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Resource Economics:

Five Easy Pieces

Abstract
As in music and athletics, the déveloprnent of technique and
confidence in applied economics typically requires practice and
exercise. The field of resource economics confronts both student and
instructor with a difficult set of problems in static and dynamic
optimization. This paper presents five numerical problems dealing
with optimal forest rotation, management of a fishery, optimal

depletion of an exhaustible resource, optimal static externality and

—control of a stock (dynarmc) --pol-lut-ant: s By Working---th-rough-----these------- e

problems the student should gain a better understanding of the
economic theory underlying much of the recent literature in resource
economics and see how the theory might be extended in new and

important ways. A perverse few might regard these problems as fun.







Resource Economics:

Five Easy Pieces

Aspiring pianists frequently polish their skills by working
through a set of compositions, often collected into a practice book and
given a title like Five Easy Pieces." These pieces are selected to
develop technique and confidence; something sought in therarts,
athletics and perhaps the applied fields of economics. This paper
contains five numerical problems which students of resource
economics might find helpful in strengthening their command of
theory. and enhancing their ability to "perform" applied research.

The problems presume an understanding of the maximum
principle. No attempt is made to dévelop or review basic theory.
~ Widely known results, from say forestry or bioeconomics, are simply
stated, with references provided for those wishing to review the
theory or the detailed derivation of specific formulae.

As in much of economics, the conditions for optimal resource
allocation are often derived from the first-order conditions for an
optimization problem. With appropriate concavity the first-order

conditions become a system of equations whose solution yields the




optimal allocation. For the simple (small-dimensioned) problems
presented in this paper, elimination of variables might lead to a single
equation in one unknown. For example, the Faustmann Formula in
forestry or the "fundamental equation of bioeconomics” are single
equations defining the optimal forest rotation and resource stock,
respectively. Occasionally the equations will allow the derivation of an
explicit expression for the optimal variable; that is, where the optimal
variable is isolated on the left-hand-side (LHS) of an equation whose
right-hand-side (RHS) is simply a function of constants and
parameters. More often, when general optimality equations are
evaluated for specific functional forms, they may only lead to an
implicit expression for the optimal variable; that is, where the
variable cannot be isolated and equated to a function of constants and
parameters. In this case the unknown variable might be solved for
using a numerical algorithm. The algorithm used for the problems
dealing with forestry and fishery management is Newton's Method. It
is briefly reviewed in the. next section. In the remaining sections
problems dealing with optimal forest rotation, fishery management,
depletion of an exhaustible resource, static externality, and control of
a stock pollutant will be posed and solved. Some extensions of these

problems are briefly discussed in the final section.
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Newton's Method

Suppose a set of first-order conditions may be reduced to a
single equation written implicitly as

GxP)=0 (1)
where x is the remaining unknown and P is a vector of parameters. If
the original optimization problem satisfied the appropriate concavity
assumptions for existence and uniqueness, then the optimal value for x
is the root (or zero) of G{x,P). Newton's method is one of several ways
to numerically solve for the root of an implicit equr::ﬁdon.2 It requires
that G(-} be continuous in x and have a continuous first derivative. The
method is simple to code in any computer language and a 10 line
program in BASIC is listed in Table 1. This program is used in the

optimal forest rotation problem presented in the next section and

__here we will only discuss the logic behind the program's structure,

The parameters to the function G{+) are entered and read in
lines 10 and 20. Line 30 requests a guess for the unknown variable, in
‘this case the optimal rotation length, T°. This guess serves as an
initial condition for a process of adjushneﬂt which will hopefully
converge to within some &£ of the unknown optimal rotation.

After entering the guess for T°, line 40 calculates values for two

expressions (Q and E) which appear in G(-) and its derivative and their
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definition in line 40 shortens the amount of code to be written in lines
50 and 70. Line 50 calculates the value of G(-) based on the initial
guess and line 60 determines if G{+) is sufficiently close to zero. In
this example the root has been found if the absolute value of G{:) is less
than & = 0.0001.

In the unlikely case that an initial guess was sufficiently close
to the root (1G{)| < &), line 60 would instruct the computer to go to
line 90 and print the result, calling it T*. If it were not sufficiently
close (1G(+}| > ¢) the computer proceeds to line 70 where it calculates
the value of the derivative G'(-), defined as DG in'the code. The
derivative of G(+) is used in updating the guess for T' according to line
80 where the new guess is equal to the old guess less the ratio
G(-)/G'(*). The computer is then directed back to line 40 where it
recalculates Q and E, then to line 50 to calculate G, and so on. Fora
formal derivation of this updating formula and a graphical portrayal of
the process of convergence see Conrad and Clark (1987).

Newton's method can be extended to the solution of
simultaneous equations where it is referred to as the Newton-Raphson
method. While these methods al;e useful, there is no guarantee that

the zero(s) will be found. Convergence may depend on the initial



guess and on £. In Figure 1 we show a plot of G from line 50 for the
parameter values in line 10. By inspection the zero appears at about
37. If an initial guess of 20 is entered the algorithm drives T toward
zero where G'(+) is undefined and an overflow error is given. Further,
if uniqueness is not guaranteed a priori there may be multiple zeros
and the particular zero found by the algorithm will again depend on
the initial guess. With these pitfalls in mind we proceed to our five

numerical problems.

Optimal Forest Rotation
One of the oldest questions in forestry is concerned with the
optimal time to cut an even-aged stand of trees. The interval between

planting and cutting is called the rotation length. The Faustmann

~ formula can be used to solve for the rotation length which maximizes

the present value of net revenues from an infinite series of rotations.
Let Q(t) represent the volume of merchantable timber in the
current stand. Assume the parcel of land was just planted with
seedlings and will require no thinning. It will be cut at some unknown
date T years into the future and immediately replanted. If p is the
price per unit of timber and c is the cost of of cutting and replanting,

then the net revenue at t = T is N{T) = pQ(T) - ¢. The present value of
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this single rotation is N = {pQ(T} - c¢] e-%T, where 8 is the instantaneous
rate of discount.

With price, cost, the discount rate and soil productivity
unchanging the rotation length is unchanging and the present value of
an infinite number of future rotations is given by

_ [pQ(T) = cl

V = [pQ(T) - e {1 +e Ty 3= 1] (2)
e -1

The Faustmann formula is derived from the first order

condition dV/dT = 0 and requires

pQ'(T) &
pAM -cl = (1 -

(3)

The above expression can be shown to imply

pQ'(T) = 8[pQ(T) - c] + &V (4)
‘which has a nice economic interpretation. The optimal rotation
equates the marginal value of waiting, pQ'(T), to the marginal cost of
waiting, which is in turn comprised of two components: the interest
payment foregone on the current stand, 3[pQ(T) - cl, and the interest
payment foregone by a marginal delay of all future stands, 8V. This
latter cost term is also the rental value of the parcel in a competitive
land market and is frequently referred to as "site value.” [See
Johansson and Lofgren (1985) and Clark (1976} for additional details].

A functional form for Q(t) which provides a good fit for many
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commercially grown species is

Q) =e*""" (5)
A graph of the function is shown in Figure 2. The volume of timber
will asymptotically approach e®. The rotation that maximizes Q(T}/T,
sometimes called mean annual increment, is T = b.

The Faustmann formula leads to the implicit equation

G = p@(MA - ) - 8[pQ(T) - c] = 0 (6)
With the above form for Q(T) we note that Q'(T) = e2 -P/T(b/T2) =
bQ(T)/T?, yielding the specific form for G given in line 50 of Table 1.
The derivative of G is a bit messy, but some perseverance will show it
to be equal to DG defined in line 70.

The optimal rotation will thus depend on the parameters a, b.

¢, 5 and p (see line 20). Gamponia and Mendelsohn (1983) estimate

 that a = 13.06 and b = 145.61 for Douglas fir grown on a high quality

site. If ¢ = 150, 8 = 0.1 and p = 100, then the optimal rotation length,
from an initial guess of 30, is T* = 37.72 years. If the discount rate is
changed to § = 0.05 the optimal rotation increases to T" = 51.91 years.
The comparative statics of changes in a, b, ¢, and p can be numerically
explored and conform to the analytical results in the literature. [See

Johansson and Lofgren (1985), pp. 80-85].



Fishery Management
A fairly general problem in the management of a single species
fishery is to

maximize J WX, Y) e dt
0

subject to X=FX-Y
where W({X,Y) is a welfare or net benefit function, dependent on the

fish population (or stock) X and harvest Y, and where F(X) is a growth

function. 'The current-value Hamiltonian is
H = WEXY) + ulFE) - Y (7)

First-order conditions include Wy =y and u - 8 = -Wx —uF'(X), where

Wy and Wy denote partial derivatives. In steady state we obtain

W.

. X _
F(X)fW;—B_ (8)

With Y = F(X), equation (8) will become a single equation in X*, the
optimal steady-state stock. The left-hand-side of (8) may be
interpreted as the resource's 6wn (internal) rate of return. X' is
determined so as to equate that internal rate to the rate of discount, 8.
The resource's rate of return has two components; the biological rate,
F'(X), and what has been referred to as the "marginal stock effect”,

Wy /Wy (Clark and Munro 1975).°



Let E denote fishing effort (an aggregate economic input) and
assume the production function Y = gXE and the cost equation C = cE,
where q > O is called the "catchabﬂity coefficient” and ¢ > 0 is the cost
per unit effort. These forms will imply ¢(X) = ¢/{gX) as the stock-
dependent average cost function.

With logistic growth, F(X) = rX(1 - X/K}. The parameters r and
K are referred to as the intrinsic growth rate and the environmental
carrving capacity, respectively. Collectively the entire model is
referred to as the Gordon-Schaefer model and in this case equation
(8} permits an explicit solution for the steady-state optimal stock, X,
as a function of the bioeconomic parameters c, 8, K, P.q and r.

Specifically

This fortuitous outcome (an explicit solution for X'} is the
exception rather than the rule. More often, equation {8) will result in
an implicit equation that might be solved numerically for a given set of
parameters. For example, the Gompertz growth function takes the
form F(X} = rX In(K/X) with the derivative F'(X) = r{ln (K/X) - 1]. If we
retain the same production function and cost equation, so that c(X) =

¢/(gX) and c'X) = -¢/(gX?), then equation (8) leads to

X[ e /Y
X”4[quH r+'\/ pek * ' 7 T) T park ©)



G=[rInK/X)-(r+8pgX+{+dc=0 (10)
with the derivative |

DG = Ir In(K/X) - (2r + 3)lpq | 1

Table 2 contains a BASIC program, again using Newton's
method, to solve for the optimal population when ¢ = 1,8 =0.1, K =1,
p=2,g=1andr=1 Froman initial guess between zero and one
the optimal stock is X* = 0.7169. From numerical analysis we would
infer dX*/dc > 0, dX*/d8 < 0, dX*/dK > 0, dX"/dp < 0, dx*/dq < 0, and

dax’/dr > O.

Optimal Depletion of a Nonrenewable Resource

Let R denote the remaining reserves of a nonrenewable
resource at instant t. With no exploration or discovery of new
reserves, R would decline over time according to R = — q, where q is
the rate of production. Suppose the net benefits to society are strictly
a function g and given by B(q) at instant t. With initial reserves of R(0)
the problem of maximizing the present value of net benefits may be
stated

T ~5t
maximize J B(g) e dt
0

subject to I.2= - g, R2 0, R(0) given

‘The current-value Hamiltonian is simply
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H = B(q) - uq (12)
with first order necessary conditions that include B, = p and
|:l- 8 = 0. The latter condition implies that the current-value shadow
price on remaining reserves is growing at the rate of discount. The
transversality condition is H(T) = 0, which with w(T) > O will imply
q(T) = R(T) = O and the optimal date of exhaustion is determined so
that cumulative production just equals initial reserves.

Suppose extraction costs are zero and that marginal net benefit
equals price defined by the inverse demand curve

bg

p = ae” (13)

where a > O and b > 0. Then B, = u = p implies f:L= ae ™ (—bE]) and

1:1— oy = 0 implies q = —3/b which can be integrated directly yielding

q = ¢ - &t/b, where c is a constant of integration. Att=T, g(T) = 0

q =(T-15/b (14)

and production is seen to decline linearly over time,

The exhaustion constraint requires

& (T 5T
R(O)—EL (T~ dt= 2 (15)

implying that the date of exhaustion is T = V2bR(0)/3.

ForRO)=1,b=5and § = 0.1 we obtain T = 10 and
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q' — 0.02 (10 — t) as the optimal time path for production. For other

inverse demand curves it is unlikely that the exhaustion constraint will
lead to an explicit equation for T and one may need to solve for T as

the zero of an implicit expression.

Bees, Honey and Almonds

One of the classic examples of a positive externality involves
the pollination services provided by bees as they collect nectar for the
production of honey {(Meade 1952)*. Consider the grower whose
production of almonds benefits from pollination by a neighbor's bees
according to the production function

A= 10VX( + 0.4VB) (16)
where A is the output of almonds, B is the number of hives put out by
the neighboring beekeeper and X is an aggregate input representing
other factors of production. Assume the bees can derive nectar from a
variety of sources (for free) and the production function for honey, H,
depends only on the number of hives so that

H = 40VB | (17)

Suppose the unit cost of X is w = 0.5, the unit cost of operating

a hive is ¢ = 20, the unit price of almonds is normalized to p, = 1 and
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the unit price of honey is p;, = 5. In isolation the beekeeper would
seek to maximize profit given by

©h = 200VB - 20B (18)
and dn,, /dB = O requires B = 25. |

To have a well-defined problem we assume that the almond
grower can observe his neighbor and given B = 25 will seek to
maximize

T, = 10VX(1 + 0.4V25) - 0.5X = 30X - 0.5X (19)
Then dr,/dX = O implies X = 900. This solution is not optimal and
from society's point of view the number of hives and the amount of
honey and almonds is deficient.

The optimal levels for B and X are found by maximizing

n=10VX(1 + 0.4VB) + 200VB - 0.5X — 20B (20)

...The.equations.which. result from. drn/dX = 0.and.dn/dB.=.0.can be solved........ ...

simultaneously to yield B* = 100 and X* = 2,500. In isolation the
beekeeper's profits are x, = 500, while the almond grower nets n_ =
450. At (X*,B) the almond grower earns profits of n, = 1,250, while
the beekeeper nets nothing (x, = 0). Obviously compensation of at

least 500 would have to be offered to the beekeeper for him to

increase the number of hives to B* = 100. The almond grower could

offer up to 800 and still achieve a profit of 450, which was earned in
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isolation. Thus, there is an incentive for negotiation and (X* B") might
be supported by a payment of between 500 to 800 from the almond

grower to the beekeeper.

Control of a Stock Pollutant

Let X now denote a stock pollutant; that is, a pollutant which
can accumulate or degrade over time depending on the rate of residual
discharge, R, and the rate of decomposition. The dynamics of the

stock pollutant are given by
X=X +R 1)

where v is the rate of biodegradation.

The residual is jointly produced with the positively-valued
commodity @ according to the commodity-residual transformation
function, written implicitly as

$(Q.R)=0 (22)
By convention we assume the partials ¢5> 0 and ¢, < 0. A graph of the
transformation curve implied by ¢(Q,R) = 0 is shown in Figure 3. It
assumes the existence of a fixed resource that may be allocated to
commodity production or residual reduction (pollution control). If
desired it would be possible to produce @ = Q¢ with no residual
discharge, R = 0. If additional units of Q are desired the fixed

14



resource must be reallocated from residual reduction to commodity
production, resulting in R > 0. If all of the resource is allocated to
commodity production then Q = Quax and R = Ryax.

Suppose the net benefits from Q and the social cost from X are
evaluated according to the concave function

W =wW(Q,X) (23)
with partials Wg > 0 and Wy < 0. The problem of maximizing the
present value of net benefits subject to the dynamics of the stock
pollutant and the transformation function may be stated as

maximize J: W(Q,X) et dt

subject to I:(= X +R

*Q.R) =0

The current-value Hamiltonian for this problem is

H = W(Q,X) + p(—X + R) — 06(Q.R)
where g < O is the shadow price on the stock pollutant and o > 0 is

the multiplier associated with the transformation function.

The first order conditions include Wg = g, B = iy and

;:L - o = - (W — uy). In steady state these conditions imply

Wgor Wy

% " G+Y (25)

15
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The left-hand-side of (25} may be interpreted as the the marginal
value product from an incremental increase in R which allows an
incremental increase in Q. (0g/9q 18 the marginal rate of
transformation of R for @Q}. On the right-hand-side we have the
marginal social cost in perpetuity for the increase X that must also
accompany the increase in R according to the steady-state relationship
X =R/y.

Consider the case where W = pQ - ¢x?ando=Q-b-nR=0.
Such a situation might arise in a small country or region which exports
Q at constant world price p, but faces local environmental costs which
increase at an increasing rate according to the quadratic term cX?.
The transformation curve is linear with Qo =b and ¢p/¢g = - n. For
these forms equation (25) may be solved for the optimal steady-state

pollution stock yielding

. npB+7y)

X = e (26)

The comparative statics are immediately apparent: an increase in n. p.
§ or y causes an increase in X*, while an increase in the social cost
parameter, ¢, causes a decrease in the optimal pollution stock.

For these forms the current-value Hamiltonian is linear and the
most rapid approach path (MRAP) is optimal (Spence and Starrett
1975). In this case ifX>X.R=0, whileif X<X°, then R = Ryax. In
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the first instance, where the current pollution stock exceeds the
optimal stock, residual discharge is zero (and Q = Q) and the stock
decays according to X = X(0)e™. In the second instance, where the
pollution stock is below the optimal stock, R = Ryyax and the stock

accumulates from X(0) according to

R R
X = 1\f/”‘x+[_X(o)-__ “;Ax}e‘ﬁ (27)

By way of a numerical example, if b = 3.5, ¢=0.01,8=0.1, y=
0.2, n = 0.5 and p = 1 equation (26) implies X* = 7.5 and the state
equation ;'md transformation function imply R* = 1.5 and Q* = 4.25. If
Rpax = 2.5 and X{0) = O then the pollution stock will accumulate
toward X* according to X = 12.5(1 - e %Y. It will take until t* = 4.58

for X to reach X* = 7.5. The complete solution is shown in Figure 4.

EXtenSions B
There are numerous deterministic and stochastic extensions to
the preceding problems. We conclude with a brief discussion of some
of the deterministic problems which have been examined.®
What if a stand of timber provides a flow of nontimber benefits
such as wildlife habitat for small game or recreation benefits for

hikers? The Faustmann formula can be modified so that the optimal
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rotation accounts for these continuous nonmarket benefit flows. For
the derivation of such a formula, a discussion of the likely affect on
rotation length and possible corner solutions see Hartman (1976).

As a practical matter fishery management is likely to involve
conservation and employment objectives. Charles (1988a, 1988b)
reviews a growing literature on the socioeconomics of fisheries
management and derives a modified "golden rule" when giving positive
weight to employment (effort). The inclusion of a "preservation value”,
as would be appropriate for many marine mammals, has been analyzed
by Vousden (1973).

The literature on nonrenewable resources is now quite vast,
containing a rich selection of refinements and extensions to the
seminal work of Hotglling (1931). For an interesting piece on the
price implications of exploration and discovery see Pindyck (1978).

For a "gallery" of static models of externality see Baumol and
Oates. For some dynamic models see Keeler, Spence and Zeckhauser
(1972), d'Arge and Kogiku (1973), and Conrad (1988a, 1988b).

The problems contained in this paper are meant to illustrate
some of the basic theory in resource economics. Mastery of these
concepts can provide an entree to a large and growing literature

important to the managment of resources and environmental quality.
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Endnotes
! Moviegoers may recall the 1970 film Five Easy Pieces
starring Jack Nicholson and Karen Black. Nicholson plays the prodigal
son of a famous musician. The film's title refers to a practice book

from Nicholson's more innocent youth.

2 Interval bisection is another method which is easily coded for
the computer. For details on this method and others see any

introductory text on numerical methods, for example Henrici (1982).

3 Clark (1976) originally derived the equation

o COOFX)
FQO+ 500 -

as a singular solution for the special case where W(X)Y) = [p - c¢(X)]Y, p

being the per unit price for fish and c¢(X) being stock-dependent
average cost. Derivation of equation (8} was left as an exercise. (See

Clark 1976, pp.176-177).

4 For additional information on the type of technological
interdependence that can occur between growers and beekeepers see

Cheung (1973) and Johnson {1973). The role of contracting is
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discussed and empirical evidence suggests that the market for
pollination services may have “internalized” this static externality.

These articles are summarized in Hartwick and Olewiler (1986, pp.

432-435).

5 For a brief introduction to some stochastic models see Conrad
and Clark (1987, Chapter 5). For a more thorough presentation see

Mangel (1985).
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Table 1. A Program to Solve for the
Optimal Forest Rotation when

Volume is given by Q(t) = ¢ b/t

10 DATA 13.06,145.61,150,0.1,100
20 READ A,B,C,D,P

30 INPUT "GUESS FOR T=":T

40 Q=EXP(A-B/T):E=1-EXP (~D*T)

50 G=P*B*Q*E/(T~2)~-D* (P*Q-C)

60 IF ABS(G)<.0001 GOTO 90

70 DG=E#* (P¥B*Qx (B-2%T) / (T~4) -D*P*B*Q/ (T+2) )
80 T=T-G/DG:GOTO 40

90 PRINT "T#=M,p

100 END

Table 2. A Program to Solve for the Optimal
Fish Stock with Gompertz Growth,
F(X) = X In(K/X)

10 DATA 1,0.1,1,2,1,1

20 READ C,D,K,P,Q,R

30 INPUT"GUESS FOR X#*=":Y¥

40 G=(R*LOG(K/X)—(R+D))*P*Q*X+(R+D)*C
30 IF ABS(G)< .00001 GOTO 80

o0 won RALOG(K/X) - (24R4D) ) #Pag

80 PRINT"X#=w,y
90 END
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Figure 1. A Plot of G from Line 50 of Table 1
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Figure 2, A Graph of the Volume Function
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Figure 3. A Graph of the Commodity-Residual

Transformation Curve
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Figure 4. The Most Rapid Approach Path to the
Optimal Pollution Stock X" = 7.5

from X(0) =0
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