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Abstract

The models analyzed in this paper satisfy additivity, homogeneity and symmetry
globally a priori but not global negative semi-definiteness of the Hicks-Slutsky substitution
matrix. Imposing parameter constraints to insure global negative semi-definiteness in a two-
good model limits the range of values of the Marshallian elasticities with respect to own-price

(Ej), cross-price (Ej; ) and expenditure or income (E;y).

The results for the Generalized Logit model developed in this paper are that E;; can be
greater than, less than or equal to - 1; Ej; can be greater than, less than or equal to 0; and E; can
be greater than, less than or equal to 1. The results for the Translog and AIDS are qualitatively
identical, namely, E;; are less than - 1; E;; are greater than 0; and E;; are equal to 1 (homothetic
preferences). The results for the Generalized Leontief and Minflex Laurent are also
qualitatively identical, namely, E;; are equal to the negative of own-shares (negative but
greater than — 1); E;; are equal to the negative of the share of the other good (negative but
greater than — 1); however, E;; are also equal to 1 (homothetic preferences and zero Hicksian

substitutability).

Thus, the above standard flexible functional forms can be globally well-behaved but at
the expense of losing their flexibility property since they are not anymore capable of achieving
the full range of price and income elasticities. The Generalized Logit model is also a flexible
functional form and can be globally well-behaved while retaining its flexibility property from
the fact that it has a wider range of price and income elasticities, therefore, encompassing more

realistic cases.

*Graduate Research Assistant and Professor, respectively, Department of Agricultural
Economics, Cornell University, Ithaca, New York 14853 — 7801. This paper is part of a wider
study on estimation applied to clectricity and fuels in a complete demand system. They are
grateful to the New York State Department of Public Service for financial support.




I. Background, Purpose and Summary of Findings

There are two general approaches to the modeling of empirical demand
systems. One is by direct specification and the other is by deriving the
demand system from a hypothesized expenditure function or indirect utility
function. An example of the first approach is the logit model of expenditure
shares presented in section II of this paper, which is a generalized version of
the earlier logit models by Tyrrell and Mount (1982), Considine and Mount
(1984) and by Considine (1990). Examples of the second approach are the
flexible functional form demand models such as the “almost ideal demand
system” or AIDS (Deaton and Muellbauer, 1980); the translog (Christensen,
Jorgenson and Lau, 1971, 1975); the generalized Leontief (Diewert, 1971); and

the minflex Laurent demand system (Barnett, 1982; Barnett and Lee, 1985).1

The earlier logit models satisfy additivity and zero-degree homogeneity
globally for all non-negative expenditure shares. But symmetry is satisfied
only at the point of means, except Considine’s last specification that has global
symmetry conditional on predicted shares. In contrast, the generalized logit
model presented in this paper satisfies additivity, homogeneity and symmetry
globally and encompasses Considine’s globally symmetric model as a special
case. Thus, this generalized logit model has the same features as the standard
flexible form demand systems in that global additivity, homogeneity and
symmetry of the Hicks—Slutsky substitution matrix (HSSM) are satisfied a
priori. However, the restriction that the HSSM is globally negative semi-
definite (GNSD) remains problematic for demand systems derived from

either of these two approaches (Christensen and Caves, 1980; Barnett and Lee,

10ther examples of the second approach are the generalized Cobb-Douglas and
generalized square root quadratic (Diewert, 1973, 1974) and the generalized Box-Cox (Berndt
and Khaled, 1979).




1985; Diewert and Wales, 1987). It appears necessary to impose parameter
restrictions in order for HSSM to be GNSD in additon to those required for

the other global properties.?

For purposes of comparison, section III examines the constraints on
parameters for HSSM to be GNSD in the generalized logit model, translog,
AIDS, generalized Leontief and, finally, the minflex Laurent demand models.
The analysis is based on the case of two goods in order to demonstrate the
unrealistic implications on the price and income elasticities of the standard
models of analytically constraining parameters in order for HSSM to be
GNSD. This analysis also provides an insight into the difficulties of imposing

negative semi-definiteness in the more general case of more than two goods.

Given that all the models analyzed satisfy additivity, homogeneity and
symmetry, the necessary and sufficient condition for HSSM to be GNSD in
the two-good case is that the Hicksian own-price effect (HOPE) of either of the
two goods is uniformly non-positive (UNP) for all possible shares of the
chosen good.® By focusing on the conditions for HOPE to be UNP in the two-
good case, this paper offers an alternative analytical framework to the
mapping of the “regular region” as done by Caves and Christensen (1980) and
by Barnett and Lee (1985).

2The additivity and homogeneity restrictions on demand functions follow by Shephard’s
lemma and by Euler’s theorem from the fact that the expenditure function from expenditure
minimization is linearly homogeneous in prices. Also, the expenditure function is concave.
Concavity implies the restriction that HSSM be GNSD because it is the Hessian matrix of the
expenditure function, considering the fact that the Hessian of a concave function is negative
semi-definite. That these restrictions be satisfied “globally” means satisfying them for all
sets of prices and expenditures that generate non-negative quantities demanded or,
equivalently, for all non—negative expenditure shares.

3Symmetry of the HSSM implies that all its eigenvalues are real (Sydsaeter, 1981). It is
is negative semi-definite if and only if all its eigenvalues are non-positive, one of which is zero
because the HSSM is singular (Chiang, 1984; Searle, 1982; Strang, 1980; ). If there are only two
goods, one eigenvalue is zero because of singularity and the other is non-positive if and only if
the Hicksian own-price effects, which are the diagonal elements of the HSSM, are non-
positive. However, because of symmetry, it is necessary and sufficient to show that the own-
price effect is non-positive for only one of the two-goods.
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The parameter constraints for HOPE to be UNP limit the range of
possible values of the Marshallian price and income elasticities, since the
Hicksian price effects are precisely related by the Slutsky equation to the
Marshallian elasticities with respect to own-price (E;;) , cross—price (Ej;)and
expenditure or income (E;) In some models, there are also important
implications on the underlying structure of preferences. The findings in

section III may be summarized as follows:

Generalized Logit: A sufficient but not necessary condition for HOPE to
be UNP is that all parameters are non-negative. In this case, E;; could be
greater than, less than or equal to — 1 (inelastic, elastic or unit elastic); E;; could
be greater than, less than or equal to 0 (substitutes, complements or
unrelated); and E;; are unrestricted. This case does not preclude corner
solutions to expenditure minimization so that the set of expenditure-
minimizing points in the generalized logit model coincides with the entire

positive quadrant.

Translog: It is necessary and sufficient that the own-price parameters be
equal and positive and that the cross-price parameters, which are symmetric,
be equal to the negative of the own-price parameters. The results are that E;;
are strictly less than — 1 (elastic); E;; are strictly greater than 0 (substitutes); and
E; are equal to 1 (homothetic preferences). In this case, positive quantities: of
both goods are bought; therefore, the set of expenditure-minimizing points in

the translog is smaller than the positive quadrant.

AIDS: 1t is necessary and sufficient that the own-price parameter is
negative (or the cross-price parameter is positive) and the income parameter

is zero. Hence, E;; are strictly less than — 1 (elastic); Ej; are strictly greater than

0 (substitutes); and E;; are equal to 1 (homothetic preferences). However, with




or without the above conditions, the AIDS parameter constraints imply that
positive quantities of both goods are bought.  Therefore, the set of
expenditure-minimizing points in the AIDS model is smaller than the
positive quadrant. These results are qualitatively identical to those for the

translog.

Generalized Leontief: HOPE is UNP or, more precisely, HOPE is
uniformly zero if and only if preferences are homothetic and the cross—price
parameter is zero This is the case of zero Hicksian substitutability. In this
case, the E;; equal the negative of the expenditure shares, i. e., strictly greater
than — 1 (inelastic), and E;; of each good equals the negative of the share of the
other good, hence strictly less than 0 (complements). Because of
homotheticity, E; equal 1. Since both goods are bought, corner solutions are
precluded so that the set of expenditure-minimizing solutions is smaller than

the positive quadrant.

Minflex Laurent: HOPE is UNP, uniformly zero in fact, if and only if
preferences are homothetic and the cross—price parameters are zero, the case
of zero Hicksian substitutability.>. The necessary and sufficient conditions
also imply that E;; equal the negative of the expenditure shares or strictly
greater than — 1 (inelastic) and E;; equal the negative of the share of the other
good, hence strictly less than O (complements). E; are equal to 1 because of
homotheticity. = Moreover, the set of expenditure-minimizing points is
smaller than the positive quadrant. Thus, the results are qualitatively

identical to those for the generalized Leontief.

4In the two—-good generalized Leontief model, there is only one cross—price parameter.
This need not be zero for homothetic preferences; however, given homothetic preferences, it
must be zero for zero Hicksian substitutability.

In the two—good minflex Laurent model, there are two cross—price parameters. The
cross—price parameter associated with the negative square root of the price —income ratio need
to be zero, but not the other, for homothetic preferences. However, given homothetic
preferences, both cross—price parameters need to be zero for Hicksian zero substituability.
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Two conclusions stand out from these results. In particular, they
indicate that a globally well-behaved generalized logit model encompasses
more realistic cases than the other models. In general, imposing parameter
constraints to achieve globally well-behaved properties severely limits the

realism of standard demand models.

II. Additivity, Homogeneity and Symmetry in a Generalized Logit Model of
Expenditure Shares

Let the prices and corresponding quantities at any time period t be given
bypitand x; ,i=1,2, ..., n. Given that expenditures or income in the same

period is I , then by definition of the budget constraint,

n
Pit Xit
t i=1

In [1], w;, is the expenditure share of each commodity. In order to satisfy [1],
define a logit specification of these shares,

fit fiq

€ €

- n
+...+efm .
z el

j=1

where f;; is a function of p;; ,i=1,2,... ,nand I; . This specification guarantees

Wi =

(2]

efn

non-negative predictions no matter how f;, is specified® By defining the
share w,, of an arbitrarily chosen nth good in accordance with [2] it follows

that

Wit .
In [ J=fit—fnt ; i=12,..,n-1. (3]

Whnt

Thus, the non-linear expenditure system evident from [2] can be estimated as

6In contrast, other models can predict non-sensical negative shares. For example, Lutton
and LeBlanc (1984) showed that the translog can generate negative share predictions.
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a linear system in [3] by specifying f;; as a linear function in [5] below.
Engel aggregation or additivity is satisfied by the logit model from the
fact that [2] strictly satisfies [1] for every set of predicted shares. For

Marshallian homogeneity, consider that by equating wy;, in [1] to that in [2],

In x3=-1In (p't] f,—In z fi (4]
The demand functions x;, in [4] are homogeneous of degree zero in prices and
income given the following specification,

Pjt I
flt = Qo + z al] el](t—]) In {p J+ Bx In [ : ] [5]
it

) =1 plt

where a;, and a;; are parameters; and 6j..1) is a lagged variable weight which
will be shown later to determine global Hicksian symmetry.
It follows from [2] and [4] that, in general, the own-price, cross—price and

income elasticities in this logit model are

9 In x;, 0 fy = 9 f;
Ei= —— =—1 - R
"9 In py T py ; "* 3n py 2
E. = = -_— . i
T 9In Pxt Olnpy 21' " 91In py, =] 7
0 In Xit _ o f; 0 fJt
Ei= S L Tamy 21: anl, (&1

Substituting the appropriate derivatives of f; in [5] into the elasticity

formulas in [6], [7] and [8], it can be verified that

k=1 k=1

n n
Ej=—1-(1-wy [z Ay Oixe-1) + BiJ - z Wit O Ogige-1) (9]




n n
Eik = Qi Ojxe-1) — Z Wit Qi Ojxt-1) + Wit Z oy Oyig-1y +Px | 5 [10]

i=1 i=1

n
Eilt=1+(1-wi)Bi_ZwktBk ; ik [11]
k=1

It can be verified from these elasticities that for any good,
n
Z Ej + Ej =0 . [12]
j=1

The result in [12] means that the logit specification satisfies Marshallian
zero—degree homogeneity in prices and income.”

One disadvantage of direct specification of a demand system, as opposed
to deriving it from an expenditure function or indirect utility function, is the
need to check for symmetry (Lau, 1976).2 However, Hicksian symmetry of the
cross—price effects can be obtained in the logit model above by defining 6 as
the following function of lagged shares and by imposing symmetry on the o

coefficients,

Whkee-1) LW _ Pie-1) Xi¢-1)
; ()

;O = Oy [13]
1~ ’ ik ki
Wi 1y Yen

Oit-1) =

7For this result, it is sufficient to define Marshallian demand for any good as a function of
the ratios of its own price to income and to the prices of the other goods. For example, this
condition is satisfied by the model specification in [4] and [5]. This insures that proportional
changes in all prices and income will leave demand unchanged, which is required by the above
homogeneity property. This property implies the result in [12].

8If the hypothesized expenditure function is twice continuously diffferentiable with
respect to prices, symmetry of the Hicksian cross-price effecsts follows by Shephard’s lemma
and Young’s theorem. If the expenditure function is invertible, i. e., the indirect utility function
is obtainable, Roy’s identity yields the Marshallian demand system. From this, Hicksian
symmetry can be verified by means of the Slutsky equation. Thus, symmetry is automatic for
demand systems derived from expenditure functions with the above properties but not for
demand systems directly specified. Hence, the need to check for symmetry in the latter case.
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where v is a parameter’. To show that the definitions and restrictions in [13]
are sufficient for global Hicksian symmetry, consider the Slutsky equation
Ixy X 0 X;
TR
0 Pkt Pkt t

[14]

where x}i‘t and xﬂt are Hicksian demand functions whereas x;, and xj.are

Marshallian. Now, the Hicksian cross—price effect in [14] can be expressed in

terms of Marshallian price and income elasticities and budget shares as

ax, L

0 Pxe B Pit Pt (Eixe Wi + Wit Wi Ej) O (151

BX}‘(t L (E E..) -
= i Wiy + Wy, Wi .

APk Pu P KT KT

Symmetry of the Hicksian cross—price effects holds in the generalized
logit model for any set of predicted budget shares. For infinitesimal changes
of shares, the time lag defined by the original data, t-1 , may be replaced by an
infinitesimal lag, t—3 where 80 . This means that the elasticities may be
computed conditionally, using on the right-hand side the shares evaluated at
time t , i.e., using the current value in place of the lagged value of 6 in [13]. In
this case, omitting the time subscript t for simplicity, it can be verified that

W; 0= Wy 6y . [17]

In view of [17], the price elasticities in [9] and [10] simplify to

n
Eii='1’2°‘ik9ik‘(1-wi)ﬁi ; [18]
k=1
Ejx = oy 0 + wy By - [19]

The income elasticities remain the same as in [11], which are,

9Considine’s (1990) model is a special case of the generalized logit model in the sense
that his global symmetry restriction may be obtained from [13] by setting y= 1, thus eliminating
the denominator of 6, and then replacing the actual lagged value of the share wy by its
predicted value. His symmetry restrictions on the price parameters are equivalent to the above
restrictions on the a coeficients.




Ei]=1+(l—wi)[3i—2wk[3k. [20]
k=1

Substituting these elasticities into [15] and [16] gives the Hicksian own-price

and cross—price effects,

o xt I L n
S == Wi W Dt Wy W)+ (W= 2 w) Bk wE D wify ; [21]
oA __1 | (w; WY+ wy vy (B + By > |
— = w; Wy + o (W; wi )Y+ w; wy (B + B) —wy w w;B| ;
e Pipk | k¥ Qi "+ Wi wy k ki=1 ,B}_
axk 1 [ no ]
- = Wy Wi + O (W]< Wi)y"' Wy Wi (Bk+Bi)-wk WIZW]& . [23]
Pi Px Pi | j=1 |

The Hicksian cross—price effects in [22] and [23] are symmetric given oy, = oy
in [13]. Global symmetry holds for every set of shares and for any value of .
The global symmetry result above is conditional on the equality between
the “approximate” short-run elasticities in [18] to [20] and the “true”
short—run elasticities in [9] to [11] These elasticities are equal given the
assumption of fixed expenditure shares in [13} which is reasonable in the
short—run. Granted this assumption, the global symmetry between [22] and
[23] implies that there exists in principle an underlying expenditure function
or a dual indirect utility function that could generate the logit model
(Samuelson, 1950; Katzner, 1970; Hurwicz and Uzawa, 1971; Johnson, Hassan

and Green, 1984; Varian, 1984; LaFrance and Haneman, 1989).10

1By Shephard’s lemma, the Hicksian demand functions are the first partial
derivatives of the expenditure function with respect to prices. Thus, these demand functions
form a system of partial differential equations. This system is integrable or has a solution, i. e.,
the expenditure function exists, if and only if the first order cross—partial derivatives of the
system are symmetric. This integrability condition is equivalent to the symmetry of the
second-order partial derivatives with respect to prices of the expenditure function, which is
trueby Young’s theorem. Thus, the absence of symmetry not only violates Young’s theorem but
also implies that the Hicksian demand system is not integrable or that the expenditure
function and its dual indirect utility function do not exist.
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It may be noted that the generalized logit model satisfies the definition of
a flexible functional form model in that, given an appropriate set of the
parameters a;; and B; in [5] it is capable of producing the full range of price
and income elasticities at each data point in a sample of observations (Caves
and Christensen, 1980). It also satisfies the requirement on the minimum
number of free parameters in order to be a flexible functional form (Diewert
and Wales, 1987).11

Finally, there is a theoretical attribute of the generalized logit elasticities
that has important implications for empirical work. It is in the nature of
econometric estimates using aggregate data that the estimated parameters
apply not only to the aggregate economic unit as a whole but also to the
groups or subgroups subsumed under the aggregate. However, it is not
simply interesting but quite important in applied demand analysis to be able
to distinguish between group differences in demand for the same commodity.

An interesting example is the difference in demand elasticities for
electricity between households that use either electricity, natural gas or fuel
oil for space heating. This can easily be handled by the logit elasticities in [18]
to [20] For instance, since by definition an all-electric household does not
buy natural gas or fuel oil, then the own-price, cross—price and income
elasticities for electricity of this household can be computed simply by setting
to zero the expenditure share of natural gas, fuel oil and the share of any good
included in the demand system which the household does not buy.

In general, differences in demand elasticities for the same good between

1The generalized logit has to satisfy the following equations, namely, 1 budget
constraint, N demand functions, N2 partial derivatives with respect to prices and N partial
derivatives with respect to income. The number of restrictions are 1 for additivity, N for
homogeneity, (N2 - N)/2 symmetry restrictions on parameters (0= 053) and N zero restrictions
(a;; = 0). Thus, the minimum number of free parameters equals the di ference between the total
number of equations and the total number of restrictions and this difference equals (N2 + N)/2.
This is exactly e% ual to the number of parameters estimated in the generalized logit model
since there are (N“ - N)/2 unique o coefficients and N different B, coefficients.

10




diverse groups can be determined from the fact that in the generalized logit
model, 6;, = 0 whenever wy = 0. One of the interesting results is that
whenever this is true, E; = 0, which means that the elasticity of demand by an
individual (or by any grouping of individuals) for any good i that it buys is
unaffected by the change in the price of any other good k that it does not buy.
This result comes out naturally from the generalized logit but is not exhibited

by the other demand models.
III. Negative Semi-Definiteness of The HSSM With Two Goods

Hicksian price effects are not directly measurable because Hicksian
demand functions are not observable. However, these Hicksian price effects
can be measured exactly from observable Marshallian demand functions by
means of the Slutsky equation. Thus, every element of the HSSM can be
computed without knowing the Hicksian demand functions.

The Slutsky equation satisfies Euler’'s theorem that Hicksian demand
functions are homogeneous of degree zero in prices. This follows from [15]
since for alli,j=1,2,...,n,

ax,
pi= _W[ El]+Ellsz—0 [24]
j=1

]lap] l

That [24] equals zero as required by Euler's theorem is true since
n n
D wi=1 and D E;+E=0. [25]
j:] j=1

Thus, additivity and Marshallian zero—degree homogeneity in prices and
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income imply Hicksian zero-degree homogeneity in prices.!?

Let Sij be the elements of HSSM, i. e.,

9
HSSM = {s} ; sy=—— ; ij=12,..,n. [26]
Forn=2, [24] and [26] yield
511 P1 + 849 P2= 0 ; and [27]
SnP1+snp2=0. (28]

Symmetry implies that s;; = s3;. In this case, it follows from [27] and [28] that

5150 &  s13=5120 & s5pp<0. [29]
The result in [29] is the standard conclusion in a two—-good case that a
non-positive Hicksian own-price effect (HOPE) for one good is necessary and
sufficient for the own—price effect to be non—-positive for the other good as
well. Moreover, the two goods can only be Hicksian (net) substitutes since the
symmetric cross—price effect must be non-negative.l® Finally, since prices are
positive,i.e,, p;>0and p; >0, [27] and [28] imply that HSSM is singular or that
its determinant (det) equals zero, i.e.,

det (HSSM) =511 Sp9 ~5%=0 . [30]

To show that HSSM is negative semi-definite, let A be a scalar
representing its eigenvalue and I be an identity matrix of the same order as

HSSM. 1t follows from [30] that the characteristic equation is given by

1211 of the restrictions on demand functions can be derived without reference to a utility
function and simply follow from the linear homogeneity and concavity properties of the
expenditure function (McKenzie, 1957; Takayama, 1985). Negative semi—definiteness of the
HSSM is a weaker and more general condition than quasi~concavity of the utility function
because the expenditure function can be concave even if the utility function is not quasi-concave,
i. e, negative semi-definiteness does not imply quasi-concavity (Deaton and Muellbauer,
1980b). However, negative semi—definiteness is implied by quasi~concavity (Phlips, 1987).

13The results in [29] include the possibility that the equality to zero holds. This is true
for example in interior solutions to expenditure minimization given a Leontief type utility
function. This could also be true at corner solutions in the quantity axis when the utility
function is not quasi—concave.

12




det (HSSM — A I)=—(s;; + Sp0) A+A2=0 . [31]
From [29] and [31],

—(511+5)A+A2=0 = (A4, =0 and X, <0) if (5;;<0 and sp<0) [32]
but, on the contrary,

— (511 +S2)A+A2=0 = (A =0 and A,>0) if (s5;;>0 and sy, > 0). [33]
But [33] contradicts the definition of a negative semi-definite matrix that it
has non-positive eigenvalues (Strang, 1980). It follows that a non—positive
HOPE, i. e., s; £ 0, is necessary and sufficient for one eigenvalue to be zero
and the other to be non—positive, which is necessary and sufficient for HSSM
to be negative semi—definite in the two—-good case (Chiang, 1984).

It follows from [12] and [15] that, in general, the HOPE equation for good
1 in the two—-good case can be written as

9 x

S11= —a—pl— = 'p—% wWq [(l - W]) El] - W E12] . [34]

Hence, global negative semi—definiteness can be imposed on the HSSM by
imposing parameter restrictions on the demand model such that HOPE is
uniformly non-positive (UNP) in the above case for all non-negative
expenditure shares. However, it is clear from [34] that such restrictions must
limit the range of values not only of the price elasticities but also of the
income elasticities, since the sum of all elasticities equals zero for each good.
These issues are explored in the following analysis of the generalized logit,

translog, AIDS, generalized Leontief and minflex Laurent demand systems.
III - (A) The Generalized Logit Model

Suppose that there are only two goods. In this case, it follows from [18] to

[20] that the price and income elasticities for good 1 are

13




En=-1-0908-(1-w)p; ; [35]

Ep=ap6p+(1-wp)h, ; and [36]

En=1+0-w))(B;—-B) . [37]
These elasticities sum to zero because of zero—degree homogeneity in prices
and income. Combining [35], [36] and [34] yields the HOPE equation

1
=T [(wy = w) + (wy = wh)Y agp + wy (1 - wy)? By + wi (1-wy) By) . [38]
1

It follows that s;; < 0 if and only if

[(wy = W) + (wy = W] gy + wy (1= wp)2 By +wi (1-wy) Byl 20 . [39]
Since 1 2 w; 2 0, then all the terms involving w; are non-negative. Therefore,
a sufficient condition for [39] is that all parameters are non—negative, namely,
®1,20, B; 2 0 and B, 2 0. However, these parameter restrictions are not
necessary in order for [39] to be true globally. To show this, suppose that y=1.
In this case, o, 21, B; 2 0 and B, > 0 are sufficient.

Therefore, in order for s;; <0, it is possible from [35] to [37] that E;; could
be greater than, less than or equal to ~ 1; E;, could be greater than, less than or
equal to 0; and E;; could be greater than, less than or equal to 1. These apply as

well to the elasticities E,,, E5; and E,; of good 2.
III - (B) The Translog Model

The budget shares of the Translog model (Christensen, Jorgenson and

Lau, 1975) can be written as

Bio + i Bij In (%]
w; = =1
2o+ 2 2. Byln [?J

i=1 j=1

; Bij = Bji ; Z Bio=—1. [40]
i=1
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In the two—good case of [40], the price and income elasticities of good 1 are

1[I ; 41]

Eu-"l'*'B ( W, )511‘512 ; [
1 1 - W
E12=B ( wi JB]Z— Byn| ; and [42]
1 1 - Wi
Ey=1- D ( ” ](Bu +B12) — B12— B [43]
where

D=~1+(B; +B12) In [%J*’(ﬁlz'*'ﬂzz) In [BIZ'] . [44]

The price and income elasticities in [41] to [43] sum to zero because of
homogeneity. These can be combined with [34] to obtain the HOPE equation

I 1
511=—§ {(1—W1) wi- 5 By (1=wp)? =2 By (1 - wp) wy +[322W%]} . [45]
i

In evaluating [45] when both goods are bought, note that s;; assumes that
utility is held constant, by definition of a Hicksian demand function. This
means that I must be adjusted in the opposite direction to the change in p; in
order to return to the original indifference curve. Given the price of the
other good, p,, it follows that D in [44] can switch signs as p; and I change from
the fact that D is a function of the logarithmn of the ratio of prices to income.
For strictly positive prices and income, this ratio varies from less than to
greater than one so that the logarithmn of this ratio changes from negative to
positive, thus changing the sign of D and of si; as well. To prevent this
change in sign from happening, it is necessary that

Bi1+Bi2=0 and Py+Pyp=0. [46]
Hence, the Translog HOPE equation in [45] becomes
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S = plz [(1—wy) wy+ Byl [47]
1

where B;; cannot be zero when w, is positive. This shows that [46] while
necessary, is not sufficient for [47] to be non—positive. Notice that [46] means
that By, is not equal to zero since B;; cannot be zero. This presumes an
interior solution in which 1 > w; > 0. In this case, the necessary and sufficient
condition is

Bi1=Bp=-P12>0 . [48]
The sufficiency of [48] is obvious from [47] Necessity follows from the fact
that if B;; < 0 then w; can always be made sufficiently close to zero such that
[47] yields s;; > 0, which is a contradiction.

However, it follows from [48] that [41] to [43] yield

Bi1 -Bi2
Ei1=—-1-—<-1 ; Ejp»= >0 ; nd E; =1. 4
n= w, 12 " a 1 [49]

These results mean that good 1 cannot be price—-inelastic, cannot be a gross
complement and must have a unitary income elasticity. This applies to good
2 as well, i. e, Eyy< -1, E3; >0 and E;;= 1. Thus, the implied underlying
utility function must be homothetic. These results indicate that a globally

well-behaved translog rules out a lot of realistic cases.
III - (C) The AIDS Model

The budget shares of the “almost ideal demand system” (AIDS) (Deaton

and Muellbauer, 1980a, 1980b) can be written as

n
I
Wi = 8i + Z Yl] In p] + 7T In [FJ ; [50]

j=1

where P is a price index defined by
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N =

n n
InP=38+ Y, 8&Inp+ Y yinpInp, . 511

n
i=1 i=1 j=1

The parameter restrictions in [50] and [51] are that for all j,

n

n n n
Zai:l ; Zti:o ; Z'Yij-’:o ; ZYij=0 ;o Y=Y . [52]
i=1 i=1 i=1

i=1
The first three restrictions in [52] are for additivity; the fourth is for
homogeneity; and the fifth is for symmetry.

For two goods, the AIDS model yields for good 1 the following price and

income elasticities,14

1 1
Ejj=—-1+— - -7 In|— ; 53
1 W, {Yu T [Wl T n(P)]} (53]
E =L [ 1 I ] ; d [54]
12 W, 2= T W2~ T H(P) ; an X
T
Ey=1+— . [55]
Wi

Given the parameter restrictions in [52], the sum of these elasticities equals
zero as required by homogeneity. Substituting [53] and [54] into the expression
for HOPE in [34] gives
I 2 I
su=-—|1-w)w;-¥; -1 In (‘) - [56]
P
P1
The above results are defined if good 1 is bought, so that vy, ¥1; and 1, are not
equal to zero at the same time. With only two goods, the parameter
restrictions imply that y;; == ¥12, 51 == Y22, Y12= Y21, and 1, = - 1, By
implication, both goods must be bought in which case 1 > w; > 0. Thus, ¥;; and

7; cannot both be zero, although one of these parameters could be zero.

MFor an analysis of the relationships between the above AIDS elasticities and the AIDS
elasticities obtained if [51] is replaced by a Stone price index refer to Green and Alston, 1990.
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From [56], the necessary and sufficient condition for s;; <0 is
I
[(l —w)) Wy =71 - T3 In (F J] 20 [567]

for all 1 > wy > 0. However, it is clear that this condition cannot be satisfied
unless T; = 0 since the sign of the logarithmn of the ratio of I to P will switch
from positive, negative or zero for all values of I and P. Therefore, although
not sufficient, it is necessary that 1; = 1, = 0. In this case, ¥3; = — ¥;2 cannot be
zero since, as previously observed, both goods must be bought. It follows that
for a globally well-behaved AIDS model with two goods, the necessary and
sufficient conditions are

11=1=0 and Y;;=-Y%,<0. [58]
Given 1, = 0, the sufficiency of y;; < 0 is obvious from [57]. Since y;; cannot be
zero, the contrary case is that yy; > 0. In this case, w; can be made sufficiently
close to 1 such that [57] is contradicted. This establishes necessity.

It follows from [58] that the AIDS price and income elasticities for good 1
in [53] to [55] become

T T2
Ei1=—-1+—<-1 ; Ep=—>0 ; d E;=1.
11 W, 2= an 1 [59]

These restrictions on the AIDS elasticities are similar to the restrictions on the
elasticities of a globally well-behaved Translog shown in [49]. However, since
both goods must be bought, [59] applies to good 2 as well, i. e, Ejp <—1,Ey >0
and Ey; = 1. These results rule out a lot of realistic cases because the goods
cannot be price—inelastic, cannot be gross complements and must have
unitary income elasticities. The latter implies that the underlying preferences

must be homothetic in a globally well-behaved AIDS model.
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III — (D) The Generalized Leontief Consumer Demand System

It is shown in Christensen and Caves (1980) and in Barnett and Lee (1985)

that the budget share in a generalized Leontief model is

1 1
2

p), g, (m) 5]2
Si(T/ +§”"(1] (1

wi= = [60]

" o S (ml
(i) -2 2] )

i=1j=1

1
2

where 1 is income; p; and p; are prices; §; and v;; are parameters. It is assumed

that v;; = v;;. For the case of two goods, let

R1=-Ii;l ; R2=-I:2— ; Sl=R1% ; SZ=R2% ; [61]
A=8;S5+mMm R +%m25S, ; and [62]
Ary=8,S5+1H Ry +¥15,5 5, . [63]
It follows from the above that the share of good 1 can be expressed as
A
wi=g B=A;+ A, [64]

so that the price and income elasticities are

1-w, 1-2w,
En=-1+(,5+2v;, Ry 2w, B +12515; 2w B ; [65]
E 5,5, (22 %11 (5.5, 4279, Ry) - d [66
= + o ;
12=%12 9192 2w, B 8 5,+27v 23gE an ]
I—Wl 1_’2W1
Ey=1-0,5+2m Ry m -1M2515; wi B
1
+(5252+2722R2)ﬁ : [67]
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The sum of the above elasticities equals zero because of homogeneity.
By substituting [65] and [66] into [34] the HOPE equation in the

generalized Leontief model can be written as

1 1-wy)?
511=——_2 (1—W1)W1’(8151+2'Y11R1)_‘2—‘B_-
P1
(1-2w) wi
-7125152—713—_-(5252‘*'2‘{221{2);3 : [68]

In evaluating [68] it is enlightening to note from [61] to [64] that the
requirement that w; is non-negative does not impose specific signs on the
parameters. Consider the case where p; = p, = I. In this case, it is only
necessary that the sign of (8; + ¥y + ¥;2) be the same as tha sign of (8, + v + ¥2)-
Given a set of parameter values that satisfy this condition, it is possible in [68]
for s;; to switch signs as w; varies in the interval 1 2w, 2 0 when p;, p, and I
change.l> This implies that without additional parameter restrictions HOPE
is not UNP in a two—good generalized Leontief model.

Homothetic preferences and zero Hicksian substitutability is a clear cut
case when the generalized Leontief is globally well-behaved. To show this,
let 8; =8, =0. Thus, income can be factored out of the share equation, making
shares invariant with respect to income as implied by homotheticity. It can be
verified that in the homothetic generalized Leontief, the own-price and

cross—price elasticities are

15For example, let 8; = 8, = 0.025, ¥;; = Y55 = 0.50 and ;5 = - 0.01. Also, let p, increase
from 1 to 25 as p, decreases from 25 to 1. As this happens, p; and p, will equal each other at 13.
Since the parameters are equal for the two goods, then when p; = p, = 13, the share w; = 0.50
when = 13. Keeping I = 13 as p; and p, change above, it can be verified that w, increases from
0.021883 to 0.997506. Correspondingly, s;; will increase from - 0.01297 (whenp, = 1, p, = 25 and
= 13) to 0.0 and then to 0.000007 before it falls to 0.000005 (when p; =25, p, = 1and I = 13).
Qualitatively, these results can be obtained if the level of I is also variable. In this example,
s1; in [68] clearly switches signs with 1 > w; > 0, thus showing that the generalized Leontief is
not globally well-behaved.
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-

1 P1 l—wl) (p]f(l—zwl)
Ei=—1+— - + — ; and [69]
11 G [711 (Pz)( Wy Y12 - 2w,

1 pPi(1-w P1 1-2w
E12=—-C_;|:711[¥>2_)[ w11)+712(}—2) ( ZWIIJ] [70]

where 1 1

F P1 P1 i P1 P1 ’
Le v (Pz] 12 [pZJ = P2 2 P2 2

Combining [69] [70] and [34] yields the HOPE equation in the homothetic

Nl

generalized Leontief,

1
I 1 P1 1-2wi\(p1)?
s1=~—={(1-w)wy——= (1—W)[—)+ ( )[_)] -[72]
11 p%{ 1)W1 G[Yll 1 P T2 > ~

In evaluating [72], consider the case where p,; = p; in which non—negativity of

wj implies from [71] that the sign of (131 + Y1) be the same as the sign of (1, +
Y12)- Thus, suppose ¥y, is positive. Then, no matter what the sign of vy, , it is
possible that s;; in [72] will switch signs as w; changes between 1 and 0. This
shows that homotheticity is not sufficient for HOPE to be UNP in a
generalized Leontief model.

However, homothetic preferences (8; = 8, = 0) and a zero cross—price

parameter (y;, = 0) are sufficient since it follows then from [71] and [72] that

I
S11=— ;3 [(1 - Wl) W1 — (1 - Wl) W]} =0 for all Wji. [73]
1

The uniformly zero value of s;; in [73] implies from [27] that s1,=0, i. e, zero
Hicksian substitutability.16 For this result, homotheticity and a zero
cross—price parameter are also necessary since, otherwise, [73] cannot be
uniformly zero.

Finally, from [69] to [71], it follows that since y;, =0,

16n this special case, the HSSM is a null matrix, which is trivially negative
semi-~definite because it has zero eigenvalues.
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E =-w;>-1 ; Ep=-(1-w)<0 ; E;=1. [74]
Since these hold for good 2 as well, then in a globally well-behaved
generalized Leontief characterized by homothetic preferences and zero
Hicksian substitutability, the demands for goods are inelastic and the goods

are (gross) complements with unitary income elasticities.!?
III — (E) The Minflex Laurent Consumer Demand System

From Barnett and Lee (1985), the budget share in a minflex Laurent

demand system is

) - —
a; Z;+ a; v+ Z aijzizj+zbi2jzizj

]]#l ]]#l [75]
a z+2akkvk+zz 2zz+ Y, ) bz
Gk €§ G, k) €S
where, by definition,18
1
a'=(a1,...,an) ;o z=(29,..2,) Zi=viE ; 2i=zi‘1 ;

p'=(p1,...,pn) ;o X=Xg, .0 Xg) I=p’x ; and vy=— .

The coefficients denoted by a and b define the demand parameters, where a;;

and b;; are symmetric, i. e., a;;= a;; and b;; = b;. Given only two goods, let
M;=a;2z;+a,;V;+a%2z;2,+b% 2,2, ; and [76]
M, =a,2,+ay, Vo +a3 2,2, +b3 2, Z; . [77]

Therefore, the budget share of good 1 is

7Gross substitutability or complementarity is a Marshallian concept allowing utility to
change as price changes, as opposed to net substitutability or complementarity whch is
Hicksian, thus requiring utility to be fixed.

18Barnett and Lee denoted the budget share by s, which is replaced by w; in [71] for
consistency with earlier notation for the budget share used throughout this paper. For this
reason, the terms in Barnett and Lee’s paper denoted originally by w; were replaced above by
z;. Moreover, m and q were replaced by I and x to denote income and quantity, respectively. The
rest of the notation are the same as in Barnett and Lee’s paper.
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M
w1=ﬁ1 ;. N=M;+M, [78]

and the elasticities with respect to prices and income are

1-wq 5 9= = 1-2w,

Ej;=-1+(a;2,+2a;;vp) 2wiN +(afy 2; 2, - b% 2, 2,) —2—‘;1—1\7 ; [79]
Eph=-(@y,2,+2a v)———1 +(azz -bz Z,) __1-—2w1 ; and [80]
125 22 2V 5 122124270122, 2 2w,N |’
E =1-( 2 17w )¢ 2 !
11 a;z;+2a5;vy) 2w, N a2 a22V2)2N

5 b2 3 2 1-2w, 81

- Z:2,—-b% 2z, 2 .
(@12212,-b12 2, 2 wiN

It can be verified that the price and income elasticities above sum to zero.
That is, the minflex Laurent demand system satisfies homogeneity.
Combining [79] and [80] with [34] gives the HOPE equation in the minflex

Laurent mode],

I . (1-2wy)?
sn=-— {(1 —wy) Wi - (@} 212,-bh 2 DN
P1
2 a- WI)Z ( 2 W12 82
- + —_—— + — .
(a;21+2 a4 vy) N a;zy+2ax vy TN [82]

A parallel argument to the evaluation of [68] may be followed in
evaluating [82] In this case where p; = p; = I, the non-negativity of w;
requires from [76] to [78] that the sign of (a; +a;; +a% +b%) be the same as the
sign of (a; +ay + a3 + b%l). However, it is possible for some parameter values

satisfying this condition that s;; in [82] will switch signs as w; varies in the
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interval 1 2 w; 2 0 when p;, p; and I change.’® That is, in the absence of more
parameter restrictions, the minflex Laurent is not globally well-behaved.
However, the minflex Laurent can be globally well-behaved by first
making it homothetic. For this, it is necessary that a; =a; = b%2=b§1 = 0 so that
income, I, can be factored out of the share equation. The results are similar to
those for the homothetic generalized Leontief. In fact, the results in [69] to [72]
will apply identically to the minflex Laurent simply by replacing y;; by a;; and
Y12 by a%. But by the same argument, homotheticity would not be sufficent
for HOPE to be UNP. Additionally, it necessary that the cross—price parameter
be zero, i. e., a% = 0. Thus, the uniformly zero value of s;; in [73] as well the
results on elasticities in [74] will apply identically to the two models. That is,
in a globally well-behaved minflex Laurent characterized by homothetic
preferences and zero Hicksian substitutability, the demands for the two—goods
are own—price inelastic and these goods are (gross) complements with unitary

income elasticities.

IV. Negative Semi-Definiteness of the HSSM With More Than Two Goods

In the two—good model, HOPE being UNP is equivalent to HSSM being
GNSD. However, this equivalence does not generalize to cases where there
are more than two goods. The reason is that HSSM of order greater than 2
that is symmetric, singular and has non—positive diagonal elements is not
necessarily negative semi-definite because the eigenvalues are not necessarily
all non-positive. To show this, suppose there are three goods. Hence, it
follows from [30] and [31] by similar reasoning that the characteristic equation

of HSSM is

19An example similar to that in footnote 15 for the generalized Leontief can be
constructed to show that the minflex Laurent is also not globally well-behaved.
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-3 +s; l2+(5122+sf3+5223—sn S92 —S11533—S2S33)A=0 . [83]
From [83], one of the eigenvalues must be zero. However, the other two are
not necessarily non-positive. The reason is that the coefficient of A in the
third term could be of any sign, given that s;;, 55 and s3; are all non—positive
diagonal elements. While it remains necessary that HOPE is non-positive,
this sign condition is not anymore sufficient for HSSM to be negative
semi—definite if there are more than two goods.20

The difficulty of insuring that HSSM is negative semi—definite could be
appreciated once it is realized that analytic solutions to the eigenvalues may
not exist for matrices of higher orders. For example, if there are five goods,
then the characteristic equation of SM yields a quintic (fifth order) polynomial
function of the eigenvalue, A. But it has been proved by the mathematician
Galois that a quintic polynomial has no analytic solution in the sense that
there cannot exist a formula for its eigenvalues (Strang, 1980). In this case, the
eigenvalues can only be computed numerically.2!

Moreover, the requirement that HSSM be GNSD is complicated by the
fact that each element of the HSSM is a function of parameters and
expenditure shares. As illustrated by the HOPE equations in the two—good
case, the functional relation could only be more complicated with more goods
such that it may not be as straightforward compared to the two—good case to
impose parameter restrictions to insure that HSSM is GNSD. Furthermore,

the numerical procedures for insuring this result require that the parameters

20Note that HOPE is a diagonal element of the HSSM and must, therefore, be
non-positive in order for HSSM to be negative semi-definite.

21Consider that imposing negative semi-definiteness on a matrix implies imposing
restrictions to insure that all eigenvalues are non-positive. Consider also that eigenvalues are
the roots of a polynomial function defined by the characteristic equation of a matrix. However,
as noted in Strang (1980), there does not exist an analytic solution to the roots of a quintic or
fifth order polynomial or of polynomials of higher orders. In such cases, the eigenvalues can
only be computed numerically. This is in contrast to the analytical solution of the eigenvalues
of a 2 x 2 matrix by the quadratic formula.
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can be decoupled from the expenditure shares so that negative
semi—definiteness can be imposed on the parameter matrix. Although it is
not obvious from the HOPE equations how this could be done for the HSSM ,
this procedure was applied by Diewert and Wales (1987) to the Hessian matrix
(which is conceptually identical to the HSSM) of cost functions. The
procedure first requires decomposing the quadratic form of the Hessian
(divided by the total cost) into the sum of the matrix of parameters and a
negative semi-definite matrix formed from the vector of expenditure shares.
Once done, negative semi—definiteness can be imposed numerically on the
matrix of parameters based on techniques by Wiley, Schmidt and Bramble
(1973) and by Jorgenson and Fraumeni (1981). However, even if possible, this
could result in the loss of the flexibility property of the demand system.22
With this loss, the model would not be capable of achieving the full range of
price and income elasticities at any particular data point, as shown by the

results in the two—-good case.

VI. Conclusion

It is the view of this paper that it may be desirable simply to leave
negative semi-definiteness an empirical issue for the following reasons. One
is founded on the unrealistic consequences on the price and income
elasticities demonstrated by the analytical results in the two-good case. The
other is that it gets extremely difficult to impose negative semi-definiteness a
priori as the number of goods increases and it becomes analytically impossible

if there are five or more goods. In the latter case, numerical procedures

ZFor example, Diewert and Wales pointed out that the Jorgenson-Fraumeni procedure
destroyed the flexibility property of the translog cost function.
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require that the non~negative vector of expenditure shares and the matrix of
parameters can be separated so that negative semi-definiteness can be
imposed on this matrix. Although this may be possible, chances are that this
will impair the flexibility properties of the demand system. The likelihood of
this occurring for Marshallian demand systems in the general case is

evidenced by the findings of this paper in the case of two goods.

In suggesting that negative semi-definiteness be resolved empirically,
this paper nevertheless considers it a minimal property that the estimated
model satisfy this property at every data point of the sample of observations.
Considering that the negative semi-definiteness of the HSSM is a necessary
and sufficient condition for concavity of the expenditure function, then an
empirically estimated HSSM that is negative semi-definite at every data point
is prima facie evidence that the estimated demand model embodies
expenditure minimization or, by duality, also utility maximization, given the
other global properties of additivity, homogeneity and symmetry. This
validates the model for practical applications, for example, in welfare change
measurement and in forecasting. It should be obvious that a demand system
is invalid as a tool for welfare change measurement unless it embodies
utility-maximizing behavior. Moreover, since inferences in econometrics are
based on the properties of the model at every data point, the estimated model
is not reliable for forecasting future demand predicated on utility-maximizing
behavior unless the model captures this behavior at every point in the

sample of past observations.
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