPA is not significantly influenced by 

outliers, since splits occUr on non-outlier values. Once the split value is selected, the outlier is assigned 

to a node and the RPA procedure continues. 

In contrast, the logistic regression model provides a linear approximation ofthe individual 

variables. Little is learned about the univariate attnbutes ofeach variable and each variable only 

~ppears once in the model. The model can be severely affected'by outliers 'values. Logistic regression 

does have the advantage that the significance ofthe group ofselected variables can be evaluated from ­

the regression's summary statistics. A limitation ofRPA's variable selection method is that once a 
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variable is selected all the succeeding variables are predicated on the original selected variable. again 

similar to forward stepwise regression. The tree growing process is intentionally myopic. RPA never 

looks ahead to see where it is going nor does it try to assess the overall perfonnance ofthe tree during 

the splitting process. 

In addition to selecting variables and their optimal split value. the CART software also provides 

competitive and surrogate variables and cut-offvalues listed in order ofimportance. for each node in 

the classmcation tree. Some variables may not appear in the final classification tree. but still can rank 

high as a competitive and surrogate variable. This list ofcompetitive and surrogate variables give 

additional insight to the variable's usefulness. Competitive variables are alternative variables with , 

slightly less ability to reduce impurity in the descendent nodes. Surrogate variables are variables that 

mimic the selected variables and split values, not only on size and composition ofthe descendent nodes. 

but also with respect to which observation lands in the left and right descendent node. 

While lacking in univariate attnbutes, the logistic regression's major advantage is the predicted 

probabilities ofcreditworthiness assigned to each borrower. RPA can only cla.ssiJY observations into 

creditworthy or less creditworthy classes, and can not estimate an overall credit score. The predicted 

probabilities ofcreditworthiness provide additional quantitative infonnation regarding a borrower. 

Furthermore, the predicted probabilities can also be converted to binary creditworthy/less creditworthy 

classification scheme when a prior probability is specified. Often lenders want to assess the predicted 

probability ofcreditworthiness, not only classify borrowers as creditworthy/less creditworthy. 

Another difference between the two methods is the way they divide the infonnation space into 

classmcation regions. RPArepetitiously partitions the infonnation space as the binary tree is formed. ­
A graphical illustration is presented in Figure 2. it is based on the hypothetical RPA tree in Figure 1. 
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RPA partitions the information space into four rectangular regions according to characteristic variables, 

A and B, and their respective optimal split values. al and bl. Observations fiilling in regions 1 and 2 are 

classified as group i and those fiilling in region 3 and 4 are classified as group j. In contrast, the logistic 

regression ifimplemented as a binary qualitative choice model, partitions the information space into 

two regions. The logistic regression usually partitions the observations with respect to a prior 

probability, say c. The example line ftz.) == c divides the information space into two regions. Z. is a 

linear function ofvariables A and B corresponding to observation m, and ftx) is the cumulative logistic 

probability function. The observations are assigned to class i ifftz.) => c or group j ifftz.) < c. The 

difference between the RPA's and logistic regression's information space is the shaded regions. 

The two models also differ in the manner in which they incorporate misclassification cost and 

prior probabilities. RPA uses misclassification costs and prior probabilities to simultaneously detennme 

variable selection, optimal split value and terminal node group assignments. Changes in the 

misclassification cost and prior probabilities can change the variables selected and the optimal split 

value, and, in tum, alter the structure ofthe classification tree. In contrast, the logistic regression is 

usually estimated without incorporating misclassification cost and prior probabilities. However, after 

the logistic regression is estimated a prior probability is used to classify borrowers as creditworthy/less 

creditworthy. Changes in the prior probability value can affect the predictive accuracy ofthe logistic 

regression (Mortensen et al.). Maddala (1983 and 1986) argues that prior probabilities should be taken 

to be the sample rate for the two groups, even with unequal sampling rates. 

Despite the differences in the two models, RPA and logistic regression can be integrated to 

assess borrowers creditworthiness. RPA can select the relevant variables from a large set ofvariables ­
to be estimated by the logistic regression. Likewise, the logistic regression can be used to estimate the 
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predicted probabilities and, in tum, the predicted probabilities can be used as a variable in RPA. How 

RPA utilizes or ranks the predicted probability, as a variable, can provide evidence for or against the 

logistic regression. 

The data for this study were collected from New York State dairy farms in a program jointly 

sponsored by Cornell Cooperative Extension and the Department of Agricultural, Resource and 

Managerial Economics at the New York State College of Agriculture and Life Sciences, Cornell 

University. Seventy farms have been Dairy Farm Business Management (DFBS) cooperators from 1985 

through 1993. Data for these seventy farms are analyzed in this study. Such a data set is critical in 

studying the dynamic effects of farm creditworthiness8
. The farms represent a segment of New York 

State dairy farms which value consistent contribution of financial and management infonnation. The 

financial infonnation collected includes the essential components for deriving a complete set of 

8 Two types of estimation biases that typically plague credit evaluation models are choice bias and 
selection bias. Choice bias occurs when the researcher first observes the dependent variable and then 
draws the sample based on that knowledge. This process of sample selection typically causes an 
"oversampling" of financial distress finns. To overcome choice bias, this study selects the sample first 
and then calculates the dependent variable. 

The other type of bias plaguing credit evaluation models is selection bias. Selection bias is a 
function of the nonrandomness of the data and can asymptotically bias the model's parameters and 
probabilities (Heckman). There are typically two ways selection bias can affect credit evaluation models. 
First, financially distressed borrowers are less likely to keep accurate records, therefore, these borrower 
are not included in the sample (Zmijewski et al.). And secondly, through the attrition rate of borrowers, 
because panel data are usually employed. In this study, there were probably borrowers that participated in 
the DFBS program during the earlier years of sample period, but exited the industry or stopped submitting 
records to the data bas~ before the end of the sample period. In analyzing financial distress models, 
Zrnijweski et al. found selection bias causes no significant changes in the overall classification and ­
prediction rate. Given Zmijweski's results the study does not correct for selection bias and proceeds to 
estimate the credit evaluation models with the data presented. 
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sixteen financial ratios and measures as recommended by the FFSC. Table 1 exlubits all sixteen mean 

values ofthe financial ratios and measures for the seventy farms over the sample period9
• Additional 

farm productivity, cost management and profitability statistics for these farms are summarized in Smith, 

Knoblauch, and Putnam (1993). 

Creditworthiness Measures 

A key available component ofthis data set was the plann~heduled principal and interest 

payment on total debt. It reflects the borrower's expectations ofdebt payments for the up-coming 

year. Having this values facilitates the calculation ofthe coverage ratiolO
• The coverage ratio estimates 

whether the borrower generated enough income to meet all expected payments and is used as an 

indicator ofcreditworthiness in this study. The coverage ratio as an indicator ofcreditworthiness, 

based on actual financial statements, has been introduced to credit scoring models as an alternative to 

loan classification and loan default modelsll (Novak and LaDue (1994), and Khoju and Barry). This 

9 Some of the borrowers reported zero liabilities, therefore, their current ratio and coverage ratio 
could not be calculated. To retain these borrowers in the sample and avoid values ofinfinity, the current 
ratios were given a value of7, indicating strong liquidity, and the coverage ratio value was bound to -4 
to 15 interval. The bounded internal of the coverage ratio indicates both extremes of debt repayment 
capacity. 

10 Ifnot specified otherwise, the coverage ratio refers to the tenn debt and capital lease coverage 
ratio as defined by the FFSC. 

II Historically, agricultural credit evaluation models have been predicated on predicting bank 
examiners' or credit reviewers' loan classification schemes (Johnson and Hagan; Dunn and Frey; Hardy ­
and Weed; Lufburrow et aI.~ Hardy and Adrian; Hardy et aI., Turvey and Brown, and Oltman). These 
studies have assessed the ability of statistical, mathematical or judgmental methods to replicate expert 
judgment However, these models present some problems when credit evaluation is concerned. It is 
difficult to detennine whether the error is due to the model or bank examiners' or credit reviewers' loan 
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indicator of creditworthiness is aligned with cash-flow or perfonnance-based lending, as opposed to 

the more traditional collateral-based lending, and have been f3cilitated by improvements in fann records 

and computerized loan analysis (Novak and LaDue (1996). 

The coverage ratio, a quantitative indicator ofcreditworthiness. needs to be converted to a 

binary variable in order to assist the lender in making a credit decision, to grant or deny a credit 

request. In this study, an a priori, cut-offlevel ofone is used. A coverage ratio greater (less) than one 

identifies a borrower as creditworthy (less creditworthyY2. That is, the borrower has (not) generated 

enough income to meet all expected debt obligations. 

Furthennore, the two-year and three-year average coverage ratio was found to provide a more 

stable, extended indicator ofcreditworthiness (Novak and LaDue, 1997). The annual, two-year 

average and three-year average measures ofcreditworthiness. using an a priori cut-offvalue ofone, for 

the seventy farms are classified in Table 2. The number ofborrowers considered creditworthy 

classification. These problems are not limited to agricultural credit scoring models (Maris et al., and 
Dietrich and Kaplan). 

Some agricultural credit scoring studies have used default (Miller and LaDue, and Mortensen et 
al.). Default is inherently a more objective measure. However, lenders and borrowers can influence 
default classification. Lenders can influence defiwlt classifications by decisions to forebear, restructure, 
or grant additional credit to repay a .delinquent loan. Borrowers can influence or delay default by selling 
assets, depleting credit reserves, seeking off-fann employment, and other similar activities. Secondly, 
default is based on a single lender's criteria Borrowers with split credit can be current with one lender 
and delinquent or in arrears with another lender. Thirdly, the severity of some types of default make it 
less than adequate. Because of these ambiguities surrounding defiwlt, and an alternative cash-flow 
measure ofcreditworthiness is used. 

12 The terminology less creditworthy is used instead of not creditworthy, because it is recognized 
that the farms in the data sample have been in operation over a nine year period and most of them have 
utilized some form of debt over this period. However, the sample includes Farm Service Agency, Farm ­
Credit and various private banks borrowers. The various lending institutions represent varying degrees 
of creditworthiness amongst the borrowers in the sample. Creditworthiness to one lender may be less 
creditworthy to another. The data set can be viewed as a compilation oflenders portfolios. 
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decreases over-time, indicating some ofthe borrowers in the sample are becoming less creditworthy 

overtime, given the economic environment. Identi1Ying the borrowers with diminishing debt repayment 

ability prior to any serious financial problems exemplifies the usefulness ofthe creditworthiness 

indicator and should be ofvalue to lenders when evaluating a borrowers credit risk before granting a 

loan or evaluating their portfolio13• 

Development ofthe Creditworthiness Model 

In this section the annual, two-year average and three-year average multiperiod credit scoring 

models are discussed. The RPA and logistic regression methods are used to estimate these models. 

The annual models are developed using 1985, 1986, 1987, 1988, and 1989 characteristic values to 

classi1Y 1986, 1987, 1988, 1989 and 1990 creditworthy and less creditworthy borrowers, respectively. 

In other words, each model uses one period lagged characteristic values to classi1)r creditworthy and 

less creditworthy borrowers. The annual models are evaluated using 1990, 1991 and 1992 

characteristic values to predict 1991, 1992 and 1993 creditworthy and less creditworthy borrowers, 

respectfully. Lastly, the predicted creditworthy classifications are compared to the actual classifications 

for 1991, 1992 and 1993 to detennine the intertemporal efficacy ofthe models. 

Similarly, the two year average RPA and logistic regression models uses 1985-1986 and 1987­

88 averages ofthe characteristic values to classify creditworthy borrowers in the average periods 1987­

13 Granted other factors, also influence credit risk such as collateral offered, reputation in the 
community, education, borrower's experience, borrower's personal attributes, and borrower's ­
management ability. Many ofthe other factors listed have to be evaluated in conjunction with the mode~ 

but outside the mode~ by the loan officer. Creditworthiness models are generally designed to assist 
rather than replace the loan officer in lending decisions. 
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88 and 1989-90, respectfully. The models are evaluated using 1989-90 average characteristics values 

to predict 1991-92 average creditworthy and less creditworthy borrowers. The three-year average 

model uses 1985-86-87 average characteristic variables to classifY 1988-89-90 average creditworthy 

and less creditworthy borrowers. The thfee..year average models are evaluated using 1988-89-90 

average characteristic values to predict 1991-92-93 average creditworthy and less creditworthy 

borrowers. In both models, the two-year and three-year average models, the predicted creditworthy 

and less creditworthy classifications are compared to actual classifications to determine the 

intertemporal efficiency ofthe models. 

RPA does not require the characteristic variables to be selected. Therefore, all sixteen FFSC 

recommended ratios and measures, and lagged classification variables are included in the population 

set Many ofthe variables represent similar financial concepts, but are still included in the population 

set, allowing RPA to select the most appropriate variables. In addition, the predicted probability of 

creditworthiness from the logistic regression model was included as a possible characteristic variable. 

The logistic regression model requires the characteristic or explanatory variables to be selected 

in advance. As a result, this study follows previous studies and specifies a parsimonious credit scoring 

mode~ where a borrower's creditworthiness is a function ofsolvency, liquidity and lagged debt 

repayment capacity (Miller and LaDue, Miller et al. and Novak and LaDue, 1997). The specific 

variables used in the model are debt/asset ratio, current ratio and a binary, lagged dependent variablel4
• 

, 

14 Two other logistic regression models, a stepwise and "eight variable" model (the later, was 
presented in Novak: and LaDue, 1994) were also estimated for annual, two-year and three-year -

average periods. The results are not reported, because the parameters did not always have the 
expected sign and the within sample and out-of-sample prediction rates were lower than RPA's and 
paramoninous (three variable) logit model's prediction rates for all the comparable time periods. 
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The utilization ofboth estimation methods require the specification ofan appropriate prior 

probability. WIth RPA, the specified prior probability is essential in the development ofthe tree and the 

variables selected. With the logistic regression the prior probability is not needed to develop a model, 

but is necessary to classifY the observations. In this study. the prior probability is detennined by 

proportion ofcreditworthiness borrowers in the total sample. The values are 0.852. 0.896 and 0.905 

for the annual, two-year average and three-year average periods, respectfully. The prior probabilities 

demonstrate that the percentage ofcreditworthy borrowers in the sample data set increase as the 

average period lengthens. 

In addition to prior probabilities, misclassification cost also need to be specified. Previous 

agricultural credit scoring models either ignore misclassification costs or assume they are equal. 

However. it is reasonable to assume that the misclassification costs may not be the same for all types of 

decisions. The costs ofgranting, or renewing, a loan to a less creditworthy borrower is typically not 

the same as denying, or not renewing, a loan to a creditworthy borrower. This study does not estimate 

the cost ofthese misclassifications, but demonstrates the classification sensitivity ofthese costs. The 

relative cost ofType I and Type n misclassification errors are varied accordingly from 1:1,2:1,3:1,4:1 

and 5:1, with the relatively higher misclassification cost put on Type I errorlS
• While the less 

creditworthy measure used in this model may not be as serious as an aetualloan losses or bankruptcy 
. 

ofa borrower. There is still a higher cost associated to loan servicing, payment collection, and loan 

analysis for less creditworthy borrowers. 

IS Type I error is a less creditworthy borrower classified as a creditworthy borrower and a Type IT 
error is a creditworthy borrower classified as a less creditworthy borrower.. 
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Comparison of RPA and Logit Model Results 

Figure 3 presents the classification tree generated from the RPA for the annual time period when 

the misclassification cost of a type I error is three times greater than that a type IT error. The model is 

simple, comprised of the coverage ratio lagged one period. Borrowers with a coverage ratio greater than 

1.50 a year prior are classified as creditworthy and borrowers with a coverage ratio less than 1.50 a year 

prior are classified as less creditworthy. In other words, to insure all payments will be made by the 

borrower in the next year the current coverage ratio needs to be greater than 1.50. 

In the same figure, below the classification tree, five surrogate variables are listed. These 

variables were selected on there ability to mimic the selected variable, the coverage ratio, and split 

value, 1.50. Repayment ability measured by the repayment margin and binary, lagged dependent 

variable are included in the list and appear to be good surrogate variables. Another variable selected as 

a surrogate variable is the borrower's predicted probability of creditworthiness from the logistic 

regression. The selection of predicted probability adds some additional validity to its use as a credit 

score. Also noteworthy is that the split value of the predicted probability is very similar to the prior 

probability of the annual sample period. 

A list of competitor variables are also listed below the same figure. The repayment margin was 

listed as the first competitor variable. The first competitor variable implies that if the coverage ratio was 

restricted or eliminated from the sample the repayment margin would have been selected as the primary 

variable in the classification tree. 

In figure 4 the two-year average classification tree is presented, again for a 3: 1 relative 

misclassification costs, with the higher misclassification cost attribute to a type I error. In this ­
classification tree the repayment margin was selected as the primary characteristic variable and the 
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coverage ratio was selected as the competitor and surrogate variable. Similar to the annual model, the 

binaIy lagged dependent variable was also selected as surrogate and competitor variables and the 

predicted probability was also selected as a surrogate variable. The other variables selected were net 

£ann income, return on equity and operating expense ratio. 

In figure 5 the classification tree for the three-year average period is presented. Again as a 

comparison to the previous two trees, a 3:1relative misclassification cost ratio is used. The repayment 

margin was selected as the primary variable characteristic and the coverage ratio was selected as the 

surrogate and competitor variables. In this average time period, the binaIy lagged dependent variable 

or predicted probability were not selected as either competitor or surrogate variables. The selected 

competitor and surrogate variables were operating expense ratio, net farm income, rate ofreturn on 

assets, operating profit margin ratio and'interest expense ratio. 

All the ratios and measures selected as surrogate or competitive variables in the two-year and 

three-year time periods represent a borrower's repayment capacity, financial efficiency or profitability. 

A borrower's solvency and liquidity position does not appear as useful in classi1Ying two-year and 

three-year average indicators ofborrowers creditworthiness. 

The results are consistent with expectations. The indicator ofcreditworthiness is repayment 

capacity. The repayment capacity is predicated on operating profits and losses, hence profitability and 

financial efficiency. Similarly, the repayment capacity is not predicated on total debt, but scheduled 

debt which reduces the efficacy ofthe solvency measures and does not consider the liquidation of 

assets or inventory changes which reduces the efficacy ofthe liquidity measures. 

As stated the selected characteritics variables as competitor and surrogate variables appear 

reasonable, but there exclusion from the actual classification tree may at first appear to be a 
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concern. The naive model is selected when relative misclassification costs are low and the other 

classification trees only have a maximum oftwo splits. However, this is consistent with other 

studies. Frydman et al. found the naive model also did best in classifying their data when 

misclassification costs were assumed equal, and found that the cross-validation classification trees 

had considerable less splits than the non-cross-validation classification trees. Their largest cross­

validation classification tree had a maximum ofthree splits. As a result, for exposition purposes 

the non-cross-validation trees were presented. These trees are aesthetically more appealing. 

They are not pruned, have considerably more splits and classify more observations, but ofcourse 

have less generalizabilty. 

The estimated logistic regression models are presented in Table 3. All the parameters, for each 

ofthe models have the expected sign. In the annual model the debt/asset ratio and the binary lagged 

dependent parameters are significant at the 95% level. In the two-year average model the binary 

lagged dependent variable is significant at the 99",/0 level. 

The within- and out-of-sample misclassifieation rates ofthe RPA and logistic regression models 

are presented in Table 4 and 5, respectively. Historically, agricultural credit scoring models have been 

evaluated on their misclassifieation rates. Using annual data, the within sample misclassification rates 

indicates that the RPA model classifies the observation better than the logistic regression for relative 

misclassification cost of 1:1 and 2:1. Moreover, the RPA model is also the naive model. The 

computer algorithm concluded that ifrelative misclassifieation cost were equal or occurring at a 2: 1 

ratio then a lenders should classuy all borrowers as creditworthy. When the relative misclassification 

cost ratios are assumed to b~ higher (i.e. 3:1,4:1 and 5: 1) the logistic regression does better at ­
classifYing the borrowers. Note that the logistic regression model does not change with the 
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misclassification cost scheme as does the RPA model, because the logistic model does not inherently 

consider misclassification costs. A comparison of the out-of-sample misclassification rates, using 

annual observations, indicates that the RPA model does better at classifying borrowers in 1991 for all 

relative misclassification cost scenarios, and the logistic regression model do better at classifying 

borrowers in 1992 and 1993 for all the relative misclassification cost scenarios. 

When the two-year average data are used to develop the models, the misclassification results 

indicate that RPA does better at classifying the within-sample borrowers for all relative misclassification 

cost scenarios, but the logistic regression does better when classifying out-of-sample borrowers. Again, 

as in the annual data, when relative costs are equal RPA concludes that all borrowers should be 

classified as creditworthy in order to minimize the cost of misclassification. When the three-year 

average data are used to develop the models, the misclassification results indicate that the RPA model 

does best at classifying both the within- and out-of-sample borrowers for all relative classification cost 

scenarios. 

An alternative method to evaluate the models, is to compare minimum expected cost of 

misclassification instead of overall misclassification. The evaluation results change since minimum 

expected cost of misclassification takes into account the reality of unequal costs of type I and II errors. 

In some cases, as the relative misclassification costs increase, the overall misclassification rate also 

increases, in order to minimize the expected cost of misclassification. 

In Table 6 the expected cost of misclassification for each model and relative misclassification 

cost is presented. The RPA model does best at minimizing the expected misclassification cost for the 

all within-sample time periods for all relative misclassification costs scenarios. This is not surprising. ­
The objective of RPA is to minimize the expected cost of misclassification, while the objective of the 
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logistic regression is to maximize the likelihood function for the specific data set. This is also where 

nonagricultural financial stress studies have concluded that RPA is a better model than other models. If 

this study was to conclude here, it would also conclude RPA is a better method ofclassification. 

However, this study continues by comparing intertemporaJ, out-of-sample observations. 

Using the annual time period data, RPAmodel performs best in 1991 for all relative 

misclassification costs scenarios, and in 1992 and 1993, but only when the misclassification costs are 

equal. Recall that the annual RPA model was also the naive model when the misclassification costs are 

equal. It is interesting to note that previous agricultural credit scoring research have typically assumed 

equal misclassification costs, but did not always compare the estimated model with the naive model. In 

this case, the naive model out performs the logistic regression model. However, the assumption that 

misclassification costs are equal is not very realistic in credit screening models. 

Using the same data, the logistic regression model does best at classifying observations from 

1992 and 1993, for the remainder ofthe relative misclassification cost scenarios. Likewise, the logistic 

regression does better at minimizing the expected cost ofmisclassification when the two-year average 

out-of-sample observations for each relative misclassificati.on sCenarios, except when misclassification 

costs are equal then RPA, represented by the naive mode~ does better. Lastly, RPA does better at 

minimizing the expected cost ofrnisclassification than the logistic regression model when predicting 

three-year average, out-of-sampleobservation for each ofthe relative rnisclassification costs scenarios. 

Assuming the minimization ofthe expected cost of rnisclassification is the appropriate method 

for evaluating these two methods, we can not conclude a superior model using this data set. A 

different data set may have different resul~ and would warrant exploration. -
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Conclusion 

This study introduces RPA to agricultural credit scoring and because of it relative 

newness, provides a detailed exposition on how RPA classifies obselVations. The study also 

demonstrates RPA's advantages and disadvantages in relation to the logistic regression. RPA 

attributess include not requiring variable pre-selection, analyzing the univariate attributes of 

individual variables, not being affected by outliers, providing a competitive and surrogate variable 

summary, and explicitly incorporating misclassification costs. On the other hand, the logistic 

regression possess some desirable attributes not contained by RPA, such as o~erall summary 

statistics and an individual quantitative credit scores for each obselVation. 

More significantly, the study corroborates the results of the non-agricultural credit 

classification studies. RPA perfonns superior to the logistic regression when classifying within 

sample obselVations using cross-validation selection methods and minimizing expected costs of 

misclassification. However, this study takes the validation process one step further and assumes 

intertemporal (out-of-sample) minimization of expected cost ofmisclassification is more 

appropriate for credit scoring model validation. Under this evaluation method the same results 

are not maintained. In some cases RPA out perfonns the logistic regression and other cases the 

logistic regression out perfonns the RPA model. These findings suggests that the cross-validation 

method may not be effective enough to sunnount overfitting the sample data which limits RPA's 

intertemporal prediction ability. 

In addition, this study considers misclassification costS. Previously, agricultural credit 

scoring research has only evaluated models on the number ofmisclassified obselVations and not -

considered minimizing expected costs ofmisclassifieation. Granted this study only considers 

2S
 



relative misclassification costs, not actual costs, however, the results do indicated that these costs 

affect the models' performance and, in the case ofRPA, the development of the model. Future 

agricultural credit scoring research should consider minimizing expected costs ofmisclassification, 

instead ofminimizing misclassification observations, for evaluating models. Similarly, addition 

effort should be made towards calculating actual misclassification costs. In many cases, it is 

unrealistic to assume misclassification costs are equal. 

In summary, the study has taken strides in introducing RPA, along with misclassification 

costs, into agricultural credit scoring, however, the results, with regards to RPA's superior 

performance, are as convincing as the non-agricultural financial stress literature empirical results, 

when intertemporal model validation is considered. Then again, the need to rigorously prove a 

new classification method's absolute superiority over existing methods may not always be 

necessary. Classification methods are always continuing to be refined and improved. From a 

rigorous theoretical standpoint, as well as its likely appeal to practitioners, RPA does present 

several very attractive features, and can be employed in conjunction with other existing methods, 

but does not necessarily have to replace them. 

-
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Mean Value of the Sixteen FFCS Recommended Financial Ratios 
Table 1. 

RatiolMealure 

Liquidity 

Current Ratio 

Working Capital (S) 

Solvency 

Debt/Asset Ratio 

Equity/Asset Ratio 

DebtlEquity Ratio 

Profitability 

Rate ofReturn on Assets 

Rate ofReturn on Equity 

Operating Profit Margin Ratio 

Net Farm Income ($) 

Debt Repayment Capacity 

TDACLCR1 

CRAIDRM1 (S) 

Financial Efficiency 

Asset Turnover Ratio 

Operating Expense Ratio 

Depreciation Expense Ratio 

Interest Expense Ratio 

Net Farm Income from Operation Ratio 

and Measures, 70 New York Dairy Fanns , 1985-93. 

1985 1986 1987 1988 1989 1990 1m 1992 lill. 

2.89 2.94 3.06 3.25 3.48 2.90 2.TI 2.59 2.50 

52,711 49,111 63,799 70,272 84,755 65,891 53,295 57,443 40,148 

0.34 0.34 0.31 0.30 0.27 0.28 0.29 0.29 0.29 

0.66 0.66 0.69 0.70 0.73 0.72 0.71 0.71 0.71 

-0.58 2.17 0.73 0.63 0.51 0.51 0.56 0.56 0.53 

0.09 0.09 0.10 0.09 0.11 0.09 0.07 0.07 0.06 

0.10 0.10 0.11 0.10 0.13 0.10 0.06 0.08 0.07 

0.21 0.20 0.22 0.21 0.23 0.20 0.16 0.17 0.15 

105,352 100,588 122,144 129,899 148,560 133,232 105,790 133,809 130,104 

2.70 3.28 3.73 3.40 3.76 3.59 3.29 2.73 2.32 

79,199 70,967 95,968 86,035 106,381 76,021 55,275 83,920 69,612 

0.41 0.42 0.43 0.43 0.46 0.46 0.40 0.43 0.43 

0.60 0.62 0.60 0.62 0.60 0.64 0.68 0.67 0.69 

0.13 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.09 

0.08 0.07 0.06 0.06 0.05 0.05 0.06 0.05 0.05 

0.27 0.26 0.29 0.28 0.30 0.27 0.23 0.24 0.23 
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Table 2. 
Number ofAnnual, Two-Year Average, and Three-Year 

Average Creditworthy Farms, 70 New York Dairy Farms, 1985-93 

Cut-offValue 

1.00 

Cut-off Value 

1.00 

Cut-off Value 

1.00 

One Year 

1985 

64 

1986 

65 

1987 

65 

1988 

60 

1989 

66 

1990 

61 

1991 

52 

1992 

54 

1993 

50 

1985-86 

66 

Two-Year Average 

1987-88 

65 

1989-90 

63 

1991-92 

57 

1985-86-87 

68 

Three-Year Average 

1988-89-90 

65 

1991-92-93 

57 
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Table 3. 
Logistic Parameter Estimates of Creditworthiness Models 

Variables Annual Two-Year 
Average 

Three-Year 
Average 

Intercept 2.02 0.70 0.39 
(O.Olt (0.59) (0.09) 

~ 

Debt!Asset Ratio -1.90 -1.72 -0.92 
(0.03) (0.26) (0.73) 

Current Ratio 0.03 0.15 0.13 
(0.78) (0.51) (0.72) 

Lagged Dependent Variable 0.96 2.26 2.36 
(0.05) (0.01) (0.21) 

ModelX2 14.26 18.71 6.16 

Prior Probabilities 0.85 0.90 0.90 

a) P-values are reported in parenthesis. 
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Table 4 

Cost! 

1:12 

2:1 

3:1 

4:1 

5:1 

Cost 

1:1 

2:1 

3:1 

4:1 

5:1 

1:1 

2:1 

3:1 

4:1 

5:1 

1:1 

2:1 

3:1 

4:1 

5:1 

Number ofBorrowers Misclassified using RPA Models
 

Within-Sample 

Annual Two-Year Average Three-Year Average 

! n 1: I II I I II I 
33 0 (33) 12 0 (12) 0 1 (1) 

33 0 (33) 1 IS (16) 0 1 (1) 

11 61 (72) 1 IS (16) 0 1 (1) 

11 61 (72) 1 IS (16) 0 1 (1) 

11 61 (72) 1 IS (16) 0 1 (1) 

Out-or-Sample 

1991 1991-92 1991-93 

I II I I II I ! II I 
18 0 (18) 13 0 (13) 7 2 (9) 
18 0 (18) 8 7 (IS) 7 2 (9) 

6 10 (16) 8 7 (IS) 7 2 (9) 
6 10 (16) 8 7 (IS) 7 2 (9) 

6 10 (16) 8 7 (IS) 7 2 (9) 
1992 

! II I 
16 0 (16) 

16 0 (16) 

4 16 (20) 

4 16 (20) 

4 16 (20) 

1993 

! II. I , 

20 0 (20) 

20 0 (20) 

6 13 (19) 

6 13 (19) 

6 13 (19) 

1) Relative cost of type I misclassification (a less creditworthy borrower classified as creditworthy) to a type n -

misclassification (a creditworthy borrower classified as less creditworthy).
 
2) Summarized for each relative cost model is the number of type I misclassifications, number of type n
 
misclassifications and, in parentheses, the total number ofmisclassifications.
 



Number of Borrowers Misc1assified Using the
 
Logistic Regression Models
 

Within-Sample 

Annual Two-Year Average Three-Year Avera2e 

! IT I ! !! I ! II I 
23 35 (58) 6 12 (18) 3 4 (7) 
23 35 (58) 6 12 (18) 3 4 (7) 
23 35 (58) 6 12 (18) 3 4 (7) 
23 35 (58) 6 12 (18) 3 4 (7) 
23 35 (58) 6 12 (18) 3 4 (7) 

Out-of-Sample 

1991 1991-92 1991-93 

! !I I 1 !I I ! n I 
15 5 (20) 7 4 (11) 8 2 (10) 

15 5 (20) 7 4 (11) 8 2 (10) 

15 5 (20) 7 4 (11) 8 2 (10) 

15 5 (20) 7 4 (11) 8 2 (10) 

15 5 (20) 7 4 (11) 8 2 (10) 

1992 

! !! I , 

5 9 (14) 

5 9 (14)
 

5 9 (14)
 

5 9 (14)
 

5 9 (14)
 

1ill , 

I !! I 
11 4 (15)
 

11 4 (15)
 

11 4 (15)
 

11 4 (15)
 

11 4 (15)
 

Table 5

Costl 

l:f2

2:1

3:1

4:1

5:1

Cost

1:1

2:1

3:1

4:1

5:1

1:1

2:1

3:1

4:1

5:1

1:1

2:1

3:1

4:1

5:1

1) Relative cost of type I misclassification (a less creditworthy borrower classified as creditworthy) to a type n ­
misclassifieation to a type n misclassification (a creditworthy borrower classified as less creditworthy). 
2) Summarized for each relative cost model is the number of type I misclassifications, number of type n 
misclassifieations and, in parentheses, the total number of misclassifications. Also, note since the development of 
the logistic regression is not explicitly affected by misclassifieation costs, the misclassifieation results do not 
change for different relative misclassification costs. This is done for comparison purposes. 



Table 6 
Expected Cost ofMisdassificationl for the RPA and Logistic Regression Models 

Within-Sample 

RPA 

Cost One-Year Two-Year Three-Year Cosr 
1:1 0.150 0.100 0.014 1:1 

2:1 0.300 0.122 0.014 2:1 

3:1 0.314 0.131 0.014 3:1 

4:1 0.364 0.139 0.014 4:1 

5:1 0.414 0.147 0.014 5:1 

Out-of-Sample 

RPA 

Cost 1991 1991-92 1991-93 Cosr 
1:1 0.150 0.100 0.080 1:1 

2:1 0.300 0.234 0.129 2:1 

3:1 0.314 0.295 0.177 3:1 

4:1 0.364 0.357 0.226 4:1 

5:1 0.414 0.418 0.274 5:1 

1992 

1:1 0.150 1:1 

2:1 0.300 2:1 

3:1 0.338 3:1 

4:1 0.366 4:1 

5:1 0.395 5:1 

1993 

1:1 0.150 1:1 

2:1 0.300 2:1 

3:1 0.356 3:1 

4:1 0.401 4:1 

5:1 0.446 5:1 

Logistic Regression 

One-Year Two-Year 
0.198 0.134 
0.303 0.184 
0.408 0.234 

0.512 0.284 

0.617 0.334 

Logistic Regression 

1991 1991-92 

0.207 0.117 
0.332 0.171 
0.457 0.225 

0.582 0.279 
.0.707	 0.332
 
1992
 

0.189 

0.235 

0.282 

0.329 

0.376 

1993 
, 

0.151 

0.233 

0.316 
0.398 
0.481 

Three-Year 
0.110 

0.164 

0.218 

0.272 

0.326 

1991-93 

0.087 
0.143 

0.198 

0.254 

0.309 

-1) Expected cost of misclassification = 7t:J-q;nji{T)INj~Cijnij(T)INi, where nji(T)=tota! number from group j 
observations misclassified as group i, similar for nij. and NF sample size ofgroup i, similarly for Nj. 
2) The logistic regression does not explicitly account for cost of misclassification during the development of the 
model, however for comparative purposes the relative costs arc varied. In other words, the same number of 
borrowers are misclassified for each model and relative costs, except the' misclassifications are weighted 
differently. 
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Figure 1. Hypothetical Recursive Partitioning Algorithm Tree 
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Figure 1 (Continued). Hypothetical Recursive Partitioning Algorithm Tree 
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Parent 
Node 

350obs. 

Coverage ratio ~ 1.50 

Less Creditworthy 

Surogate Variables 

1. Capital replacement and term 
debt repayment margin 

2. Net farm income from operations 
ratio 

3. Binary labbed dependent variable 
4. Predicted probability ofcreditworthiness 
5. Operating expense ratio 

Competitor Variables 

1. Capital replacement and term 
debt repayment margin 

2. Debt/equity ratio 
3. Debt/asset ratio 
4. Operating expense ratio 
5. Operating profit margin ratio 

Figure 3. RPA Tree Using Annual Data 

Creditworthy 

Split Values 

$18,552 

0.181 
0.500 
0.837 
0.747 

$18,419 
0.408 . 
0.290 
0.640 
0.152 



Parent 
Node 

140obs. 

Repayment Margin 
S $17,759 

Repayment Margin 
> $17,759 

Less Creditworthy 

Surrogate Variabables 

1. Tenn debt and capital lease coverage ratio 
2. Predicted probability ofcreditworthiness 
3. Binary lagged dependent variable 
4. Net farm income 
5. Interest expense ratio 

Competitor Variables 

1. Tenn debt and capital lease coverage ratio 
2. Operating expense ratio 
3. Predicted probablity of creditworthiness 
4. Rate of return on equity 
5. Net farm income 

Creditworthy 

Split Values 

10405 
0.818 
0.500 

..$ 22,922 
0.158 

1.698 
0.749 
0.853 
0.013' 

$69,172 

Figure 4. RPA Tree Using Two-Year Average Data 
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Repayment Margin 
S $21,568 

Repayment Margin 
> $21,568 

Less Creditworthy 

Surrogate Variables 

1. Tenn debt and capital lease overage ratio 
2. Operating expense ratio 
3. Net fann income 
4. Rate ofretum ofassets 
5. Current ratio 

Competitor Variables 

1. Tenn debt and capital lease coverage ratio 
2. Operating expense ratio 
3. Rate ofreturn on assets 
4. Interest expense ratio 
5. Operating profit margin ratio 

Creditworthy 

Split Values 

1.429 
0.748 

$22,265 
0.046 

.0.856 

1.663 
0.748 
0.046 
0.277 

\ 

0.158 

Figure 5. RPA Tree Using Three-Year Average D~ta 
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