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A Bioeconomic Model of the Pacific Whiting
ABSTRACT

The Pacific whiting (Merluccius productus) is a highly migratory fish
occupying the continental shelf and slope off the west coast of North
America. The species spawns in January off southern California and
northern Mexico. During spring and summer the older and larger fish
will migrate as far north as central Vancouver Island. Recruitment is
highly variable, with strong year classes often supporting the
commercial fishery during several years of low recruitment. The level
of recruitment appears to be independent of the size of the spawning
population.

A simple bioeconomic model of the Pacific whiting is constructed with
independent recruitment. Fishery production functions are estimated
from data on US catch, average annual biomass and the number of
vessels in the US fleet. A stochastic optimization problem, seeking to
maximize the expected value of industry profit, is formulated. Its
solution would require a joint distribution on future recruitment and
other bioeconomic parameters. Such a distribution is problematic. As
an alternative, the certainty-equivalent problem is solved yielding
solution values for the stochastic equilibrium and an approximately-
optimal rule that sets allowable catch based on an estimate of current-
year biomass.

Adaptive management can result in large changes in fleet size and

allowable catch from year to year. The whiting fishery might be
characterized as an opportunistic fishery, requiring a generalist fleet
to expand or contract as bioeconomic conditions warrant. It is
possible that long-run conditions would not support a profitable
fishery, but that short-run fishing is profitable based on previous years
of strong recruitment. The situation is not dissimilar to that facing
the owner of a marginal gold mine that opens or closes depending on
the price of gold. In the case of the whiting fishery, the optimal level
of short-run fishing will depend not only on price, but on current
biomass, the annual cost of fishing, the discount rate and vessel
productivity. A simple interactive program is provided for would-be
managers.

Key words: bioeconomics, Pacific whiting.






I. Introduction and Overview

thh the development of a joint-venture fishery, the Pacific
whiting {Merluccius productus} has become a commercially valuable
species. Trawlers from California, Oregon, Washington and the
province of British Columbia harvest whiting (also called hake) and
then off-load the cod-end of their nets to a foreign factory vessel
where the whiting is quickly processed to preserve freshness and
texture. In 1989, the US fleet delivered approximately 204,000
metric tons of whiting to foreign processing vessels, earning about
$21 million in revenues.

The Pacific whiting is a highly migratory species, spawning off
the coasts of southern California and northern Mexico in January

(Bailey et al. 1982). During the spring and summer the population

migrates northward, with the older and larger fish crossing into
Canadian waters in August. Jdint-venture arrangements have proved
profitable to both US and Canadian trawlers, and the distribution of
allowable catch between the US and Canada has taken on greater
importance. While there is no formal treaty, fisheries managers from
both countries have met to work out a long-term plaﬁ for binational

allocation.




Recruitment in the whiting fishery appears to be independent
of spawning biomass, but is positively correlated to surface
temperature during spawning. Temperature in the month of January
is affected by Eckmann transport, a process where warmer near-shore
surface waters are pushed offshore, followed by an upwelling of
deeper, cooler water (Bailey 1981).

By August the whiting stock is distributed along the coast by
age. While the location of a cohort in a particular year will depend on
temperature, cohorts aged two through six are likely to be found off
northern California and Oregon, while cohorts seven through 14 are
likely to be found off the coasts of Washington and British Columbia. In
September and October whiting begin their southward migration from
the feeding grounds to the spawning areas, and the cycle repeats
itself.

The age structure of the resource and its reasonably stable
migratory pattern have lead previous researchers to develop cohort
models with population dynamics, migration and trophic interactions
(Francis 1983), stochastic recruitment {Swartzman, Getz and Francis
1983), and a game-theoretic approach to US-Canadian management
(Swartzman, Gétz and Francis 1987). Dorn and Methot (1989) also

employ a cohort model with recruitment randomly generated by
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iterative resampling from estimates of recruitment for the period
1959-1986. Constant and variable effort strategies are examined by
averaging yields from 10 replicate, 1000 year simulations. Estimates
of average yield ranged from 178 to 244 thousand tons for the
constant-effort strategy and from 205 to 251 thousand tons for the
variable-effort strategy. They recommend that total allowable catch be
split 80 and 20 percent for the US and Canada, respectively.

A simpler approach is taken in this paper. All the numerical
results can be derived from the nine observations on catch, mean
annual biomass and effort (vessel numbers) in Table 1, and by using
the 20-line program (in BASIC) listed in Table 3. Analytical
expressions for stochastic equilibrium and the apprgximately-optimal

policy rule for adaptive management require some calculus and a fair

amount of tedious algebra.

While the model is simple, it incorporates economic elements
which have been absent in all the previous modeling of the Pacific
whiting. Specifically, the program in Table 3 will employ estimates of
a vessel productivity parameter, natural mortality, annual cost per
vessel, dockside (or exvessel) price, the real rate of discount (interest)
and long-run average recruitment to calculate what has been called the

stochastic equilibrium. More relevant to short term management is
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the adaptive-management rule which, given an updated set of
bioeconomic parameters and an estimate of current-year biomass, will
suggest levels for allowable catch and fleet size. The issue of
distributing allowable catch between the US and Canada is left for
resolution by managers from both countries.

The rest of ﬂlis paper is organized as follows. In the next
section we construct a bioeconomic model and derive equations
defining stochastic equilibrium and the adaptive-management rule. In
the third section we estimate production functions for the Pacific
whitiﬁg fishery and calibrate the model for price and cost circa 1988.
Section IV examines stochastic equilibria and the performance of the
adaptive-policy rule for allowable catch under a range of values for the
bioeconomic parameters. The paper concludes with a discussion of

the implications and limitations of the model.

II. Bioeconomics: Stochastic Equilibrium and Adaptive Management
Let X; denote the average biomass of Pacific whiting in year t,

E; the level of fishing effort in year t and Y, the level of harvest or

catch. We assume there exits a production function relating annual

catch to biomass and effort and write Y; = F(X{,E;), where the partial



derivatives of F(X;,E;) are denoted with subscripts and assumed to
have the following signs: Fx > 0, Fg> 0 Fxg=Fgx>0, Fxx<0and
Fgg < 0. If p denotes the exvessel price per unit of catch (say,
$/1ﬁetric ‘ton) and c the cost of effort (say, cost/vessel/year), then we

may write net revenue or profit in year t as

n; = pFX,Ep - cE; (1)

Average annual biomass is assumed to change according to the

following first-order difference equation

X = (1 - M[X, - FX,E)) + R, 2)

where M is annual natural mortality and R, is a random variable

denoting recruitment in year”t. Maxiniization of the present value of
expected profits subject to the dynamics of mean annual biomass may

~ be stated mathematically as

Maximize E{ 2 pt [pF(XLE - cEt]}
t=0

SUbjCCt to Xt+1 = (1 - M)[Xt - F(Xt,Et)] + Rt




where p = 1/(1 + 8) is a discount factor and § is the real rate of
discount (or real annual interest rate).

This stochastic optimization problem might be solved by
dynamic programming if a distribution for future recruitment were
known. If other bioeconomic parameters are also random variables
then one would need a joint distribution over all random variables.
Such a distribution is problematic. As an alternative we consider what
is called the "certainty-equivalent problem." The name is a bit of a
misnomer, because the solution to the certainty-equivalent problem
will not be the same as the solution to the stochastic dynamic
programming problem (when the hecessary distribution is known).
The actual degree of suboptimality associated with the solution to the
certainty-equivalent problem will depend on the specifics of the
problem, the functional forms, the presence of irreversibilities, and
the degree to which initial conditions differ from the long-run
"stochastic equilibrium." Before discussing the issue of suboptimality

-further, it may be useful to pose and solvelthe certainty-equivalent
problem.

Let the expected value of R, be denoted by R. The certainty-

equivalent problem is the deterministic problem obtained by



substituting the expected value for its random variable. This results in

a problem with a Lagrangian expression that may be written as

L= p'{pF(X,E) - cE,
=0

+ Al — MLX, - FX,E)] + R— X1} 3)

where A, is‘the Lagrange multiplier associated with biomass in
period t+1, and may be interpreted as the marginal value of an
additional unit (say, metric ton)} of fish in the water in year t+1. The
Lagrange multiplier is also called the "shadow-price" of the fish stock.
Note that R becomes a parameter in the certainty-equivalent problem.
In the Appendix we derive the first-order necessary conditions

for this problem. They can be evaluated in steady state and are shown

to imply the following two equations.

(1 - M)Fy 5
-“(-I')“:“E“‘;C—) =0+ M (4)
R=MX+ (1 - M)F(X,E) (5)

Equation (4) is a special case of what has been called the "fundamental
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equation of renewable resources” (see Conrad and Clark 1987, p. 34).
With independent recruitment the first derivative of the net growth
function vanishes and we are left equating the "marginal stock effect”
to the sum of the rate of discount and natural mortality. The marginal
stock effect measures the increméntal cqst savings from larger
biomass relative to the immediate benefit if that increment in biomass
were harvested this year.

Equation (5) requires that expected (or long-run average)
recruitment offset the reduction in biomass from natural mortality
plus that portion of biomass that would have survived had it not been
harvested. Equations (4} and (5) collectively define what Burt (1967)
refers to as the stochastic equilibrium. Burt was concerned with the
optimal management of a groundwater stock when recharge (from rain
or melting snow) was stochastic. He notes that the stochastic
equilibrium is "always approached, but rarely experienced."

The stochastic equilibrium for our problem is portrayed in
Figure 1. From the implicit function theorem, equation (4) will define
a curve in X-E space. Totally differentiating equation (4) and making
use of the partials of F(X,E), we can show that along this curve dE/dX
is positive. Depending on the form of F{X,E) it may be possible to

solve for an explicit relationship, E = E(X}, that is positively sloped.
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Equation (5) also implies a curve in X-E space. Total
differentiation and the signs for Fx and Fg will imjaly that along this
curve dE/dX < 0. If an explicit relationship, E = R(X), can be obtained
from equation (5), it will be negatively sloped. Thus, the partials of
F(X,E) imply that a nonzero stochastic equilibrium, (Xg,ER) in Figure 1,
will be unique.

While the stochastic equilibrium may be of interest in
determining the long-run effects of changes in the bioeconomic
parameters, it is not very useful for short-term management. When
fish biomass is not at its long-run equilibrium we would need to solve
the deterministic certainty-equivalent problem, or a finite-horizon
stochastic dynamic programming problem to determine the first step

along an "approach path.” With F(X;,E,) nonlinear, this is not a trivial

problem.

Instead of taking this tack we make use of an "approximately-
optimal” technique proposed by Burt for groundwater management
and more recently examined by Kolberg (1990) for management of a
fishery. This approach makes use of equation {4) by noting that it can

be regarded as defining a relationship between X; and E; in the vicinity

of long-run equilibrium. Could we use this relationship for short-run



management? If we do, how inferior would the resulting decisions be,
relative to the solution obtained for a stochastic dynamic programming
problem (with a known distribution for recruitment}? We will take
these two questions in order.

The procedure for using equation (4} as an adaptive
management mle is shown in Figure 2. In the northeast quadrant we
“have redrawn the E(X) curve from Figure 1. Its position depends on
all of the bioeconomic parameters except R, expected recruitment,
which only appeared in equation (5). Suppose that biologists, using
data from a series of scientific trawls or through a cohort model taking
into account last year's total (US plus Canadian) harvest, could provide
managers with an estimate of biomass for the forthcoming year. With
an estimate of X we could project up to the E(X) curve to determine
the recommended level of effort. The estimate of current biomass will
also imply a specific production function in E-Y space drawn in the
northwest quadrant. Projecting E over to the appropriate production
function results in a catch rate which might be used as allowable catch
for the forthcoming year. Because recruitment is stochastic and
because fishermen may exceed or fail to harvest allowable catch in a
particular year, the subsequent estimates of X may bounce around.

From Figure 2 we can get a qualitative feel for how recommended
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effort and allowable catch vary with X. First, note that there is likely to
be an intercept of the E(X) curve on the X axis. This has a
straightforward interpretation. For a given set of bioeconomic
parameters (per unit price, annual cost, the rate of discount, natural
mortality, and perhaps catchability) there is likely to be some stock
level below which fishing today would reduce present value. This is
denoted by X;_5. As X increases we see a less than proportional
increase in E. The resulting change in Y is less easy to assess
qualitativély because the production function shifts upward with
increases in X. With a particular form for F(X,E), and given estimates
of the bioeconomic parameters, we could numerically examine the
change in Y for é change in X. (We will do this for the whiting fishery
in Section IV.) If we wish, we could collect the (X,Y) pairs by

constructing a 45° transfer line in the southeast quadrant, project X

downward, across, and then pair it with the corresponding Y

projected downward from the Y-axis of the northwest quadrant. This =~

is done in the southwest quadrant and the four "dots” have been
(arbitrarily) "connected" by a series of line segments.

Burt compared the level of groundwater pumping
recommended by such a procedure to the level of pumping

recommended when using stochastic dynamic programming, taking
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the estimate of current X as an initial conditio.n, with all other
parameters the same. In his study he found that the pumping rates
differed by less than two percent when the current groundwater stock
was within 42 percent of the stochastic equilibrium. As the current
stock got closer to the stochastic optimum, the difference went to
zero. On the basis of this relatively small departure from the optimal
pumping rate, Burt dubbed this rule "the approximately-optimal”
pumping rule.

Burt and Cummings (1977), in considering this rule for other
renewable resources, found that the difference between the
approximately-optimal harvest rate and the optimal rate obtained via
stochastic dynamic programming was likely to exhibit a consistent and
perhaps attractive bias. When X < Xg the harvest rate from the
approximate rule was likely to be less than the harvest rate from the
optimal rule. When X > Xy harvest was likely to be slightly more than
optimal. This would lead to a more rapid approach to equilibrium in a
deterministic model. The slightly lower levels for recommended
harvest when the resource stock was less than its stochastic
equilibrium caused Burt and Cummings to regard the approximate rule
as also being "conservative." Managers may find this built in

conservatism (when stock is low) to be attractive.
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In a recent study and application to the anchovy fishery in
northern California, Kolberg (1990) analyzed the above approximate
proceduré and compared it to the optimal solution (obtained via
dynamic programming) and two other approximate solutions obtained
from first- and second-order Taylor approximations to the value
function at the steady state optimum. Burt's original approximate rule
(equation (4) in this paper) is equivalent to the first-order
approximation of the value function. Kolberg finds that both first- and
second-order rules result in harvesting decisions that produce a
stream of discounted profits within one percent of the maximum.

It is difficult to make such comparisons in the whiting fishery.
Without a joint distribution for recruitment and other bioeconomic

parameters we do not have the necessary ingredients for the

appropriate stochastic problem. As we will see in the next section,

many of the estimates for equilibrium stock are around 1.0 million

metric tOIlSThlS is within 30 percent of the 1989 estimate of 1.3

million metric tons for mean annual biomass (Dorn and Methot 1989,
Table 12}). It would appear, at least superficially, that the
approximately-optimal decision procedure described above can be

appropriately applied to the Pacific whiting ﬁshefy.
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III. Calibration of the Model for the Pacific Whiting Fishery

In the general model of the preceding section the prbduction
function, Y; = F(X.,E,), took on central importance in defining the
stochastic equilibrium and the adaptive-management rule. When one
attempts to specify and estimate such a function, one encounters at
least two problems. First, where does one obtain a time series of
estimates for average annual biomass, and second, how should one
define effort?

In calibrating the model to the Pacific whiting fishery the
author was fortunate to have estimates of average annual biomass from
~ a stock-synthesis model developed by Dorn and Methot (1989). This
time series seemed the best available and would also allow a .
comparison of yield levels from two otherwise disparate modeling
perspectives.

The definition of effort has always proven difficult. Ideally, one
would like as precise a measure as possible of tﬁe actual volume of
water "strained” per unit time. The closest practical measure might
be the number of hours that a vessel had net in the water fishing. In a
biceconomic model, the analyst is further removed from the ideal

measure because of the need to estimate the unit cost of effort. The
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measure adopted here is the number of vessels in the fishery. This

measure is open to criticism because it may not correspond to the

volume of water strained during a season, but it is a measure for which
we have some data on unit annual cost.
Table 1 contains data on catch by US vessels, estimates of |
mean annual biomass, and the number of vessels in the US whiting
fleet from 1981 through 1989. From 1985 onward the fleet has
increased, mth a jump from 42 vessels in 1988 to 65 in 1989. The
estimate of mean annual biomass has declined from 2.225 million
metric tons in 1986 to 1.315 million metric tons in 1989. Dorn and
Methot believe that this reflects the "mining" of the strong 1980 and
1984 year classes that were recruited into the fishery in 1982 and
1986, respectively. (Note the jump in average annual biomass in those

years.)

Table 2 contains the regression results when the data in Table
.1 were used to estimate Cobb-Douglas and exponential production
functions. The Cobb-Douglas function takes the form Y = qX“EB, and is
linear logs. It contains, as a special case, the standard catch-per-unit-
effort production form {(when a = = 1).

The exponential function takes the form Y = X{(1 - ¢®F). With

this form it is impossible to catch more than current biomass, a logical
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characteristic, unfortunately not .exhibited by the Cobb-Douglas
production function. (Note: With the Cobb-Douglas form, as effort
goes to iﬁﬁnity, so does catch.}

The exponential function may be estimated by regressing the
natural log of the fraction of surviving biomass on effort. Ideally one
ﬁrould like to obtain an intercept not significantly different from zero
and a significantly negative coefficient on effort. Alternativel&, one can
force the regression through the origin by suppressing the intercept.

The estimates of the coefficients, t-values (in parenfheses),
degrees of freedom, adjusted R?, and Durbin-Watson statistics for the
Cobb-Douglas and exponential forms (with and without constant) are
given in the body of Table 2. In the Cobb-Douglas form we obtain
significant cbefficients for biomass and effort, but an insignificant
catchability coefficient. The adjusted R? is 0.8369 and the Durbin-
Watson statistic is indicative of positive autocorrelation in the
residuals. {The presence of positive autocorrelation in all three
regressions will inerease the standard error, but will not bias the
coefficient estimates. Given that the primary objective was to obtain
unbiased and consistent estimates of production function parameters,

no attempt was made to correct for autocorrelation.)
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The exponential regression, with constant, yielded significant
estimates for both the intercept and effort coefficients. The adjusted
R? was 0.9568. When the intercept was suppressed the coefficient on
effort remained significant (t = -15.632) and the estimate of 2.217E-2
was only slightly less than the estimate of 2.809E-2 obtained in the
unrestricted regression. The exponential form, with a > O implies
that production is strictly concave in effort, whereas the Cobb-Douglas
function with B > 1 is not concave and would cause the stochastic
equilibrium to be locally unstable. For this reason, and others noted
above, we adopt the exponential form and run sensitivity analysis on o
over the interval [2.0E-2 , 3.0E-2].

In an analysis of the tax returns of 13 vessels participating in
the whiting fishery in 1988, Squires (1990) estimates annual variable

costs per vessel to be approximately $150,000. More difficult to

estimate is the portion of fixed costs that should also be included

_when estimating annual operating costs. Squires calculates annual

“fixed costs by adding the costs of insurance, rent, association dues,
professional services and seven percent of vessel acquisition costs (for
vessels bought in 1978-1986, inclusive), for a total of approximately
$237,000 in 1988. The sum of annual variable and fixed cost

payments comes to $387,000.
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It is difficult to argue that all the costs filed (ex post) on a tax
form are relevant when a fisherman chooses to fish whiting, as
opposed to some other species. One also suspects that there is an
incentive to report as high a cost as possible (to reduce taxable
income). In the numerical analysis of the next section we restrict our
estimate of c to the interval [$200,000 , $300,000].

Francis (1983), in fitting a cohort model to survey data,
concluded that annual mortality was likely to be age-dependent, with
rates varying from 0.195 for five-year old fish, to 0.757 for 11-year old
fish. Dorn and Methot use a constant rate of 0.20 for all cohorts. An
average annual mortality rate of 0.25 is used in the Base-Case, with
values of M = 0.20 and M = 0.30 also examined,

The price per metric ton for whiting has fallen since the early
1980s, when it peaked at slightly over $151 in 1982. From 1986
through 1989 the price has been relatively stable between $106 and
$110 per metric ton. Stochastic equilibria and adaptive management
are examined for prices of $100, $110, and $120 per metric ton.

Modeling by Dbrn and Methot also provided estimates of
recruitment, measured as billions of age two fish entering the fishery.
They construct a time series from 1958 through 1988. There is a

large range, from a low of 0.017 in 1987 to a high of 5.16 in 1963,
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The average over this 31 year period was 0.991 billion fish. An average
two-year old whiting will weigh about 250 grams, transforming the
0.991 billion fish into and average recruitment of approximately
250,000 metric tons per year.

Though imprecise, we set R = 250,000 metric tons in the
Base-Case parameter set. It is important to emphasize that while
recruitment is highly variable, mean annual biomass is much less
variable. Adaptive management does not depend directly on
recruitment, only on an estimate of mean annual biomass. This has
ranged from a high of 3.695 million metric tons in 1965, to low of
1.315 in 1989; with most year to year changes being less than 15
percent.

The final parameter required for both stochastic equilibrium

and adaptive management is an estimate of the real (inflation-free)

rate of discount. There has been a long standing debate among

- economists as to the appropriate rate of discount to employ when . ... .

evaluating public investments or managing publicly held resources.
There appears to be no simple answer. It depends on where the funds
are coming from (whether they are displacing private investment or
consumption) and whether the beneficiaries of the project derive a

significant portion of their income from the investment or resource.
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The question is perhaps more easily answered when managing
a fishery resource. If there are a large group of fishermen, or if the
species being managed constitutes only a small portion of the fotal
income derived from fishing, then the discount rate should be risk-
free as well. Discount rates of two, four and six percent will be

evaluated.

IV. Results
Restricting our analysis to the exponential production function,
Y = X(1 - "), we note that Fx = (1 - ¢®E), and that Fg = orXe_'“E.

Substitution into equation (4) results in

c(1 ~ MX1 — ey

=8+ M (6)
(paXe™E — ¢)

Equation (5} takes the form

R=MX + (1 - M)X(1 — ¢™°F) (7)

It is possible to solve equation (6) for an explicit expression for

E, yielding
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_ c(l+8) -
E= _ln[ [pa® + MX + c(1 - M)} ]/ * ®)

This is our E = E(X) curve in Figures 1 and 2. It will be used in the
adaptive-management program.

Using equation (7) it is possible to eliminate E from equation
(6) and obtain a quadratic expression in X, The positive root gives an
expression for the optimal (stochastic) equilibrium stock. This

expression is tedious to derive but some careful algebra should reveal

X = (-B +4/B2 - .4N)/2 (9) |

where
e aw
and
N = _H 11)
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With Xy we can calculate long-run optimal effort as

ER=—ln{(XR—R)/[(1 —M)XR]}/G (12)

From the production function we know Yg = Xg(1 - _ ~Ey),

In the program in Table 3 we define and read the parameters
@, ¢, 3, M, p and R and then calculate the stochastic equilibrium Xnr. Eg
and Yg. You are then asked if you would like to adaptively manage. If
you answer yes, you are asked for an estimate of current-year biomass.
Using this as the value of X in equation (8}, and the same bioeconomic
parameters as specified in hﬂe 10, the program calculates the
approximately-optimal E (lines 140 - 150), then catch (line 160}, and
finally prints the results,

The Base-Case parameter set is a = 0.25E-2, ¢ = $250,000, § =
0.04, M =0.25, p = $110 and R = 250,000. Table 4 reports the
calculated values for stochastic equilibrium and the approximately-
optimal values fo.r effort and allowable catch when the current biomass
is 1.0E6, 1.5E6 and 2.0E6 metric tons. Each parameter (with the
exception of R} is varied above and below its base-case value to

determine its effect on the stochastic equilibrium and the adaptively-

managed levels of effort and allowable catch. The results are presented
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in the 10 subcases {B through K) also contained in Table 4. Increases
in long-run expected recruitment, R, will increase the equilibrium
levels for biomass, effort and yield, but given the imprecise estimate of
this value and the previously noted fact that the stochastic equilibrium
is "seldom experienced,” we do not present these results.

For the base-case parameter set the stochastic equilibrium
occurs at a‘mean annual biomass of 957,748 metric tons, supporting a
fleet of six vessels harvesting 14,083 metric tons per year. These
values are significantly below those observed in the previous d.ecade
(see Table 1).

When the current biomass increases from 1.0 to 2.0 million
metric tons the adaptive ;'ule recommends that fleet size increase
from 11 to 115 vessels and that catch be allowed to increase from

27,128 to 501,441 metric tons. When current biomass is 1.5 million

metric tons, a recommended fleet of 67 vessels would harvest
230.159 metric tons. These latter values are very similar to the
"observed" values for catch, biomass and effort in 1989 from Table 1.
From this single piece of analysis we might hazard a
characterization of the whiting fishery. It is a fishery that will be
strongly influenced by current bioeconomic conditions. It should be

managed opportunistically. When stochastic recruitment "deals a full
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house,” maximization of expected present value says the fleet should
significantly expand to harvest the windfall. The downside, of course,
is that when recruitment deals nothing, the fleet must "fold 'em” and

~ walk. To quote the Kenny Rodgers song, fisheries managers have to
"know when to hold 'em and know when to fold'em." In the US and
elsewhere, unfortunately, managers and fishermen have been slow to
walk, trying to stay in the game when bioeconomic conditions indicate
one should leave (at least temporarily).

The program in Table 3 indicates when fishing would reduce
present value by returning a negative value for effort and catch. This
can occur in the long-run stochastic equilibrium or in the short-run
under adaptive management. In fact, for a given set of bioceconomic
parameters a fishery that is unprofitable in the long-run may continue
to be fished if strong recruitment or favorable prices prevail.
Conversely, a fishery which is profitable in the long-run (stochastic
equilibrium) may be shut down in the short run because biomass has
declined below a level that would support positive effort and catch
along the optimal approach path. Recall the interpretation of X,_q in
Figures 1 and 2.

The first situation is shown in Subcase B where, when vessel
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productivity declines from o = 0.25E-2 to o = 0.20E-2, there is no
fishing in the stochastic equilibrium. If a run of strong recruitment
{(or a temporary moratorium) pushes biomass up to 1.5E6 metric tons
a fleet of 43 would be allowed to harvest 122,881 metric tons. In
Subcase C, where o = 0.30E-2, the stochastic equilibrium has a
biomass of 883,051 metric tons supporting 15 vessels and an annual
yield of 38,983 metric tons. If recruitment pushes biomass up to
1.5E6 metri(; tons, adaptive managers would send out 81 vessels to
harvest 321,930 metric tons.

In Subcase E, with an annual vessel cost of $300,000 there
would be no fishing in the stochastic equilibrium. A biomass level of
1.0ES8 is still below X,_,. At a biomass of 1.5E8 a fleet of 40 vessels is
allowed to harvest 142,002 metric tons.

The value for X,., when p = $100 is precisely 1.0E6 metric

tons (see Subcase J). The fishery is not profitable in the iong run at
this price, but short-run biomass levels of 1.5E6 and 2.0E6 would
supports fleets of 52 and 98 vessels.

A systematic analysis of the results in Table 4 will reveal
(i) an increase in o will reduce equilibrium biomass

while increasing fleet size and catch (Subcase A to C),

(ii) an increase in cost, ¢, will increase equilibrium
biomass, reducing effort and catch {(Subcase D to A),

(iii) an increase in the discount rate has relatively little
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impact, reducing equilibrium biomass slightly, causing a
fractional increase in effort and a slight increase in
catch {Subcase F to G),

(iv) an increase in natural mortality might shut down
the fishery in the long run and has the effect (similar to
an increase in the discount rate) of increasing effort
and catch in the short run (before fish die of natural
causes; see Subcase H to I), finally,

(v) an increase in price may make the fishery tenable in
the long run and will increase effort and yield when

adaptively managed at the same level of biomass
(Subcase J to K).

It is a bit difficult to compare the results of Table 4 to the
resulfs of Francis (1983), Swartzman, Getz and Francis (1983, 1987)
and Dorn and Methot (1989). All of the models are cohort models and
none are bioeconomic, in the sense of maximizing a present value
measure. Perhaps the only common denominator is average yield.
This is difﬁcult to calculate in anything but a naive way because the
cohort models are frequently run with constant fishing mortality or
with constraints that prevent the biomass from declining below some
bound. With that caveat in mind, we note that a simple average of
yields listed in the first row of Table 3 from Swartzman et al, {1983) is
193,666 metric tons. The average yield from Table 2 of Swartzman et
al. .(1987) is 184,000 metric tons. From Dorn and Methot (1989) we

have previously noted that average yield ranges from 178,000 to
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244,000 metric tons for low risk runs and from 205,000 to 251,000
metric tons for high risk runs. If one averages the 44 yields (including
zero yield when the fishery is shut down iﬁ the long or short run) from
Table 4 in this paper one obtains 195,552 metric tons., While the
models are very different in their biological and economic details,
from the perspective of average yield they would appear to be in the

same ballpark.

V. Conclusions

The Pacific whiting has become an important commercial
species for both the US and Canada. Both countries participate in
joint-venture fisheries, where domestic trawlers capture Whitiﬁg and

off-load onto foreign processing vessels. Several papers published in

ﬂre-lﬁ&@s—ha*ve—exammed—popu%atiﬁn—dynarrﬁes—wit’rﬂ-n—agewst—me%ufed%i

models. Recruitment is thought to be independent of spawning
" biomass, and has been treated as a random variable.” Because older and
larger fish migrate further north, the age-structure of the resource can
influence the availability of fish in Canadian waters.

While these models have been rich in biological detail, they

have not adequately incorporated the economic factors which affect
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the commercial value of the resource, nor have they tried to
determine optimal fleet size. The biological detail present in these
models necessitates numerical analysis, such as Monte Carlo
simulation, to determine the properties of the model and to develop
average yields that might be used in making recommendations for
allowable catch. |

In this paper we have traded-off the biological detail of a cohort
model in order to incorporate some of the economic factors thought
to be important in the Pacific whiting fishery. The simple
bioeconomic model of Section II permitted us to (1) pose a stochastic
optimization problem that sought to maximize the present value of
expected net revenue, (2) solve the certainty-equivalent problem for
the stochastic equilibrium and an approximately-optimal rule for
adaptive management and (3) portray the equilibrium (Figure 1) and
show how the adaptive-management rule would operate (Figure 2).

Data on catch, mean annual biomass and vessel numbers
allowed for the direct estimation of a fishery production function.
Cobb-Douglas and an exponential function both gave reasonable fits.
The exponential form makes more sense biologically, gave a slightly
better fit and for the parameter estimate was strictly concave in effort.

This form was used and a range of values for the other biceconomic
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parameters was obtained from previous biological and economic
research.

In the bioeconomic model, long-run (stochastic) equilibrium
depended on the production parameter, annual vessel cost, the
discount rate, natural mortality, exvessel price and long-run average
recruitment. In the short-run, using the adaptive-management rule,
fleet size and allowable catch depended on the first five parameters
and current biomass (instead of recruitment). Recommendations for
short-run fleet size and allowable catch could fluctuate widely
depending on the biceconomic parameters, especially current
biomass. From the Base-Case parameter set we observed that a
current biomass of 1.0E6 metric tons would commend a fleet of only
11 vessels harvesting 27,128 metric tons. If current biomass were

1.5E6 metric tons, 67 vessels could harvest 230,159 metric tons and,

if biomass increased to 2.0E6 metric tons (perbaps in the vicinity of
Pristine equilibrium’), 115 vessels could harvest a 501,441 metric
- tons.

Such results characterize what might be called an
opportunistic fishery, requiring a flexible fleet of generalist vessels
able to respond to windfall recruitment axid to shift to other fisheries

when bioeconomic conditions are no longer favorable. Such flexibility
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has not been present in the US or Canadian fishing industry, where
effort seems quick to expand, but slow to contract. Managers and the
fishing industry need to explore ways of increasing flexibility.

To use the adaptive~management rule we need an estimate of
current-year biomass. The cohort models, especially the stock-
synthesis model of Dorn and Methot (1989), can provide such an
estimate. The age-structured modeis also have the advantage of being
able to project changes in the abundance of particular cohorts. Such
information might be important in determining spawning potential
and the availability of whiting in Canadian waters.

This model should not be viewed as a replacement or even as a
competitor for the niche occupied by the more complex biological
models within the current "management I@dscape." Rather, it should
be used to complement the analysis of such models in seeking the
economically efficient and equitable distribution of the Pacific whiting

resource.
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Appendix
The Lagrangian for the certainty-equivalent problem. has first-

order conditions requiring

L

g_Et=pt{pFE—c— PAg; 1 —MFgl =0

oL t t

2 < 0" PRt e (1~ M1 ~Fxd] - pli = 0
dL

—atrer _ _ -
Sl =p [(1 -MIX -FX,E)J+R-X,;1=0

In steady state these conditions imply
pA = (pFg — ¢)/[(1 - M)Fg]
pAL(1 — M)[1 - Fxl — (1 + 8)] = —pFyx

R=MX+ (1 - M)FX,E)

The second steady state equation can be further simplified to

Multiplying through by -1 and substituting the first steady-state

expression for pA yields

(pFg — ©[(6 + M) + (1 - M)Fy] = pFyl (1 ~ M)Fg]
This last expression can be further simplified to

C(l - M)FX

= M
GFa-o0 o7

which is given as equation (4} in the text. Equation (5) in the text is

the third of the steady-state equations listed above.
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Table 1. Data on Catch, Mean Annual Biomass and Effort in the

US Pacific Whiting Fishery
Year (t) Catch (Y)'  Biomass (X))’ Effort (E,)°
1981 44,395 1,384,000 21
1982 68,488 2,000,000 17
1983 73,150 1,805,000 19
1984 81,610 1,742,000 21
1985 35,586 1,685,000 17
1986 85,103 2,225,000 25
1987 110,792 2,012,000 31
1988 142,657 1,688,000 42
1989 204,038 1,315,000 65

1US catch is measured in metric tons and is the sum of joint-venture
and domestic catch from Table 1 of Dorn and Methot (1989).

2Biomass is measured in metric tons and is the mean annual estimate
of biomass from Table 12 of Dorn and Methot {1989).

3Effort is measured as the number of vessels in the US Pacific whiting
fleet as listed in the Fax from D. E. Squires, NMFS, Southwest
Fisheries Center, La Jolla, California, June 18, 1990.
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Table 2. Regression Results for the Cobb-Douglas and
' Exponential Production Functions®

A, Cobb-Douglas: Y = qX“EB.

InY,= Ingq+ oln X; + Bln E; + £,
-7.4226 1.0274 1.2241
(-0.9983) (2.0631) (6.5169)

)
df =6, R = 0.8369, DW =1.4725, Pr{p = 0) = 0.0679

B. Exponential: Y = X(1 - eF), with constant.

In(l-Y./X) = Y+ oE; + £
0.02158 -0.0028
(3.1733)(-13.350)

A2
df =7, R =09568, DW=1.1146, Pr(p = 0} = 0.0278

C. Exponential: Y = X(1 - e'“E), without constant.
In(1-Y{/X) = aE; + €
-0.0022
(-15.632)

A2
df = 8, R = 0.9078", DW =0.9122, Pr(p = 0) = 0.0332

*The t-ratios are given in parentheses below estimates of the
coefficient.

*The R statistic is not a valid measure of fit when the intercept is
suppressed.
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Table 3. A listing of the BASIC Program to Calculate the
Stochastic Equilibrium and to Adaptively Manage Based
on Estimates of Current Biomass

DATA 0.25E~2,250000,0.04,0.25,110,250000
READ A,C,D,M,P,R
B=— (P*A*R#* (D+M)+C* (1-M) #D) / {(P*A* (D+M) )
N==C* (1~M) ¥R/ (P*A* (D+M) )
XR=(-B+SQR(B"2-4*N)) /2
ER=-LOG ( (XR-R) / ((1-M) *XR) } /A
YR=XR* (1-EXP (-A*ER) )
PRINT:PRINT "Long-Run Average Biomass=";XR
PRINT:PRINT "Long-Run Average Effort=";ER
PRINT:PRINT "Long-Run Average Catch=";YR
PRINT:INPUT "Do you want to Adaptively Manage? Yes=1, No=0.":W
IF W=0 GOTO 200
PRINT:INPUT "Current Biomass=";X
NUM=C* (1+D) : DEN=P*A* {(D+M) *X+C* (1-M)
E=-LOG (NUM/DEN) /A
Y=X* (1-EXP (~A*E) )
PRINT:PRINT "Current Biomass=";X
PRINT:PRINT "Recommended Effort=";E
PRINT:PRINT "Recommended Catch=";Y¥Y
END
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Table 4. Stochastic Equilibria and Adaptive Management

A. Base-Case Parameter Set

o = 0.25E-2, ¢ = $250,000, & = 0.04,
M = 0.25, p = $110, R = 250,000 mt

Xg = 957,748 mt Eg = 6 vessels Yr = 14,083 mt
When X = 1.0E86, E =11, Y = 27,128
X = 1.5E8, E = 67, Y = 230,159

X = 2.0E6, E = 115, Y = 501,441

B. a = 0.20E-2

No commercial fishery in the long run. Vessels not sufficiently
productive.

When X = 1.0E6, No commercial fishery. Stock too low.

X = 1.5E6, E = 43, Y = 122,881
X = 2.0E6, E = 96, Y = 349,730

C. o =0.30E-2

Xr="883;051-mt Er=15vessels Y, =-38,083-mt

When X = 1.0E6, E = 28, Y = 81,921
X = 1.BE6, E = 81, Y = 321,930

D. c = $200,000

Xg = 867,361 mt Egr = 21 vessels Yr = 44,213 mt

When X = 1.0E6, E = 40, Y = 94,668
X = 1.5E6, E = 104, Y = 342,837
X = 2,0E6, E = 159, Y = 655,897
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E. c = $300,000

Table 4 cont.

No commercial fishery in the long run. Fishing too costly.

When X = 1.0E6,
X = 1.5EG,
X = 2.0E6,
F. 6 = 0.02

Xg = 958,887 mt

When X = 1.0E6,
X = 1.BE6,
X = 2.0E6,
G. 6 = 0.06

Xg = 956,702 mt

When X = 1.0E8,
X = 1.BES,
X = 2.0E8,
H M=0.20

Xg = 1,075,564 mt
When X = 1.0ES,
X = 1.5E6,
X = 2.0E8,

No commercial fishery. Stock too low

E = 40,
E = 84,

Er = 6 vessels

E = 10,
E = 64,
E =110,

Ep = 6 vessels

E =12,
E =70,
E = 120,

E =9,
E = 56,
E = 98,

38

Y = 142,002
Y =377,113

Yg = 13,704 mt
Y = 25,788

Y = 220,201
Y = 482,143

Yg = 14,432 mt

Y = 28,414
Y = 239,956

Y = 519,553

Yg = 43,609 mt

Y = 22,656
Y = 195,652
Y = 433,735



Table 4 cont.

I. M= 0.30

No commercial fishery in the long run. Natural mortality too high.

When X = 1.0E6, E = 13, Y = 31,657
X = 1.5EG, E =77, Y = 262,887
X = 2.0E6, E =132, Y = 563,536

J. p=%100/mt

No commercial fishery in long run. Price too low.,

When X = 1.0E6, E=0, Y=0
X = 1.5E8, E = 52, Y = 183,544
X = 2.0E8, E = 98, Y = 436,090

K. p=$120/mt

Xg =921,131 mt Er = 12 vessels Yr = 26,289 mt
When X = 1.0E6, E = 22, Y = 52,823
X = 1.5E86, E = 81, Y = 273,585
X = 2.0E8, E =132, Y = 561,549

*Vessel numbers are rounded to nearest whole vessel. Catch is

.. rounded to nearest whole.metric ton. - Catch is calculated before - -

rounding effort. Thus, fractional effort less than 0.5 vessels may give
rise to slightly different catch for same biomass (Subcase H to J when
X = 2.0E8).
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Figure 1. The Long-Run Stochastic Equilibrium
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Figure 2. A Depiction of the Approximately-Optimal Feedback Policy
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