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ABSTRACT

Models of optimal depletion in which marginal extraction cost
rises with depletion, although more realistic than constant cost
models, appear seldom in the literature. A reasonable explanation
for this is that, in the absence of considerable simplifying
assumptions, problems of this nature are difficult, if not
impossible, to solve analytically.

If the cost of extraction is assumed to be homogeneous of
degree one in output and remaining reserves, and if prices are
assumed parametric, many of the difficulties can be resolved. The
solution to a discrete-time, finite horizon version of such a
problem is obtained through dynamic programming, and illustrated
graphically. Analysis of the solution indicates that the reduction
of future stock value which results from cost increases can be
interpreted as a different type of user cost, or opportunity cost.
The "profit" earned in each period is shown to be just sufficient
to compensate for the reduction in the value of the mineral asset
caused by its extraction activities. The operation of an "r-per-

cent rule™ at the Ievel of the individual deposit is demonstrated.

Comparative analysis is done, demonstrating the effects on the
optimal extraction path of single- and multi-period price changes.
The results highlight the fact that, while reserves defined in a
sense, dependent on prices and cost, are endogenous. A change in
the prices received by the firm alters not only the pattern of
production, but also the amount of stock which is ultimately
recovered.



In a recent paper, Cairns (1990) suggested that there are
really two branches in the literature on non-renewable resources.
In contrast to "the more macro preoccupations of the Hotelling
tradition” he suggested that micro considerations seem to have been
considered of minor importance. This may explain why some of the
interesting microeconomic aspects of non-renewable resource
problems, such as extraction costs, are often oversimplified.

Models of extraction from a deposit the quality of which
degrades or declines with depletion have been rare. This may be
due to economists’ quest for theoretical results which apply in the
most general of cases. This search may have been discouraged by
the conclusion of Smith (1974). When discussing a problem in which
"recovery becomes more costly...as mines and oil wells get deeper",
he concluded, somewhat pessimistically (an ironic mood in view of
his title), that "“an exact characterization of such solution
possibilities does not appear to be easily specified."®

The few attempts which have been made to deal with extraction
cost functions of this type have been confined to statements of
optimality conditions. Levhari and Liviatan (19%77) and Pindyck
(1978) have derived medifications to Hotelling’s rule which

-describe the equation of the price path when costs are stock-
dependent. Fisher (1981) presented a similar result; closer to a
microeconomic treatment of the problem in that it focusses on the
dynamics of the value of reserves, rather than on those of price.

Methods for obtaining concrete solutions to this type of
problem have been more elusive. A condition describing an optimal
solution, valuable as it might be, is quite a different thing from
the solution itself. Optimal control, or the maximum principle,
can provide no more than these necessary conditions. In order to
generate actual solutions, we are forced to use other techniques
more suited to the task.

If the problem is framed in discrete time, and if it is
characterized by a finite horizon, it is reasonable to attempt to
find a solution by means of dynamic programming. When we attempt
this, the nature of the difficulties caused by the inclusion of
loosely-specified stock-dependent cost functions immediately
becomes clear. The usual first order condition characterizing
interior values of optimal quantities, familiar to any student of
introductory economics, requires that marginal cost equal marginal
net revenue. When cost depends on stock, however, the position of
the marginal cost curve in any given period cannot be determined
without reference to the amount of remaining reserves, which, in
turn, requires knowledge of the quantities optimally extracted in
earlier periods. Unfortunately, this is unknown, indeed, it is
precisely what the economic analyst wishes to find. He is then
required to solve for the entire production profile simultaneocusly,
using some sort of numerical optimization procedure.



Although such solutions can now be obtained easily and
cheaply, they provide 1little insight into the qualitative
characteristics of the problems solved thereby. Machine-generated
answers provide little or no information about why the solution is
what it is, or how sensitive it is to changes in parameters, such
as prices or the discount rate. Determining the effects on optimal
production programs of such changes through repeated computation of
numerical solutions is clumsy and time-consuming at best.

What is needed is a way of modelling stock dependent costs
which captures the main features of the problem, yet is easily
solved and analyzed. 1In this paper, such a model is outlined,
solved, and discussed.

The simplest type of cost function which can be used to
capture the effect of stock dependence has only two arguments,
current period output and some measure of the amount of stock
remaining. For our purposes, such a cost function will suffice if
it allows us to specify exactly how marginal cost rises as the
stock 1s depleted.

It should be noted that the arguments of this cost function
are not completely independent. The level of stock available in a
given period depends on the decision made in the previous period
concerning how much of the stock to extract. An increase in
current period extraction, then, has two consequences. It raises
costs in the current period, and it shifts the cost curve in future
periods upwards.

The cost function used in this paper is assumed to be
homogeneous of degree one in the two arguments, which implies that
these two consequences of extraction are linked in a specific way.
This restriction permits the derivation of a variant of the cost
function which has as its only argument the proportlon of available
stock extracted in each period. The benefits of u51ng such a form
are several. First, the modified cost function is fixed in place

for eaeh——peried———a%%ewtﬁg——the——prebiem——to——be——soived——HSIng————————%

conventional dynamic programming techniques. Second, because cost
and revenue are functions of a proportion, rather than an absolute
guantity, the diagrams illustrating optimal solutions 1lend
themselves easily to interpretation in terms of values per unit of

.stock.... Third,.the relation between the  current period level - of -

extraction and the change in cost in the subsequent period can be
specified exactly, illustrating clearly the operation of an r-per-
cent rule at the level of the individual deposit. Fourth, since
the functions defining the optimal proportion to extract are
functions of price and the discount rate, they may be used to
ascertain the effects of changes in these parameters on the optimal
extraction path.

The paper is divided into three parts. First, the model is
stated and solved. The solution is shown both algebraically and
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graphically. Second, the connection between current period
extraction and future declines in reserve values due to increased
cost is discussed, and the modified r-per-cent rule is given
intuitive interpretation. Third, the model is used to analyze the
effects of single~ and multi-period changes in prices on the entire
extraction path. This reveals that, while the physical size of
stock remains fixed, the economic size of the reserve is, in fact,
endogenous to the model, dependent on output price and cost
conditions.

I. THE MODEL

The general form of the pure depletion problem is:

max II(e,,P,,...,P.,,8)
{Yt} 1 2 T-1

T-1

= Y pY{R(Y,) -C(Y..8,)}

t=0

Subject to:
Sc1= 8¢-Y,., 8, given

where R is total revenue, C is total cost, Y and S represent
production and remaining stock respectively, and p = (1+8)"!, where
8 is the rate of discount used.

To guarantee the existence of a maximum, we also require:
(a) Ry(¥,) >0
(b} Ry (Y, <0,
(c) C,(¥.,8,) >0,
(d) Cu(Y,.S8,) 20,
() Cg(¥.,8,) 0.

Stock-dependent costs imply that inequality (e) is strict.



If the marginal cost of extraction, as well as the total cost,
increases as the reserve declines, we also have

(£) Cyg(¥,.S,) <O

Let us now impose the restriction that the cost function is
homogeneous of degree one in Y and S for any constant set of factor
prices. (Since the firm is assumed to own the mineral reserve, the
sunk cost of its acquisition is not relevant for extractlon
decisions.) The cost function can be written as the product of a
function of the proportion of remalnlng stock to be extracted and
the absolute size of this remaining stock.! To see this, we
define, for any period t,

e = YeSe

Using the properties of linear homogeneous functions, we have

- Yt -
_c(Yt,S ) c( St,l] (E’] = cly,)

Therefore, we may write
C(Y.,8.) =c(y.) 8,

The objective function of a price taking firm facing such
costs may now be written as

max II(p,,P,,...,P,.,8)
{Yt}

-1
§ pt{[Pth"c (Yt)lst}

The solution is obtained through dynamic programming,
proceeding by backward induction. We begin by finding ¥r-1, the

! The proposition that such a function might reasonably be

applied to an empirical situation can be illustrated with a Cobb-
Douglas-type cost function of the form

c{Y.,8,) =AY{5:™, A>0, a>l

The parameter o« describes both the degree to which contemporaneous
cost increases with extraction and the extent to which future costs.
are increased by current production.




proportion of stock to be extracted which maximizes the profit on
each unit remaining until the final production period:

MAX Py y¥r-1~C(¥r,)
{¥z-1}

The first order necessary condition for an interior maximum is
the familiar equating of marginal revenue and marginal cost, where
these are functions of y, the proportion extracted:

Py -CI(YT—I) =0

Because the final period per-unit profit function is concave
in y;,, this condition is sufficient to define an optimal value of
¥ provided Pr; is less than c’(1). If P, exceeds c’ (1), we have
a corner solution, and the optimal y,., will be one.

Denoting the optimal value of y by ¥*, profit per unit of
stock remaining in the final period is

. Y72
L o
$ry = S0 _{ {PT-l C (Z)}dZ

= P',;'-:L'Y;-l ~¢ (Y1)

These results are illustrated on the following page. In
Figure 1 we see how the optimal ¥ is determined when Py.; is less
than ¢’(1). The optimal amount to extract is that proportion of

remaining reserves at which the gain from increasing the proportion
(the price of an assumed infinitely divisible unit) is just equal
to the marginal cost of doing so. The value to the firm of each
unit remaining at the last period (¢,,) is shown by the area below
the marginal revenue curve (or the price 1line) and above the
marginal cost curve (c’(¥)). This can be interpreted as the
producer’s surplus per unit of remaining reserves.

We move next to the determination of 4;.,. This problem is
slightly more complicated since each unit left in situ in T-2 has
value to the firm, equal to the discounted value of ¢,.

The objective function for period T-2 is:

MAX [(PrpYr2=C(¥13)1S;2+pdr 8o,
{rz-2)



c'(1) 4

Figure 1




The stock available in T-1 is equal to the proportion of T-2 stock
which is not extracted in T-2. Therefore, we may rewrite the
objective function as '

[{Pro¥p,-c (Yr-2) 1Sr,+p $ry (1-Y2;) Spop

Dividing by S8;., angd rearranging gives

(P'r—z 'pd"r-q) Yr2~C (7'1'—2) +p 4)'1'-1

The first order condition for an interior solution? is
(Prz=Pdry)-c'(y1.) =0
which is sufficient to define the optimal value of y,.,.
The firm’s total profit in period T-2 is

Tpp = {PT-zY';'uz =c/ (¥g-2) } Spop = Pp5,

2 In this period (as in all periods except the last), it is

possible that the optimal value of ¥ 1is zero, even when price
exceeds marginal cost at some extraction levels. Units will be
extracted in the current period only if the gain from doing so is
greater than the discounted value of heolding them until the next
period. There will be no extraction in period T-2 if

Pro < P,

Therefore, zero extraction in one or more periods does not in
itself imply that the firm has abandoned the mineral deposit.
Rather, it may indicate that expected future profit exceeds any
possible current period gain from extraction, inducing the firm to
wait.

Similarly, if the price in the current period is extremely
high, greater profit may be earned by extracting the entire reserve
in the current period than by leaving any units in the ground for
the future. Algebraically, the condition under which the optimal
proportion to extract equals one is

Pro=Pdr, 2 /(1)



The current value of total reserves available in T-2 is the
sum of current period profit and the value of the firm’s asset in
the form of in situ reserves held for the following periocd (or the
present value of profit to be earned on those reserves):

Value of 8., = ¢ .8, ,+pPr_ Sp,
= d)'r-zs'r-z +p d}T“J. (1 _-'Y';'—Z) Sp-z
= [‘b-r-z +p 4)'1‘-1 (1 “Y;-a) ]ST-Z

The expression in square brackets defines the firm’s internal value
of each unit of reserves available in T-2.

By expanding ¢;,, and rearranging, this may also be written as
the sum of the value of all units left until T-1 plus the "surplus"
gained from extracting a portion in T-2: .

Gr o+ Ppdry (1-Yr2) = PpoYr2-C{¥12) +Ppdry (1-y7_,)
= [(Ppy=pdr_y) Yr-z—Clyra)] + pby_.

The user cost in period T-3 is simply this internal value
discounted one period. We will denote by 6, the user cost in
period t. This is one convention which could have been adopted;
the other is to represent by a symbol (say i,) the internal value
of a unit of reserves in period t, in which case the user cost in
period t would be pi..

The user cost profile is computed backwards, using the
requirement that any units not extracted in the final production
period have no value to the firm. We have

60y = 0

efr-z = pd)T-l
= p [$gy *+ (1-97-1) 0,,]

= pdr o +p2(1-yr ) (T-yr )by
P by + (1-v1-2)6,,] .

. I

P [drges + (1-¥1opea) By g, ]

k=1

3-1
; de)-r-k&j H (1"7"_:'-k+i) ]
-] 1w]




The optimal proportion of reserves to extract in each period

satisfies
R : i1 - -
Prvk";;deJT—bj H (1=Yrx.s) || =€/ (Y2)
= (Pry=85.) = /(i)

The optimal values of ¥,, ¢, and 6., for O0<tsT-2 are
illustrated in Figure 2. The horizontal axis is again the unit
interval, within which the optimal value of ¥, must lie. The
quantity 6, is represented by the vertical distance between P, and
the price net of user cost, [P,-6,]. The shaded area in total
represents the internal value of resertes held at the beginning of
period t. While this is shown as a two- dimensional area in the
figure representing period t, the same quantity, adjusted by the
discount factor, is represented in the corresponding figure for
pPeriod t-1 by a one-dimensional vertical distance.

The internal value of each unit of reserves, the sum of all
shaded areas, can be divided in two ways. The two shaded areas to
the left of y* add to $., the firm’s net revenue in period t. The
remaining shaded area represents 0.(1-y*), the current period value
of that proportion of remaining reserves left in the ground.
Alternatively, (P.-6.)-c(y.), or the "surplus", can be represented
by the area shaded with diamonds, and 6,, the value of each unit
left in situ, defined by the rectangle with height P,-(P,-8,) and
width one.

Having determined the optimal proportions of reserves to be
extracted, the optimal quantities themselves may then be calculated
as ,

* * *
Yok = YreSrx
where

Y;‘-k = f(PT—k' PT-k*l’ ey PT—k-lf PT-l‘ 6: [C (Y)} )

*

Stk = F(Sas Yo (Vo ¥1 () s oo o ¥hges ()

T-k-1

8, H {1-y5 ()



The total discounted profit earned from the entire extraction
profile can be expressed in two ways. First, it is equal to the
sum of each period’s income, suitably discounted, where income each
period is expressed as $:S,, where S, in turn is a fraction of g,
the original reserve:

I = 6.8, +pd, (1-3) S, + p, (1-y2) (1-y]) 8, +.
' )
v+ pTig {1-y) [s
P T-1 ;l Y1) [Sg

T=-1

i-1
= S, ¢o+§ p’(bj[g (1*71‘)]

Total profit is more easily computed using the second
expression, since it is simply the sum of two variables the optimal
values of which were determined in calculating the series of Yi's
for the problem. Use of the first expression becomes progressively
more cumbersome as T, the length of the horizon, increases.

ANALYSIS AND DISCUSSION

The firm which owns, or has rights to, a stock of a mineral
the quality of which declines or degragd i oCeeds

faces a different sort of problem from that of the firm whose asset
in the form of inventory is homogeneous. The firm facing stock-
dependent costs must take into consideration the effects of its
actions in the current period not only on current period profit,

but also on future period costs. . . T TTUTTE PR .

By choosing to extract a unit in the current period, the firm
is, in some sense, consuming part of the value of its mineral
asset. That reduction in value must be compensated for, if the
firm’s wealth is to be preserved.

We will show that the gquantity which would normally be
considered as "surplus" or profit is really no such thing. Rather,
it represents the amount of the mineral asset value which is




Py—6;

Figure 2

c'(y)




transformed through extraction and sales into césh, or some other
form of asset.

In showing this, we may begin by noting that one of the
components ‘of current period net revenue, or ¢$,, represents the
opportunity cost of the units extracted. This is equal to ¥.6,.
It is generally recognized that this is not profit in the usual
sense, but rather compensation to the firm for the asset value lost
when units are extracted in the current period. However, the
remainder of net revenue, what we have called the current period
"surplus", is not profit either. It also represents compensation
to the firm for the reduction in value of the deposit.

This can be shown using the optimality condition for
extraction under stock dependent costs, derived from optimizing the
relevant current-value Hamiltonian. For the model used in this
paper, the relevant expression is

H=PY, -C(Y..8,) -8.Y,

From the first order conditions for interior solutions, we have
(Pt —et) =CY (th St) ’
0.-(1+8)0,._; = Cz(Y,..8,)

Rearranging the second expression yields
0.8, = 80, +Ca (¥, 8,)
This condition says that the change in asset value is equal to
the appreciation of the previous period’s value, minus the loss

from the induced cost increase (recall that cost is decreasing in
stock size).

To show that this reduction in value is exactly offset by the

current period "surplus"™, we will exploit another characteristic of
linear homogeneous functions. = The relationships between the
partial derivatives of the original cost function C(Y,,S.) and the
derivative of the modified function c(y.) are

i BC(Y s 8)

dc(y,,s,)
—m - ~eld mveellvy)
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Substituting this second expression into the condition above yields
6.-8., = 88, + [cly,) -y e/ (y)]

If the extraction path is optimal, the other optimality condition
must also be satisfied:

P.-0.=c’(y)
Then, along an optimal path, we have
B,-0,., =86, +[c(yl) - (P -6,)yi]
=88, - [(P,-8)yi-c(yD)]

The last term is the definition of the current period
"surplus".?®

- This indicates that there may be yet another interpretation of
the marginal revenue-marginal cost equality condition for
optimality. At the point at which price less user cost equals
c’(y¥), the loss in future asset value is just equal to the current
period gain.

This would not be true at any other value of y, the proportion
to be extracted. Consider first the result of "over- extraction™,
of extracting a proportion greater than that dictated by the
marginal net revenue-marginal cost equality. Should the firm
choose to do that, it will degrade the quality of the deposit below
the level required to provide the future net benefits computed in
the original dynamic programming solution. The increase in current
period surplus from doing so will necessarily be less than the loss
in future stock value.

, ® It is a short step from this equation of motion of asset
value to the equation defining the movement of user cost shown in
the last section. Rearranging the expression above, we have

(1+6)0,., = (P,-8,) yi-c(ye) + 8,
= Py¥e-cye) +(1-v¢) 6,

= ¢+ (1-v) 6,

Dividing through by (1+8) yields the equation of motion of user
cost.
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Figure 3 illustrates the loss from over-extraction in a given
period. The optimal proportion to extract is y*, and the actual
extraction level is y’. The 1lightly shaded area represents the
increase in current period revenue from increasing extraction from
¥* to ¥’. That area, plus the heavily-shaded triangle, together
represent the 1loss of asset value, or future profits, from
extracting the larger amount in the current period. The darkly-
shaded area corresponds to the amount of the reduction in future
period value which is not compensated for by current period net
revenue. Therefore, it represents pure loss, which cannot be
recovered at any point later in the production program.

Now, consider the situation if the firm chooses to extract
less than the computed optimal proportion. Here, the firm’s loss
is due not to the degradation of the deposit, but rather, to the
operation of the time constraint resulting from the original
assumption concerning the length of the planning horizon.

The user cost (6,) at each period is determined by computing
the maximum value of stock in all future periods. This maximum
value, then, is a function of, inter alia, the number of periods
remaining. The firm’s opportunities to earn revenue in the future
are limited not only by the degradation of the stock, but also by
the "degradation" of the assumed economic life of the deposit.
Should the firm choose to under-extract in any given period, there
will be no future opportunities in which to make up the profit
foregone in that period.

Figure 4 illustrates this. Again, the optimal extraction
level is 4*, and the "wrong" 1level chosen is ¥°’. The 1lightly
shaded area represents current net revenue foregone which can be
made up through extraction in later periods. The heavily shaded
area represents current net revenue sacrificed for which there is
no later compensation. If not claimed in the current period, this
gain is lost forever.

Therefore, it is only at the previously-determined optimum
that the firm is certain of collecting a surplus of net revenue
over discounted future stock value which exactly offsets the
degradation, or decline in the value, of stock from current
_extraction.
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Figure 3
Effects of Overextraction
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Figure 4
Effects of Underextraction
$
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In light of the general homage given to Hotelllng, it is worth
notlng the operatlon of a type of rmper-cent rule in this
case.* Although price is assumed parametric, ruling out a strict
1nterpretat10n of the Hotelllng rule, we do find the value of the
firm’s assets increasing at the discount rate, due to changes in
production.?

This can be seen from the equation descrlblng the movement in
user costs. The change in user cost is equal to the original
period’s user cost multiplied by the discount rate, less the amount
drawn off as "surplus". Since this surplus amount represents the
portion of the wvalue of the mineral asset which is transformed
into an asset of a different type, the value of the firm’s total
assets, originally derived from its mineral holdings, does grow at
exactly the discount rate.

COMPARATIVE DYNAMICS OF PRICE CHANGES

We turn now to a discussion of the effects on the optimal
extraction profile of one or more changes in the prices received by
the firm. These price changes may be brought about by external
factors, such as changes in world demand or supply, or through the
introduction or modification of production or sales taxes levied on
the firm. For our purposes, these are simply different causes of
the same type of price change, giving rise to the same effects on
production.

For general stock—dependent cost problems, the effects on
productlon of changes in prices can be difficult to untangle
While an increase in P, can be expected to result in an increase in
production in period %, if prices in previous periods increase,
increased extraction in those periods may drive up period t costs

by-s6 mHGh—tha%—Pfeduet%GH—%ﬁ—perieé—t—wt}}—aetﬂa}}y—deeiiﬁe—————————————;

“ cairns (1990) suggests that credit for this type of rule

really belongs to Gray. Certainly, the effects of discounting
future returns are discussed in his "Rent Under the Assumption of
Exhaustibility" (1914), and it is but a short step from his
numerical example to an r-per-cent rule governing the change in
stock value along an optimal production path.

> A similar result was demonstrated graphically for the case
of U-shaped average costs, which are not stock-dependent, by Scott
(1967) .
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When the cost function is homogeneous of degree one, however,
the effects of previous period production changes on current cost
can be specified with certainty. In such cases, expressions for
the effects of changes in prices on interior® values of y, can be
derived and signed unambiguously. Knowledge of these effects is
not the same as knowledge of the changes in each absolute
production level, but it provides the means by which the direction
of these production changes can be ascertained.

We know that, for any period t, an interior optimum value of
¥ (¥*), must satisfy the condition '

P.~-8, = c'(ye) .

This condition implies the existence of an optimal wvalue
function:

¥i = 9L([P.-8.1) = y{(B,.8,)
Since the function c(y.) is increasing and convex in y., the

optimal value function ¥y*(P,,0,) is increasing and concave in P,
and decreasing in 6,. Therefore,

99:( [P.-0,1) |/ [P.-6.] _ oY+ (P, 6,)
o[p.-6,] oP, opP,

We may also determine a result which will be needed later:

(a?:( [P,-6,]) ]( 3[p,-8,] ]

d[P,.-6.] o8,
- aY;(Pt‘et) = - aY:(Pt'et) < 0
o8, oP,

Because optimal per-unit profit, $,, is a function of P, and
¥.*, it may also be written as a function of P, and 0,:

(bt = ¢t(Pt'et) = Pt.Y:(Ptrat) ‘C(Y:(Pt; et))

6 Boundary values of y, present special problems. If v.=0, we
know that [P,~6,,<0, but we do not know by how much P, will need to
increase to change this. Similarly, if 4.=1, it must be true that
[Py~B,]12c’ (1), but this does not tell us how much P, must decrease
before ¥, begins to decline.

14



The change in $, which is induced by a change in P, is:

20e(Per0) =Pt[ayt]+"'§‘C’('r:)(aYt]

oP, oP, oP,

ol 21t
= y:+(Pt'CI(Yt))[a;t] > 0
t

51nce, at the optlmum P, is greater than c’(y.,*) for all t<T-1, and
Py, is equal to cf (y;,*)

The effects on yt* and ., of a change in P, are shown in Figure
5. The change in yt* is represented by*the horizontal distance [y-
¥’1. The change in ¢t is made up of two parts. The heavily shaded
area represents the increase in ¢, on the old proportion extracted
{(y.* before the price change). The area shaded more 1lightly
represents the increase in ¢, resulting from the induced change in

¥e¥.

Next, we turn to the effects on y.,* and ¢, of a change in a

future period price. ©Note that while the user cost term in the
current period, 0., is 1ndependent of the current period price, P,
it does depend on future prices (Puy,Piizs--«sPpy)- Then we may
write

e = Yz(PafGt(Pt+1'Pt+2'-- 1 Ppy))

The effects on the values of %.* (the optimal proportlon to
extract) and ¢, (current period net revenue) of a change in any
future price, P,,;, are described by the following expressions:

ay;(ﬂ _ oyc|f 28,
OP..; 00, | 8P,y ’

3. () _{ 8¢, [67{]( a8, )
Oy Loy )\ )\ OPey)
ay o0
/ t t
e ] )
The signs of some components of these are known, specifically:

oye (4

Y PV
36, <0, [P,-c’(yg)] 20
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Figure 5
Effects on y and ¢ of
Changes in Current Period Price

c'(7)




Therefore, the signs of the expressions describing the effects
of changes in future prices on current y,* and §, depend on the sign
of the expression describing the effect on the current period user
cost (B.) of a change in a future price:

a6,
OPy.4

Intuition tells us that this is non-negative, since an
increase in a future price cannot decrease that future period’s
profit, and will generally increase the value of units left in
situ. We turn now to demonstrating that this is, in fact, the
case.

To derive the expression for the effect of a change in any
future price on 8,, we begin by writing 6, as a function of all
future values of 6 and P: ’

et: = et (Ptu' et+1 (Pt+2' et+z (Pt+3' vy B'1'-2 (PT-l) )

A change in P, for j>1, alters current user cost only
indirectly, through its effects on future values of 0. Therefore,
the effect on O, of a future price change is composed of a chain of
effects, beginning with the direct effect on 8.+;-1 of the change in

Puyyt
90, =( aat)(aehl) [aenﬂq](aehjq]
0P,y |96, \38..,)" " 36,5, )| 0P,

To ascertain the sign of this expression, we must first
determine the effect on current period user cost of a change in
price in the period immediately following. Recall that

et = p{¢t+1+ (1-"(:*1)3:4}
= p{bess (Proy) + [1-v8u1 (Prip) 10,

= 8, (Pgiq/0sy)
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Then the effect of a change in P;y; on B, is

00, _ |38 _ o Otim
8P, | OPy,, £l 9P,

* * a ‘+ d *-r
= Pi1Y¥ea +(Pt+1-cl(?t*1))§%t_§ - et,+1 "é";‘t_i]
L T+l t+

r a *+
=p Y;+1+(Pt+1'c,(7;+1) -8:4.1) a;t 1}

t+1

L , . aye,
& Yto1 +(Pt+1—cf(?:¢.iﬁ _et+1) Yers

= -4 >0
oP,,, AP, Yru

- (1+8)

The expression to the right of the equals sign in the last row
is represented by the shaded areas in Figure 6. The lightly-shaded
rectangle is the gain in (1+8)0, which results from an increase in
Pyyy on the original optimal proportion extracted. The small,
darkly-shaded triangle represents a small additional gain in
(1+8)B, due to the change in ¥.;. (For small changes in price, this
second term may be ignored.)

(We may also state a result which will be used later. This is
that the change in stock value ((1+6)d6,) must be less than the
change in price (dP.,), if ¥..,* is interior (lying within the
interval (0,1)) both before and after the change).)

The effect on 6, of a change in 6«2 (which is, in turn, a
function of P, 6.,, and future values of these) is:

|- g » L
aet a‘btu (aTtﬂ] (a“l’t*J.] *
LI -0, et |-y,
;s .(a'l’;u 00.., T 98, (- ¥i)
[ Sv}
=P (Ptﬂ_cf(Y;ﬂ) _etu)[a;niJ*'(l*Y:ﬂ)]
L b+

t+l

= (1+40) aaeet = {(Pt-rl_cl{'fl‘nl) —etﬂ.)( g;tﬂ]"'(l“ygﬂ.)}
= (1-yta) > 0

The expression in braces is shown as the shaded areas in
Figure 7. The entire shaded rectangle represents the gain in
(1+6)0, which results from the increase in 8.1, on that proportion
which was not being extracted before the change. The small,
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Figure 8
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darkly-shaded triangle represents the adjustment to this gain from
the induced decrease in vy, *. (Again, for small changes, this may
be ignored.)

Because every component of the product defining it is strictly
positive, we are now able to conclude that

00, 5 o
OPy.s
and, therefore,
M <0, o, <0
OP,.4 OP..;

With these expressions, we may now describe the effects of
temporary or permanent price changes on the entire extraction path.

When discussing the effects on the extraction path of single-
or multi-period changes in prices, a distinction must be drawn
between situations in which future price changes are anticipated in
advance and situations in which price changes are known only in the
period(s) in which they occur. While the second circumstance would
likely take place more frequently, there are occasions, such as
announced tax changes, when a future price change may be known
before it takes effect.

We examine first the situation in which the price changes in
a single period, period =t. Without loss of generality, for
explanatory purposes we will consider the effects of a price
increase. Throughout this discussion, we continue to assume that
Yt*, the optimal proportion to extract in each period, 1lies
strictly between zero and one.

Little needs to be added to the expressions so far derived
when the price change is known only when it occurs. An increase in
P, will result in increases in ¥- and §,. The values of ¥,,$,, and
0, for all future periods (E>7) will remain unchanged. It should
be noted, however, that while the optimal proportion of reserves to
extract will remain constant for those future periods, the absolute
size of the reserve available in each period will have been reduced
by the increase in quantity extracted in the period in which the
price increased. Therefore, output in the current period will
increase, and output in all future periods will be reduced
proportionally.

When the single~period price increase is known one or more

periods before it occurs, while later (t>t) values of ¥, will
remain unchanged, the optimal proportions to extract in earlier
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periods (t<t) will be reduced. This is because an increase in P,
induces an increase in 6,.;, which, in turn, induces a (smaller)
increase in 6,.,, and so on. These increases in user costs result
in smaller amounts being extracted in earlier periods.
Intuitively, the firm is simply holding onto larger supplies in
order to take advantage of the increased price in the future.

Next we examine the case in which the same price change occurs
in all periods from t<T to the end of the horizon (dP,=dP for all
Tst<I). For each period t>t except the last (in which the user
cost term is zero), there are two effects on the proportion to
extract, which are of opposite sign. The increase in price in the
current period will act to increase y.*, the optimal proportion to
extract. However, the increase in future period prices raises the
user cost term (8,), which acts to decrease y *.

We will show that the effect of the price increase outweighs
the effect of the increase in user cost, so the net effect will be
an increase in the optimal proportion to extract in every period in
which the price increases.

To prove this, we must show that
d[Pt—et(')] =dP-det(') >0
- dP > d8,()

Rather than showing this directly, we will prove that, for all
tor:

dp > (1+8)d6, > de,

The total differential of 6, is

o8 00
48, = —=dpP + —=d8,,
v 9B, 86.,, °*

- * a *'b
P{Ytu"' [Ptﬂ_'c!(Ytﬂ) 'etu] a;t 1}dP
t+l

* 9 ‘+

36,.,

Using the relation

Oy: _ _ 9ye
06, oP,

this may be shown to imply
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x
(1"‘3} det; = Y;+1dp+ [Pta-l-cl(.f:-l-l) _0t+1][g;t+l]dp
t+1

* * a t'i'
+ dB,.,y -Vt dl,,, - [Ptu-c,(ftﬂ.) -0...] [ a;t 1]:13“1
t+1

Ove.
= dﬁm*f{‘r:m [P~/ (¥e.1) -em}( a;t 1]} (dp-d8,,,)
t+l
The last expression in braces is equal to
a6,

>
..  °

which is shown in Figure 6. If y,* lies within the interval (0,1),
this expression must be strictly less than one.

We may now write

00
(1+3)d8, = de,., + {a : [.dP-dBt,,II}
Pr.+1
Further,
dp > d6,,, = dpP > [det+1+{aiat [dp-—dBm]H
t+l

- dp > (1+8)d8, > d6,

Finally, we note that O:.;, the user cost term in the final
peried, is zero. Then dP>0,,, implying that dpP>d@, for all tot.

If the "permanent" price change becomes known only in period
T, the analysis is complete. Any changes to quantities in periocds
before <t are irrelevant, since the firm cannot alter past
activities. However, if the change can somehow be known some time
before it occurs, production in those periods between the present
and period t will decrease. This 1is due to the effects of
increased user costs (0’s) which are not offset by increases in
price in those periods.

The effects of price changes on absolute quantities extracted
may now be ascertained. In all time periods in which a price
increase has occurred, the optimal proportion of reserves to
extract increases. This results in higher absolute production in
the first of these periods (period «t), implying that a smaller
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proportion of reserves is passed on to the next period. In the
case of a "permanent" price change, there will be a greater
proportion extracted in the next period as well, resulting in an
even smaller amount of reserves being left for period t+2. If the
span of time defined by T-t is long enough, the increases in
extraction rates in those periods immediately following period =
can so deplete remaining reserves that absolute quantities
extracted in the final production periods actually decrease.

When a multi-period price increase occurs in a model such as
this, it may appear that production has been shifted forward.
Superficially, the result may, at first glance, resemble that
described by Gray (1914) more than 75 years ago. In fact, such an
interpretation is misleading. In Gray’s analysis, the entire
deposit is exhausted, whereas in this model, generally there will
be some units which are abandoned due to the high cost of
extracting them. Also, in Gray’s work, production is shifted
forward due to the existence of a positive discount rate. In this
model, we find early period production increasing even when the
discount rate is zero. :

The correct interpretation takes into account not only the
increase in production in the early periods, but also the decline
in the amount abandoned. The rise in price induces the firm to
extract more from the deposit, and it chooses to divide that
increase intertemporally in order to best take advantage of its
profit opportunities. Since costs are lower in the early part of
the production horizon, the largest increases in extraction are
observed in these periods.

Increases in early period production, then, do not necessarily
imply that later period production falls. We observe early
production rising and later production falling only when the price
increase is relatively large. In such a case, the increases in
proportions extracted in early periods are so large that reserves

in later periods are significantly diminished.

In light of the fact that the guantity of original stock which
is ultimately abandoned is a function of output price, it may be
necessary to specify more precisely the definition of "reserves™.

~in _the model used here, the original reserve, S, . is implicitly - ..

defined in physical, rather than economic terms. The proportion of
S; which can be economically extracted over the specified time
interval depends on the output price. If reserves are defined in
an economic sense, as, for example, "the known amounts of a mineral
that can be profitably produced at current prices using current
technology"’, we find that reserves themselves are endogenous in
this model. A price increase changes not only the pattern of

? Fisher (1981), pp. 94.
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production, but also the amount of the physical stock of the
mineral which will ultimately be recovered.

This is a significant result for the formulation of minerals
policy. The imposition of a severance tax (a specific tax on the
amount removed) or an ad valorem tax on the sale of the mineral,
will decrease the amount of the reserve which a firm will find it
profitable to extract, thereby effectively shrinking the total
supply.
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CONCLUSIONS

The model described in this paper is an artificial one,
amenable to being solved using a relatively simple technique only
because of the restrictions 1mposed on both cost (linear
homogenelty in output and remaining stock) and revenue {price-
taking behavior). However, this model is arguably less simple
than models in which marginal costs are assumed constant. The
imposition of restrictions, by removing a number of possible
empirical complications, permits us to focus more clearly on the
basic characteristics of extraction problems in which costs
increase with depletion.

There are two major aspects of non-renewable resource
exploitation which are brought out by the mcdel. First, it shows
that the firm chooses to extract and thereby degrade tha quallty of
stock only insofar as its current period net revenue suffices to
compensate for the loss in mineral asset value incurred by doing
so. The firm effectlvely chooses a pattern of extraction which
preserves the maximum value of the mineral reserve at each point in
time.

Second, the model illustrates the difference between a
physxcal deflnltlon of reserves, under which the ultimate reserve
size is fixed, and therefore exogenous, and an economic definition,
under which the quantity of reserves is really endogenous, because
it depends on the economic conditions facing the firm.

In addition, the fact that the optimal solution lends itself
easily to a graphlcal analysis means that this model can be of use

as a pedagcogical device. The generic diagram illustrating the
optimal production in any period t depicts all four gquantities of
interest to an analyst. It shows the optimal proportion to

extract, the net revenue to be earned by doing so, the internal
value of reserves to the firm, and the user cost.

None of these conclusions can be derived from a model of
extraction under stock~ dependent costs in which the cost function

i completely unrestrictéd. As international trade economists have

long been aware, models which are artificially 51mple can sometimes
focus our attention on results which get buried in models which are
more realistic, and hence more complicated.
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