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Fishing in Stochastic Waters
Abstract

We consider the fishery management problem when the harvested resource
evolves according to dX = [rX(1 - X/K) - Y] dt + oX dz, where X is biomass, Y
is the rate of harvest and z is a standard Wiener process. The expected drift
rate is [rX(1 - X/K) - Y], where r > O is the species’ intrinsic growth rate and
K > 0 is environmental carrying capacity. Thus, the drift rate corresponds
to logistic growth less harvest. The variance rate is 62X2. We seek to
maximize the expected present value of net revenue. If net revenue is given
by m = (p - ¢/X)Y, where p > O is the per unit price for fish and ¢ > 0 is a
cost parameter, we obtain a closed form solution for optimal biomass that
contains Clark’s singular solution as a special case (6=0). Further, we
observe a range where increases in the discount rate increase optimal
biomass. The model is calibrated for the Pacific halibut, and stochastic and
deterministic solutions are compared. The paper closes with a discussion of
how the model might be used within a program of individual transferable
quotas (ITQs) which have been adopted or are being considered by coastal
countries trying to correct for the chronic and widespread problem of
overfishing.




Fishing in Stochastic Waters

I. Introduction

One of the important applications of modern capital theory has been in
the field of resource economics where methods of dynamic optimization
have been used to solve for optimal rates of harvest and steady-state biomass
in a single-species fishery. When maximizing the present value of net
revenue from a fishery, Clérk (1990, p.40), has shown that optimal steady-

state biomass must satisfy the equation
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where X is biomass (the fish stock), F(X) is a concave natural growth
function, net revenue is given by n = [p - c¢(X])]Y, where c(X) is the stock-
dependent average cost of harvest, p is a constant per unit price for
harvested biomass, Y, and 9§ is the rate of discount. The average cost
function is assumed to be convex with derivatives ¢’ (X) < 0 and ¢’ (X) > O.
The current-value Hamiltonian is linear in Y and the approach to X*, the
optimal biomass, is “most rapid,” with Y = Ymax, if X>X and Y=0, if X <X’

[see Spence and Starrett (1975)].




When (a) natural growth is logistic, so that F(X) = rX(1 - X/K), where
r > 0 is called “the intrinsic rate of growth,” and K > 0 is “the
environmental capacity,” and (b) the average cost function takes the form
c¢/X, where ¢ > O is a cost parameter, then equation (1) yields an explicit

solution for X* given by

G- 9T R] e

Along an approach path to X" the fish stock changes according to
dX/dt=X=rX(1-X/K)-Y (3)

In this paper we consider the fishery management problem when
natural growth, net of harvest, is subject to a continuous stochastic process

of the form

dX =[rX(1 - X/K) - Y] dt + 6X dz (4)

where the expected “drift rate” in biomass is rX(1 - X/K) - Y, the “variance

rate” is 62X2, and dz is the increment of a standard Wiener process. Biomass




becomes and It6 variable and future net revenues are uncertain. [See the
Appendix to Pindyck (1991) for a compact discussion of Wiener and It6
processes.|

We are able to obtain an explicit solution for optimal biomass (which
becomes a “size barrier” or “stopping rule”} that contains equation (2) as a
special case when ¢ = 0. For § > 262 > O the optimal barrier, Xg, is less than
X'. In contrast to the deterministic model, there is a range of variation in &
where increases in & cause the optimal stock to increase.

In the next section we formulate the stochastic optimization problem
and solve for the optimal barrier. In section three we present some
numerical results for the Pacific halibut fishery and compare X's with X* for
alternative values of 6. The fourth section concludes with a brief discussion
of the potential application of size barriers like XS to real world fisheries

management.

II. The Model
The problem of maximizing expected discounted net revenue from the
fishery will be more tractable if we employ the transformation q = In X,

where In is the natural log operator. Using It6’s Lemma it can be shown

that




dq=1[r(1 -eY/K)-Ye - 06%/2] dt + 6 dz (5)

where X = e9. Discounted net revenue at instant t can be written as
n(q.Y) = (p - ce9)Y edt, and the transformed optimization problem is stated

as

Maximize E, _[ (p-ce Ny e dt
0

Subject to dq =[r(1 - e9/K) - Y e - 6%/2] dt + 0 dz
Ymax 2 Y20, X(0) =X, given

where Ej is the expectation operator taken at t=0. Since discounting is the
only nonautonomous feature in this problem the Hamilton-Jacoby-Bellman

(H-J-B) equation requires

8V = Max {(p - ce DY + [r(1 - e¥/K) - Y e - 6%/2]V’ + (6%/2)V"} (6)

where V = V(q) is an unknown (current) value function. The expression to
be maximized is linear in the control, Y, and there exists a switching
function w(t) = p - ced - V'e'd where if o(t) < 0, Y* = 0, if o(t) > 0, Y* = Ymax

and on the rare occasions when a(t) =0, Y* = rXg(1 - X5/K), where X; = e9".




The size barrier is a boundary and the continuity condition requires

8V = [r(1 — e¥/K) - 62/21[pe? - c] + (6%/2) V” (7)

at X's = e4". This is an ordinary differential equation.

As a candidate try V = k;e29 + kqed + k3, where kj, ky and k3 are
unknown constants. Substituting V and V™" into equation (7) and collecting
the terms involving €294, e and the remaining parameters and constants,

one can show that the equation is satisfied when

pr (2Kpr - Kpo? + 2cr) c(o? - 2r)
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Substituting the expressions for k; and k; into the expression V'= pe? - ¢,
which is the “smooth-pasting condition for this problem, and replacing ed

with X and e24 with X? results in a quadratic whose positive root is
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where 6 = (8 - 262)/(8 - 62/2). Note: when 6 =0, 8 = 1 and equation (8)

reduces to equation (2). For > 202> 0,1>6 >0 and Xg <X . This result




is consistent with Pindyck (1980) who found more rapid depletion of a
nonrenewable resource when average extraction costs were nonlinear in
“proven reserves,” R, with ¢”"(R} > 0, as in our model. In Pindyck’s model,
the stochastic drift in reserves induced cost increases, when reserves
declined, that exceeded cost reductions, when reserves expanded. As a
result, the competitive industry increased their rate of extraction and price
started lower and rose more rapidly.

A similar effect is at work in our stochastic fishery model. By
maintaining the stock in the neighborhood of Xs <X the sole owner or
manager can reduce the degree to which random fluctuations raise the
expected cost of harvest. Thus, in a stochastic environment, where the
average cost of harvest is ¢/X, it pays to maintain a lower stock with smaller
variations. In the next section we explore the extent to which Xs lies below
X via a numerical example calibrated to the Pacific halibut fishery.
Sensitivity analysis reveals an interesting and unexpected effect when the

discount rate, 9§, is varied.

IOI. The Pacific Halibut Fishery
Clark (1990, p.47) briefly describes the history of the Pacific halibut, a
large and commercially valuable fish that ranges over an extensive area of the

North Pacific. Following a period of open access, this fishery was put under
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the regulation of the International Pacific Halibut Commission, in 1924. The
Commission was successful in rebuilding the stocks until the 1950s when
Russian and Japanese trawlers entered the fishery. During the 1960s and
1970s the combined rates of harvest caused the halibut stocks to decline far
below estimates of the level that would support maximum sustainable yield.
In the late 1970s both the U.S. and Canada enacted legislation which
extended their exclusive fishing zones (the “200-mile limit”), and in the
1980s the management plans adopted by the U.S. and Canadian
governments have been coordinated by the Commission.

Based on a previous study by Mohring (1973}, Clark adopts the
following parameter values: r = 0.71, K = 80.5 X 10° kg, and (c/p) = 17.5 X
10° kg, and uses equation (2) to solve for the optimal steady-state values X"
and Y', for different values of 8. The values of X have been recalculated and
are reported in Table 1 under the column ¢ = 0.0, where Xs =X . Foro =
0.1 and ¢ = 0.2 Table 1 also reports the values of 6 and Xg for & ranging from
0.05 to 0.30. When o = 0.0, increases in § cause the optimal biomass to
monotonically decline, and as § — =, X — X.=(c/p) = 17.5 X 10° kg, where
X.. is the stock level at open access equilibrium. At X.. net revenue is zero,
and early economists [Gordon (1954) and Scott (1955)] observed that

fishery rent had been “dissipated.”




In the stochastic model, increases in § increase 6. For a given level of
o, and for values of 8 where « > § > 262 > 0, Table 1 reveals how increases in
§ affect X5. Initially the increases in § cause increases in 8 that more than
offset changes in the other terms that would reduce X; Thus, over some
initial range, increases in 3, will increase X’s At some point, however,
further increases in § induce changes in these other terms that cause Xg to
decline. As d — oo, X; and X both asymptotically approach X.. = ¢/p. This is
shown in Figure 1 where for 6=0.2 and 8=0.1, Xg = 12.4 < X., = 17.5. As
increases, X’s increases above X.., peaks and then asymptotically declines
back to X...

For a given §, increases in ¢ cause X's to decline. Further, as ¢
increases the range where increases in 8 increase X'S expands. For example,
when ¢ = 0.1, X’s declines when 6 goes from 0.15 to 0.20, whereas when o =
0.2, X’s continues to increase from 6 = 0.10 through 8 = 0.30. The elasticity
of Xg to changes in ¢ depends on the level of . For example, when 8 = 0.10
an increase in o from 0.1 to 0.2 (100 percent) causes X's to decline by 67.9
percent, whereas when 6 = 0.30 the same increase in ¢ elicits only a 15.1

L
percent decrease in Xs.




IV. Implications for Fisheries Management

Despite the extension of territorial waters outwards to 200 nautical
miles, nation states have had difficulty in managing stocks within their
exclusive economic zones (see The Economist, March 19th 1994). Coastal
and distant water fleets that expanded during the 1970s and 1980s
combined to overfish stocks of cod, haddock, pollock, herring and the
various species of tuna. The Canadian government has recently imposed a
moratorium on the harvest of cod, a mainstay of the small fishing villages in
Newfoundland and the other maritime provinces. Moratoria are also being
considered for other depleted stocks. The two major questions become:
“When can fishing resume?” and “When fishing is resumed, how should the
fishery be managed?”

The stochastic model presented in Section II has the potential to be
estimated or calibrated for the major single-species fisheries. Estimates of
X; would provide a “starting rule” for depleted fisheries. In the U.S. and
other developed countries, an estimate of current biomass is often required
under current management plans. Suppose the current estimate of
yellowtail flounder on Georges Bank is X; and that the size barrier for
yellowtail is X's Allowable catch for year t might be set at Y; = (X; - X;) 2 0.
Allowable catch might then be distributed among eligible fishers according

to the prevailing distribution of ownership shares. If the ith fisher held title
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to a share s;, the biomass that he or she could catch in year t would be Y;: =
siY:. If this individual quota was transferable, in that the individual could sell
all or a portion of Y;, the fishery is said to be managed under a system of
individual transferable quotas (ITQs). Given the stochastic nature of future
net growth, a new Yt would be determined each year.

Landings taxes or ITQs have long been touted by economists as the
most efficient way to manage a common property fishery [Christy (1973) and
Brown (1974)]. New Zealand, Iceland, Canada, Australia and the United
States are now experimenting with variations of the ITQ program described
above. The range of transferability is often limited to preclude locational or
noncompetitive concentration of quota. New Zealand’s experiment is the
longest running and the U.S. experiment is limited to a small shellfishery on
the mid-Atlantic continental shelf. Results to date are encouraging and
there seems to be a growing realization on the part of managers, biologists,
and most importantly, fishers, that ITQs can provide a more rational

framework for managing single-species fisheries.
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TABLE 1 - OPTIMAL BIOMASS IN THE STOCHASTIC FISHERY

=00 o=0.1 o=0.2
E X" = X, 0 X, 0 x*
0.05 47.2 0.67 31.7 §<20°
0.10 45.5 0.84 38.6 0.25 12.4
0.15 43.9 0.90 39.6 0.54 24.6
0.20 42.3 0.92 39.3 0.67 29.2
0.25 40.9 0.94 38.6 0.74 31.2
0.30 39.9 0.95 37.7 0.79 32.0
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FIGURE 1: X* AND X; AS AFUNCTIONOF § WHEN ¢ =0.2,r=0.71, K=80.5,

AND X_ = c¢/p = 17.5.
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