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EXECUTIVE SUMMARY

The lingering effect of advertising has led analysts interested in
generic commodity promotion to place the issue In a dynamic setting.
Thus far, attention has been focused on quantifying the sales-
advertising relationship within the context of distributed-lag type
econometric models. An important application of sales-advertising
models is to simulate future sales under various levels of advertising
expenditures~ -in order to identify an optimal spending policy for
promotion agencies. However, a serious drawback of this.approach isg
that the truly optimal solution may be missed since it is impractical to
exhaust all possible policy scenarios in the simulation. Additional
complications are introduced if the interest is in long-term policy, in
which a time pattern for the spending must also be zelected.

In light of these problems, identifying a more comprehensive

optimization framework is highly desirable. In the search for an
alternative approach to advertising research, several dynamic
optimization techniques are available, including mathematical

programming and dynamic programming. In addition, an approach which has
had increasing use is optimal control theory. The existing body of
literature on applications of control theory to firm advertising could
be adapted to generic commodity promotion. To facilitate the
“adaptation, 1t would be USSEUl to  haVe A &yAthesis of “the diverss
advertising control literature, which has been developed over the past
thirty years by economists, operations researchers, and management
scientists,

This paper presents a technical survey of three classes of
advertiging models in the context of contrel theory: capital theoretic
models, sales response models, and diffusion models. Nerlove and
Arrow's capital theoretic approach treats advertising as an investment
of the firm on goodwill which affects current and future sales. 1In
Vidale and Wolfe’s sales response model, advertising is viewed as a
means to capture up to some saturation point the uncaptured portion of

the market. Gould’s diffusion approach to advertising explicitly admits



the interaction between the uncaptured and the captured portions of the
market through word-of-mouth.

Not sﬁrprisingly, the different classes of models describe
different promotional environments and, hence, prescribe quite different
promotion strategies. To simplify the issue, two groups of models, each
with a corresponding advertising policy prescription, can be identified.
In the context of generic commodity promotion, the first group has to do
with media advertising while the second group involves word-of-mouth
type promotion such as nutritional education programs. In the latter
case, promotion is viewed as a scheme that encourages contact between
the user and the nonuser, which enhances information spread about the
good aspects of the promoted product.

For discussion purposes, it is assumed that there is a desired
level of sales which is larger than the current sales level. The task
of the promotional unit is to drive sales to the desired level by
adopting an optimal advertising spending pattern over time. What is the
optimal spending pattern? _

In the case of media advertising, the policy prescribed by the
model is the following. If there are diminishing sales returns to
advertising, it is preferable to:.reach the goal gradually’ rather” than
achieving it immediately because the expense of additional sales
increases at an Increasing rate as sales expand. Further, the spending
pattern is to advertise most heavily in the early periods in order to
gain momentum and then to decrease the level of advertising efforts
gradually as the sales level approaches its desired state. On the other
hand, if sales returns to advertising are believed to he constant, the
optimal policy is to advertise the maximum allowable amount right away
and achieve the desired sales level as rapidly as possible. In either
case, once the desired sales level is attained, the optimal policy is to
spend just enmough to maintain that level of sales.

In the case of word-of-mouth type promotion, the optimal policy is
to begin with a low level of expenditures and build sales up to a
"critical level” which is less than the equilibrium level. Once that
critical level of sales is reached, the expenditure pattern is to
advertise heavily initially but cut back spending gradually until sales

approach the desired level. Similar to the case of media advertising,



once the desired sales level is attained, the policy is to spend just
enocugh to maintain that level of sales. The reason that the prescribed
policy does not begin with a high level of promotion is because it makes
little sense to spend a lot of money to enhance contact between the user
and nonuser unless the number of users is large enough to effectively
spread the information. Thus, it is only optimal to increase the
contact rate gradually as the number of users increases over time. Once
a certain "ecritical mass" is reached, the optimal policy is similar to
the case of media advertising; spend heavily to gain momentum initially
and reduce éffort gradually as sales approach the desired level,

The underlying models on which the above policy prescriptions are
based are by nature firm oriented, and therefore the strategies outlined
must be adapted to generic commodity promotion. To reflect the economic
environment in which the commodity promotion program operates, the model
must be extended to account for such issues as supply response,
government reaction in support policy, and the allocation of funds
between primary and secondary markets. As the model bhecomes more
realistic and thus more complex, it is less 1likely that an analytic
solution will be obtainable, in which case obtaining an empirical
gsolution may be the only alternative. Empirical research requires
empirical observations, suggesting the need for a continuing effort on

quality data collection.
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In Search of Optimal Control Models for Generic Commodity Promotion
Donald J, Liu and Olan D. Forker

INTRODUCTION

Generic commodity promotion is not necessarily a zero-sum game in
which producers gain and consumers pay. Promotion programs involve high
stakes and, if not well conducted, can result in substantial losses to
producers regardless of its impact on consumers. The size of the
poternitial ~ losses” emphasizes the importance of improving —our
understanding of the economics of advertising in order to increase the
efficiency of promotion efforts.

The continuing effects of advertising on sales after the original
period of expenditure is a well recognized phenomenon in the literature
(Kinnucan, 1985). The lingering effect of advertising has led analysts
interested in generic commodity promotion to place the issue in a
dynamic setting. Thus far, attention has been focused on quantifying
the sales-advertising relationship within the context of distributed-lag
type econometric models (e.g. Kinnucan, 1982; Liu and Forker; Nerlove
and Waugh). In such models, an ex-post evaluation of the costs and
benefits of promotion program is made by comparing actual sales during a
given period with a sales level simulated under the assumption of no

advertising effort. The dynamic simulation is based on econometric

“estimates of the relationship between promotion expenditiures and sales.

Another important application of sales-advertising models is to
simulate future sales under wvarious levels of advertising expenditures
in order to identify an optimal spending policy for promotion agencies.
However, a serious drawback of this approach is that the truly optimal
solution may be missed since it is impractical to exhaust all possible
policy scenarios in the simulation. Additional complications are
introduced if the interest is in long-term poliecy, in which a time path
must also be selected. In light of these problems, identifying a more
comprehensive optimization framework is highly desirable.

In searching for an alternative approach to advertising research,
several dynamic optimization techniques are available, including

mathematical programming and dynamic programming. In addition, an




approach which has had increasing use is the state-space optimal control
theory (Pontryagin, et al.). The existing body of literature on
applications of control theory to firm advertising could be adapted to
generic commodity promotion. To facilitate the adaptation, it would be
useful to have a synthesis of the diverse advertising control
literature, which has been developed over the past thirty years by
economists, operations researchers, and management scientists.

This paper surveys three classes of advertising models in the
context of control theory: capital theoretic models, sales response
models, and diffusion models. Both the linear and nonlinear versions of
the models are discussed. Nerlove and Arrow's capital theoretic
approach treats advertising as an investment of the firm on goodwiil
which affects current and future demand. In Vidale and Wolfe's sales
response model, advertising is viewed as a means to capture up to a
saturation point the uncaptured portion of the market potential.
Gould's diffusion approach to advertising explicitly admits the
interaction between the uncaptured and the captured portions of the
market either through inanimate media advertising (Stigler-Gould) or

through word-of-mouth (Ozga-Gould).

The overall goal of the paper is to compare- the different policy -

prescriptions which are yielded by each class of models. Not
Surprisingly, the different classes of models indicate quite different
strategies. To understand the source of the differences in poliey
recommendations and hence their empirical relevancy, various models in
each ‘class are presented, along with comments on linkages among models.
The discussion also includes observations about the empirical
feasibility of the models, as well as differences in data requirements.
This research is intended to provide researchers with a review of how
control theory has been used to study advertising and to suggest the

potential for extending the methodology to generic promotion analysis.



CAPTTAL THEORETIC MODELS

The hypothesis that the effect of advertising persists for some
period of time after the initial expenditures occur has led a number of
economists to treat advertising in a manner analogous to investment in
durable goods. An investment in a durable good results in a stock of
"production capital" that affects the present and future character of
output and, hence, the present and future net revenue of the investing
firm. An investment in advertising results in a stock of "demand-.
generating capital” that affects the present and future demand for the
product and, in turn, the present and future net revenue of the firm

whose product has been advertised.

Nerlove-Arrow Linear Cost Model

Nerlove and Arrow call this stock of demand-generating capital
"goodwill" and view it as a continuous variable which summarizes the
effects of current and past advertising outlays on demand. Since
consumers tend to forget the advertising messages over time, a dollar
spent yesterday should contribute less than a dollar spent today. To
capture this phenomenon, Nerlove and Arrow postulate that goodwill, like
capital, depreciates over time at a constant proportional rate § (0 < §
< 1). Dencte A(t) as the level of goodwill stock at time t, A'(t) as

the time derivative of A(t), and u(t) as advertising expenditures at

time t. Also, let w be the uﬁit.ﬁriceuéf.gbddﬁiii“{ﬁﬂiéﬁmisméééﬁﬁéd.Eémm..'

be §1 in Nerlove and Arrow) and ¢=1/w. The evolution of the goocdwill
for a given level of A at the initial time (t=0) can be characterized
by:1
(2) A'(t) = ¢ u(t) - § A(tr), with A(0)=A,.

Equation (2) says that net investment in goodwill (A’(t)) is equal
to grogs investment in the stock (¢ u(t)) minus depreciation (§ A(t)).
Though goodwill is mnot observable, consumer dispesition such as

attitudes toward the advertised product can be surveyed and used as a

1 The argument t of the variables will frequently be suppressed for
conciseness. In this paper, the following notational rule will be used
throughout. If Q(x,t) is a function of x and t, then Q. and Q' will be
used to denote the derivative of Q with respect to X and time,
regpectively.



Proxy. Accordingly, (2) can be subjected to econometric estimation,
providing that the expenditures data {u(t))} are alsec available. The
objective functional is the present value of net revenue streams
discounted at a fixed interest rate r:

(1) max [ 7T [M(A(L),Z(t)) - w(t)] at.
| {u(c)}

In the above, II(A,Z) is the profit before advertising expenditures
and it follows the usual concavity assumption (I, >0, Iyp <0, for A =
0), while Z is a wvector of exogenous variables. More specifically,
H(A,Z) equals {P(A,7) Q(A,Z) - G(Q)), where P(A,Z) and Q(A,Z) are the
market equilibrium price and quantity for the commodity being promoted
and C(Q) is the aggregated costs of production. Note that P{A,Z) and
Q(A,Z) can be regarded as the reduced-form equations derived from a
corresponding market equilibrium model, 2

Though not imposed by the original authors, in order to reflect
budgetary considerations, it is desirable to impose a maximum level of

allowable expenditures u™®% on grogs investment of goodwill:

(3) 0 = u(t) = u@¥,
Subject to the evolution of "state wvariable" A in (2) and the

constraints on "control variable" u in (3), the objective is to choose a

plecewise continuous advertising policy {u(t), te(0,«)) in such a way

that (1) is maximized.3 Since the assumption of a constant unit

2 In Nerlove and Arrow's original formulation, the control u is the
gross investment on goodwill, rather than advertising expenditures,
Thus, their model takes the following form:
(a) max [p" 7T [m(A(E),Z(t)) - w u(t)] de,

{u(t))
(b) s.t. A'(t) = u(t) - § A(t), with A(0)=Aq.

The two formulations are identical in the sense that they both
describe the same economic process. However, equation (b) cannot be
estimated directly even if an observable proxy is used for goodwill
because the gross investment of goodwill u is not observable. Also,
Nerlove and Arrow define profit before advertising costs as R(P,A,Z) = P
Q(P,A,Z) - C(Q), as they are mainly concerned with the case of monopoly,
Since the commedity promotion groups are not likely to have the ability

to set the price, Nerlove-Arrow’s monopolistic formulation is modified
here.

3 A characterization of the optimal goodwill investment policy for a
corresponding finite planning horizon problem is in Appendix A.

4



goodwill price makes it a very specialized case, the model will be

termed the Nerlove-Arrow Linear Cost Model. The formulation belongs to
the class called "linear control problems”, as both the objective
functional and the constraints are linear in the control wvariable u.
While Nerlove and Arrow use calculus of variations to characterize the
optimal goodwill investment policy, a more unified approach based on
optimal control theory will be used in this paper. As will be shown,
the c¢lass of linear control problems has a specilal characterization of
the optimal policy.

For -convenience, .assume Z(t) is. a constant and can be ignhored. To
analyze the optimal advertising policy, the current-value Hamiltonian
can be formed from (1) and (2):

(4)  H=TH(A(t)) - u(t) + ¥(£) [¢ u(t) - & A(L)].

In the above, ¥ is the current-value adjoint wvariable and it is
agsumed to be continuous. The adjoint variable can be interpreted as
the shadow price of the state A. Thus, the Hamiltonian can be
interpréted as the instantaneous profit which includes the cash flow IT -
u and the value ¥ A' of the new goodwill created by the net investment ¢
u - 6 A,

The next step is to account for the control constraints in (3), by
forming the current-value Lagrangian with A; and A, as the Lagrangian
multipliers associated with the constraints:

(5) L =H+ Ap(£) u(r) + Ap(r) [W™F - u(t)].
o Brom - (5) 7 one obtaing the usual "Kuhanuckermcondition":4w~m--~
(6) Ly=-1L+9%4+ X -2y=0,

Ay = 0, Ayu=0,

Ag = 0, Ao (U - u) = 0.

In accordance with Pontryagin’s maximum principle (e.g. Clark;
Kamien and Schwartz), additional necessary conditions are: (i) the
"adjoint equation", ¥'= ry - Hy, (ii) the "state equation" in (2}, (iii)
the "transversality condition" ¥{t) et = 0 as tow and, (iv) H,, = G.
In view of (4), condition (i) says that capital gain (¥’) of the state

and its marginal contribution to the cash flow (net of the opportunity

4 In the case where the budget constraint (3) does not appear in the
model, the Kuhn-Tucker condition will be replaced by the "optimality
condition" H, = 0.




costs on depreciation) must equal the time costs (ry) of holding the
capital. Gondition (1ii) specifies the endgame value of the state
evaluated at the present-value form. Finally, condition (iv) is to
ensure maximization, rather than minimization, and it is automatically
satisfied because of the concavity assumption on II(A).5

By inspection, the Kuhn-Tucker is equivalent to:

0 [ o) <0
(7 W) = uSe0, u™ax) if < o(t) = -1+ p(t) ¢ = 0
ytax o(t) | > 0.

In (7), o(t) is the coefficient of u in H (i.e. o=H,) and for the
obvious reason it 1s called the switching function. The control scheme
of (7) is called "bang bang"; u is at ite minimum level (i.e. zero)
while the shadow price of goodwill (¥) is less than its cost (w=1l/4) and
is at its maximum level (i.e. u™%y vhen the shadow price is above the

8

cost. However, interior control u® could be feasible on a path along

which the marginal condition ¢(t)=0 holds. Such a path 1s known as a
"singular" path which earns its name from the condition H ,=0 and which
is signified by the superscript s.

To determine the singular solution, note that the adjoint equation
P o=t - Hy is:

(8) %' = (xr+6) -1,

Again, equation (8) says that the capital gain (¥') and the
marginal contribution of the capital (Il,) must equal the opportunity
costs of holding the capital which include time costs {ry) and
depreciation costs (§%). From (7), ¥(t) = 1/¢ and, hence, %' = 0 along
the singular path. Given these, (8) becomes (r + §)/¢ = HA(AS), which
implicitly specifies the singular stock level AS. ‘

By the maximum principle, the optimal control is that policy for
which the singular goodwill stock A® be attained as rapidly as possible
and maintained thereafter (Clark, P.53). In other words, the optimal

path is the one which lies as close as possible to the singular path.

5 Since the integrand in (1) is jointly concave in u and A and the
state equation (2) is linear in u and A, the necessary conditions are
also sufficient for optimality (Kamien and Schwartz, pp. 122-123). 1In
the latter models to be discussed, the state equation is concave in u
and A. In such a case, sufficiency of the necessary conditions also
requires ¥(t) = 0 for all t.



Thus, as shown in Figure 1, if the initial stock of goodwill is AOI < A®
{(the case where o(t) > 0), it is optimal to apply u*(t) = W% yneil el
at where AS is attained. On the other hand, if the A(0) is AOII > AS
(the case where o(t) < 0), the optimal policy is u*(t) = 0 until tII at
where goodwill depreciates to AS, once A® is reached, apply the
singular control u® = §A%/4 so as to cover the depreciation and ride the
"golden path".6

Thus, the optimal advertising policy for the Nerlove-Arrow linear
cost model 1is characterized by a bang-bang control followed by a
singular control "with the property that the singular path is to be
approached as rapidly as possible. The attainment of the singular path
is desirable because it describes the equilibrium goodwill while the
most rapid approach strategy is due to the assumption that the cost of
adding to goodwill is constant (w). This policy characterization is
referred to as the "turnpike property" in which an automobile driver is
to approach the turnpike as fast as possible while obeying the speed
limit of the local highway.7

Nerlove-Arrow Nonlinear Cost Model

The assumption of constant cost of adding te goodwill in the
previous section is likely to be unrealistic and should be regarded as a
special case. This can be made clear by considering the cost function

as the dual from a production function that utilizes media and agency

services to produce gocdwill. Then the cost function should be convex
6 The time of switching (tI or tII) can be determined from (2). For
example, in the case where Ay < A®, the policy is u*(t) - WM ynril el
at where A% is attaimed. Thus, (2) becomes A' = ¢ umax g Aft)y, for
te[0,t7].  Given Ay and A%, it holds that t' = (1/6) In{(ays-
u™a%g) /(AS5-u™3%g)) | On the other hand, if Ay > A%, u*(t) = 0 until t!!
at where A% is attained. Thus, (2) becomes A’ = - § A(t), for

te[0,t1], implying t11 = (1/6)1n(ag/a%).

7 Note that in the special case where u™¥ = © and Ay < A%, the most
rapid approach is to jump instantaneously to A® by applying an "impulse
control” at t=0 of an appropriate magnitude and then follow the turnpike
for t = 0. This is the case considered in Nerlove and Arrow. On the

other hand, the control constraint u™®* may be so small that the
singular path i1s not attainable. For discussion of the optimal policy

on this latter case, see Appendix B.




if the production function has the usual concavity. In fact, this is
the underlying motivation for Gould to replace the linear cost function
of Nerlove-Arrow with a nonlinear cost function. The result is that the
optimal goodwill investment policy is no longer of the bang-bang-
singular type.

Denote the nonlinear cost function as W(g) where g 1is gross

investment of goodwill and W is convex in g (W, > 0, W

g g8 > 0, for g =
0). Thus, the gross investment g for a given level of advertising
expenditures u is W"l(u) which is concave in u. Denote W'l(u) as ®(u).
The model becomes:

(1) max [, 7T [M(A(t),Z) - u(t)] dt,
{u(e)}

(%) s.t. A'(t) = ®(u(t)) - § A(t), with A(0)=Ag.

The control constraint (2) is ignored for simplicity.8 Also, it
is assumed that Z(t) is constant over time as it is convenient to
consider the long-term equilibrium solution for a nonlinear model. With
a specific assumption on the functional form of &, equation (%) can be
estimated econometrically. The current-value Hamiltonian from (1) and
(9) is
(10) H = T(A(t)) - u(t) + $(t) [@(u(t)). - 6 A(t)]

The optimality condition H =0 is
(11 1 -9 3,.

In view of the duality between ¢ and the cost function W, (11) is
essentially the marginal condition found in (7), although the marginal
cost of goodwill is not a constant here.? The adjoint equation p' = r ¥
- Hy is the same as before:

8) ¥ =(r+6) 9y - I,.

Differentiating (l1) with respect to time yields ' e, + ¥ o, v
= 0. Substituting into this expression (11) for Y and (8) for ¥’ yields
(128) u' = [-1/8,] [(r + &) &, - I, 8,2].

Also, the state equation (9) has to be satisfied and it is reproduced:
(12b) A’ = &(u) - § A. '

8 Alternatively, one can regard the control as constrained by the
convexity of the cost functioen.
9 From (11l), one notes that (t) is positive for all t. In view of

footnote 5, this means the necessary conditions are also sufficient.
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Equations (12a) and (12b) consist of a plane-autonomous system of
nonlinear ordinary differential equations. From the theory of ordinary
differential equations, the system represented Dby (12) possesses a
unique solution (u(t),A(t)) passing through any given initial point
(u(0),A(0)). The solutions form a family of trajectories, one through
each point of the (u,A) plane. The entire collection of these
trajectories is referred to as the "phase diagram" of the system
represented by (12). The geometrical analysis of these trajectoriles is
facilitated by considering the isoclines in the phase diagram; the loci
orr which-u*=0-and A'=0. --The-directional .arrows.in.Figure 2.indicate.the
movements of the trajectories in each of the four isosectors determined
by the two isoclines.lo

The intersection of these two isoclines is the equilibrium point
(u*,A*) for the system as both u and A are stationary at that point
(Figure 3). Given the directional arrows appearing in the figure, it is
apparent that the equilibrium point is a saddle point for the

differential system in (12).11 Associated with the saddle point are two

10 From (12a), the isocline for u is given by (xr + §) = Iy, &,
Totally differentiating the isocline with respect to u and A vyields
du/dAlu.go = - My, e, /('I’uu HA) < 0, indicating that u'=0 locus has a

negative slope. Moreover, from (12a) du'/ou = I, o, > 0. Hence, at
points to the right of the u-isocline, u’ is positive (i.e. u is
increasing). Similarly, for points to the left of the locus, u’ is
“negatiVE"“(i1Eu““Ur'iS”'decreaSing)r” .From..(12b).,..the 1isocline for A 1is
given by A = ®(u) / §. Hence, 8A/8uly_g = &, / & > 0 and 8%a/8u’|,, g
= % / & < 0, indicating the locus is positively sloped and convex in
u-A plane. Further, 8A'/8A = -§ < 0 indicates that at points to the
right of A'=0 locus, A' < 0 (i.e. A is decreasing) and at points to the
left of the locus, A' > 0 (i.e. A is increasing).

11 The point (u*,A*) will be a saddle 1f the eigenvalues of the
characteristic equation of the system (12) are real and opposite in sign
(e.g. Kamien and Schwartz, pp. 306-311). in verifving this, linearize
{(12) around (u*,A*) to obtain
(13a) u' = By (u - W) + By (A - A%)
(13b) A’ = By (u - u¥) + By (A - AT,
where:

By = du'/du = I, (A%) &, (u™) > 0

By, = ou’'/0A My, (87) @, 7%/ 3, () > 0

9




unique trajectories (sketched in heavy lines), called separatrices, that
converge toward the saddle point as tow. All other paths ultimately
lead either to an infinitely large amount of (u,A) or to a zero level,
The case where the (u,A) pair diverges to infinity is obviously
undesirable, and the case of zero goodwill stock is also nonoptimal (as
shown in Gould).

Accordingly, the separatrices define an unique optimal control
policy for goodwill investment. In principle, the separatrices can be
approximated by numerical computation. In addition, qualitative
ingights into the optimal policy can be gained by inspecting the
separatrices in the phase diagram. To gee this, note that the left
separatrix depicts the optimal advertising time path as goodwill stock
approaches A" from below (i.e. from the left) while the right separatrix
depicts the time path of the policy as the stock approaches a* from
above (i.e. from the right).

Thus, in the case where the initial goodwill stock level is below
the long-term equilibrium level, the optimal . policy is to advertise
heavily in the early periods (in order to catch up) and then to decrease
the level of advertising efforts as the stock approaches its long-term
equilibrium A" from below. On" the cthes R I e
above the equilibrium level, the optimal policy is characterized by a
low level of advertising effort in the initial periods (in order to ease
up) and increasing efforts over time as the stock approaches A% from
above . In any case, the optimal approach path is not the most rapid
approach, but rather a more gradual approach engendered by the convexity

of goodwill cost function.

Bop = ' Jou = @ (u¥) >0

Boy = 8A"/3A = - § < 0.
The characteristic equation of (13) is

K -k (Byp + Bap) + (By Baa - Big B91) = 0,
which has roots

kpoky = 1/2 (B11+899) * 1/2 [(B11+99)° - & (By1Byy-PaBap)1Y/2,
and they are real and opposite in sign if
(L&) Byy Bay - B1p Boy < 0.

In view of the signs of ﬁij given above, condition (14) is
satisfied. Hence, the roots are real and oppeosite in sign verifying

*ow, . N

(W ,A") is a saddle point.

It
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Figure 2: Isoclines (Nerlove-Arrow Nonlinear Cost Model)
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Figure 3: Phase Diagram (Nerlove-Arrow Nonlinear Cost
Model)
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SALES RESPONSE MODELS

One major empirical problem associated with the capital theoretic
models discussed in the previous section is the difficulty in observing
or measuring goodwill. Even if consumer disposition measures such as
attitude toward the advertised product can be used as proxies, those
measures are expensive to obtain, and questionable in terms of
precision. As an alternative, the state variable A might be interpreted
as sales, rather than the fuzzy concept of goodwill. In this case, ¢ in
(2) should be interpreted as the sales response coefficient and @ in (9)
as the sales response function of advertising expenditures. Thus, the
linear model assumes a constant sales response while the nonlinear model
admits a diminishing sales response arising from the increasing marginal
cost of promoting additional sales.

The phenomenon of diminishing marginal sales returns to
advertising can also arise if there is an upper bound on the market

potential or saturation,

Vidale-Wolfe Sales Response Model

.Based on. several experimental,tstudies~4of“?advertiSiﬂg” sales~™
effectiveness, Vidale and Wolfe argue that changes in the rate of sales
of a product depend not only on whether new users are attracted by
advertising, but also on how much erosion of the advertising effect
there 1is among current wusers. Specifically, in their model, the
response coefficient p measures the effect of advertising expenditures
on the uncaptured portion of the market, while the decay coefficient §
reflects the rate at which the captured markets "forgets" the previous
advertising effort. In addition, they found that the impact of
advertising expenditures on nonusers diminishes as the sales rate
approaches a market saturation point K. Based on their observations,
Vidale and Wolfe propose a sales equation of the following:

(I3) A'(t) = p u(t) (1 - ACE)/K) - § A(t), with A(0)=Ag.

The introduction of a finite saturation level, which is absent in
previous models, results in diminishing returns to advertising in the
Vidale-Wolfe model. That is, as larger and larger numbers of new users

are captured, the uncaptured portion of the market shrinks, leading to a

14



diminishing effect of advertising expenditures on saleg. ©Note that as
K+, the saturation phenomenon disappears, reducing (15) to (2.
Defining ¢ = p/K, the state equation {15) can be expressed more
concisely as

(16) A'(t) = ¢ u(t) (X - A(t)) - & A(L),

with A(0)=Ay, and 0 = ¢u < 1. In estimating (16), K can either be
specified based on a priori knowledge or be estimated simultaneously
with other coefficients (¢ and §) in the model. The optimal advertising
policy can be analyzed by maximizing the objective functional (1),
“subject to (16) and the control constraints (3).- “Since both the-
objective functional and the state equation are linear in control u, the
problem can be treated as a linear control problem which yields a bang-

bang-singular optimal policy. 12

Extended Vidale-Wolfe Sales Response Model

The diminishing marginal sales returns to advertising aspect is an
important advantage of the Vidale-Wolfe model over the Nerlove-Arrow
linear cost model. gimilar to that in Nerlove-Arrow, the vresponse
coefficient ¢ [or p if ome uses (15)] is a constant for any level of
advertising expenditures in Vidale-Wolfe. The diminishing returns is
purely market-size oriented and it arises from the specification of a
market saturation. The response coefficient, however, need not be a
constant. In fact, it should decrease as the level of expenditures
e TIE the  fesponse s regarded as & Tesult o T ~concave
production process that utilizes media and agency services. The Vidale-
Wolfe model can be extended to allow for both the market-size and
production oriented diminishing sales returns to advertising:

(17) A'(t) = ®(u(t)) (K - A(v)) - & A(t), with A(0)=A,y,

where ®(u) is the response function (0 = &(u) =< 1) and is concave (% >
0, @uu < 0, for u =z 0). With a functional specification of @(u), (17)
can be estimated econometrically. The objective 1is to maximize (1)
subject to (17). The current-value Hamiltonian for the problem is:

(18) H = IM(A(Y)) - u(t) + ¥(r) [®(u(t)) (X - A(t)) - § A(B)].

12z With a more detailed specification of I(A), however, one can
obtain a more detailed solution and, hence, better insight into the
problem. In Appendix C, H(A) is assumed to be a linear function of A

and a closed-form optimal policy is derived.
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From (18), one obtains the optimality condition and the adjoint

equation:
(19) 1 =y 8, (K- A),
(20) ¢' =(r+ 6 + ) ¢ - I, .

The interpretation for (19) is the same as before. The optimal
advertising policy is selected so that the last dollar expended is
exactly equal to the shadow price of the sales times the additional
sales due to that last dollar.13 Equation (20) indicates that the
change in the imputed value of the state (i.e. capital gain) and its
marginal contribution to the cash flow must equal the marginal
opportunity costs of having the state at that level. Here the
opportunity costs include not only the time costs and the depreciation
costs but also costs of the diminished marginal advertising sales
effectiveness (&¥) which arises as the saturation point is approached,
Obviously, there is a tradeoff; advertising increases sales, but the
added sales depress the effectiveness of future advertising.

Differentiating (19) with Tespect to time yields ' &, (K-A) + 9
Qo v (K-A) - 9 ¢, A" = 0. Substituting A' from (17), ¥ from (19) and
¥’ from (20) into the above expression to obtain
(2la) u! = [-1/¢,,] ({r + & K/ (K-8)] 8, - T, @u2Z(K_1VA)}{ .

Also, reproduce the state equation (17) here:

(21b) A" = @(u) (K - A) - § A.

Equations (21a) and (21b) consist of a plane autonomous system,
The directional arrows in Figure 4 indicate the movements of the
trajectories in each of the four isosectors determined by the u-isocline

and the A—isocline.14 The intersection of these two isoclines is the

13 From (19), one notes that ¥(t) is pogitive for all t. In view of
footnote 5, this means the necessary conditions are alsc sufficient,

14 From (21a), the u-isocline is determined by those (u,A) for which:
(22a) [r + § K/ (K - A)] = B, @, (K- A).

Total differentiate (22a) yvields:

[6K/(R-8)2] - T, & (R-A) + I, 3,
du/dA]u,(t)=0 - < 0.
I, ¢,, (K-4)

Thus, the u'=0 locus is negatively sloped. Moreover, from (2la),
8u’/8u|u,=0 = I, &, (K-A) > 0. Thus, u' > 0 for points above the u-
isocline and u' < 0 for points below the locus.
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equilibrium peint (u*,A*) for the system (Figure 5). Again, given the
directional arrows, it appears that the equilibrium point is a saddle
point for the differential system in (21).15

As indicated by the separatrices in the phase diagram, the general
qualitative property of the optimal advertising policy is similar to
that found for the Nerlove-Arrow nonlinear model (c.f. Figure 3).
Specifically, for Ay < A* the optimal policy is to advertise most
heavily at the start of the campaign and continually decrease
advertising expenditures as A approaches A" (see left sgeparatrix). On
- the other hand, if the initial state -is above the equilibrium level, the
optimal policy is characterized by a low level of advertising efforts in
the initial periods and increasing efforts over time as the stock

approaches A¥ from above (see right separatrix).

From (21b), the isocline for A is given by:
(22b) A = K &(u) / (6§ + &(u)).
_ The curve is upwardly sloped and convex in (u-A) plane because
aa/8u)p1 g = 5K¢ / [5+<1>]2 > 0 and 8%2a/8u%|,,_o = [6K3,, 5+ &)
26K® 1 / [6+ @] Note from (22b) that u increases w1thout bound
along the A-1soc11ne as A approaches K. Further, from (21b), 8A'/fu =
& (K - A) > 0 indicates that A' > 0 for these points above the A-

u
isocline and A' < 0 for points below the locus.

15 To verify the saddle point conjecture, linearizing (21) around
(u*,A*) and expressing the result in the format of (13), one finds
By1 = du’/du = HA(A ) @ (u ) (K - A%) ' >0
Bro = Bu'/0h = [-1/3,, ()] [5K8, W) / KA *)?
- HAA(A ) & *)2 x-a%) + M, a%) 8, (" Y2y > 0
ﬁ21 = gA"fou = & (u Yy (K - A ) >0
Byp = 8A'/OA = - (6 + @(u M < 0.

In view of the signs for ﬁij’ the saddle point condition (14) 1is
obviously satisfied.
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Figure 4: Isoclines (Extended Vidale-Wolfe Sales Response
Model)
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Figure 5:
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DIFFUSION MODELS

In the preceding models, advertising is assumed to have an impact
on sales over time but the specific mechanisms leading to the dynamics
are left wunspecified. In a diffusion context, Gould argues that
individuals learn of the advertisement by coming into contact with
either the advertising medium or other people who are aware of the
advertisement. Since different types of informational contact may lead
to different dynamics between the state and the control, it appears

important to investigate various diffusion processes,

Stigier-Gould Diffusion Process

Gould's first diffusion model involves the spread of information
as a result of contact with media advertising. Based on Stigler's price
diffusion process, Gould proposes a state equation which is identical to
(17).
(17) A'(t) = ®(u(t)) (K - A(t)) - § A(L), with A(0)=Ay,.

Alternatively, within some data range, a linear version of the

model may be preferred:

C(L6)  AT(E)Y = ¢ ult) (K = A( )= 6 ACE), with ACO)=Ay."

The state variable A in this case is defined as the number of
individuals who are aware of the information contained in the
advertisement and K is the total population. Accordingly, ®(u) (or ¢),
which can be called the reach function (or reach coefficient),
characterizes the extent of the targeted population (K-A) influenced by
a given level of advertising expenditure u. In practice, data on
product awareness can be obtained through market research and both (16)
and (17) can be estimated econometrically. The objective is to maximize

(1) subject to (16) or (17), and thus is essentially the same problem

discussed in the previous section.

Ozga-Gould Diffusion Process

In the Stigler-Gould diffusion model, the spread of information
occurs strictly as a result of contact with media advertising. An
alternative formulation is.that potential consumers, who are not aware

of the product or its characteristies, acquire information from those

20



who are informed. The existing informed population acts as agents of
the seller in disseminating information about the product either through
demonstration or through word of mouth (similar to the spread of
diseasel). Such processes for information dissemination are
particularly important in studying commodity promotion, since a
significant portion of the available promotion funds are spent on
education efforts such as the nutritional education program.

Following Ozga, Gould’'s second diffusion approach to advertising
is specified as:
(23) AT (E) =g ul(t) A(t) (K = A(E)) = § A(t), with A(Q)=Ag; ~
where A is the number of individuals who are aware of the product, and K
is the total population. The model differs from Stigler-Gould diffusion
in that (23) allows a logistic type interaction between the informed (A)
and the uninformed (K-A). The extent of this interaction is captured in
the contact coefficient ¢ (0 = ¢u = 1). Subject to (23), the objective
is to maximize (1) by selecting the optimal expenditures (u) on such
contact-enhancing activities as nutrition education which are conducted
through doctors’ offices, school superintendents, and household heads.
This is a linear control problem as both the objective functional and
the state equations are linear u.

Alternatively, consider a nonlinear version of (23):
(24) A'(t) = 2(u(r)) A(t) (K - A(t)) - § A(t), with A(0)-A,.

In the above, ®(u) 1is the contact function (0 = &(u) = 1) which

“characterizes the “extent of “contact between the iInformed and the
uninformed. Since social and informational contacts occur with greater
frequency within social networks than across them, expenditures on

contact enhancing activity 1s assumed to be a convex function of the

contact rate, Accordingly, taking the inverse of the expenditures
function, the contact function &(u) is concave, The objective is to
maximize (1) subject to (24). The current-value Hamiltonian for the

problem is:

(25) H = I(A(t)) - u(t) + H(t) [®(u(r)) A(t) (K - A()) - § A(D)].
From (25), one obtains the optimality condition and the adjoint

equation;

(26) 1 =19%2, A (K- A),

27y P =[r+ 6 +2A -2 (K-A)] ¢ -1,.
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Equation (26) indicates that the optimal policy should be such
that the last dollar expended is exactly equal to the shadow price of
the stock of informed population times the addition to the stock due to

that last dollar.l6

Equation (27) says that the change in the imputed
value of the informed population and its marginal contribution to the
cash flow must equal the marginal opportunity costs of having the
informed population at that level. = Here the opportunity costs are
associated with time, depreciation, and the diminishing treturns which
gccur as saturation is approached (i.e. ®AY), net of the benefits
arising from increased word-of-mouth effects as the stock of informed
population expands (i.e. -B(K-A)¥). Thus, the tradeoff bhecomes more
complicated in the case where the informed population is the source of
information. On the one hand, it is desirable to increase the informed
population because it enhances both sales and the spread of information.
On the other hand, the effectiveness of the promotion expenditures is

diminished as the informed population is enlarged,

Differentiating (26) with respect to time vields ¢'®uA(K-A) +

wéuuu’A(K-A) + ¢@uA'(K—A) - ¢@uAA’ = 0, Substituting.into the above
expression A" from (24), ¥ from (26), and %' from (27), yields:
“(28a)-1u' =-f-/e FHe+ 6 A/ (R-A)] Sy Iy T A (KT AY )

Also, reproduce the sgtate equation (24) here:
(28b) A’ = ®d(u) A (K - A) - § A.

Equations (28a) and (28b) consist of a plane autonomous system.
As derived in Appendix D and shown in Figure 6, the u-isocline has a
quadratic shape and there are two A-isoclines including the u-axis. The
directional arrows in the figure indicate the movements of the
trajectories in each of the five isosectors determined by the u-isocline
and the A-isocline. Since the u axis is also an isocline for A, there
is no way of achieving any positive level of A regardless of the
expenditure level if Ag 1is zero. That is, since social contact between
the informed and the uninformed is the only media for information

spread, a zero level of the informed population means a lacking of the

media. In this case, as pointed out by Glaister in a related paper,
high-pressure promotion campaigns such as "free sample", "introductory
16 From (26), one notes that ¥(t) is positive for all t. 1In view of

footnote 5, this means the necessary conditions are also sufficient.
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offer"”, and "enlisting the help of retallers" must be conducted to
establish a base level of users.

There are two stationary points, L and H, in the phase diagram
(Figure 7). The high equilibrium H is a saddle point while the Ilow
equilibrium I is unstable. If the initial informed population is large
enough, the optimal advertising (contact enhancing) policy is the one
characterized by the separatrices in the figure. From the left
separatrix, the optimal path differs significantly from that found in

previous nonlinear models. In the earlier models, the optimum path of

~advertising expenditures always requires the heaviest outlays in the

early periods with continuous reductions in expenditures as the state
approaches its equilibrium from below. In contrast, the optimum path
for the present model begins with a low level of expenditures, building
up to a maximum of u#, which is greater than the equilibrium level u*,
and then cut back toward u® as A approaches A¥. However, similar to the
previous models, in the case where the inlitial state Ag 1s greater than
A*, the optimum path for u is monotonically increasing and does not
reverse as A approaches A* from above.

The rationale for the policy where Ay > A¥ is as before while for
Ag < A% the reasoning is as follows. It makes little sense to spend a

lot of funds to enhance the contact rate if there is not an existing

informed population large enough to serve as the agent of information

mass" A% is reached, the optimal policy is to spend heavily initially
and reduce effort gradually as A approaches A*  from below; a case
similar to the previous twe nonlinear models. In other words, since the
left separatrizx must be extended intoe the isosector where u is
decreasing and A is increasing in order to approach the saddle point, u
must over-shoot first. Once the separatrix reaches the isosector just
mentioned, the control u starts to decrease as A approaches A from
below. One implication of this result is that it may be profitable to
conduct some high pressure promotion campaigns at the initial phase so
as to enlarge the informed population and, hence, hasten the attalnment

of the steady state.
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SUMMARY AND DISCUSSION

Three basic models were considered in this paper. Both the linear
and mnonlinear versions of the models were discussed. Nerlove and
Arrow’'s capital theoretic approach treats advertising as an investment
of the firm on goodwill which affects current and future demand. In
Vidale and Wolfe's sales response model, advertising is viewed as a
means of capturing some portion of the market potentiai up to a
saturation point. Gould's diffusion approach to advertising explicitly
admits the interaction between the uncaptured and the captured portions
of the market either through inanimate media advertising (Stigler-Gould)
or through word-of-mouth (Ozga-Gould).

Since goodwill 1is not observable and proxies such as consumer
disposition are difficult and expensive to obtain, it is comvenient to
view sales as a manifestation and, hence, a practical proxy of

goodwill.17

Accordingly, the Nerlove and Arrow goodwill model becomes a
special case of the Vidale-Wolfe sales response model in the sense that
the former assumes an infinitely large market saturation. Since sales
of any product is finite, the approach of Vidale-Wolfe ig more appealing

from an empirical standpoint. -

In the models which take a diffusion approach to advertising, the
state variable is the number of individuals who are aware of the
characteristics of the promoted product. The goal of promotion is to
increase the number of individuals who are aware of the product,
Typically, awareness data measure only the proportion of individuals who
are aware out of some population; not how intense that awareness is. To
quantify the "overall" awareness of the population requires measures on
both the extent and the intensity. Thus, the difficulty of
incorporating both aspects into a single measurement poses a serious
empirical challenge in implementing this model. However, one approach
is to view sales as a manifestation and, hence, a practical proxy of the

overall measure of awareness. Accordingly, the Stigler-Gould media type

17 This is not to mean that sales data are easy to come by, For
example, it is very difficult to obtain sales figures encompassing both
at-home and away-from-home consumption situations. A detailed

discussion on the issues and difficulties involved in collecting sales
data can be found in Ferker, Liu, and Hurst.
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diffusien model becomes identical to the Vidale-Wolfe sales response
model, and the Ozga-Gould social contact type diffusion model represents
a variant of Vidale-Wolfe's model.

Given the above discussion, the models reviewed in this paper can
be summarized as follows. The objective functional is:

(1) max [ e % {I(A(E),2(t)) - u(t)] at.
{u(t))

While in the case of media advertising, the state equation is

(17> A'(r) = 2(u(t)) (X - A(L)) - & A(v),

- and -in--the. case .of word-of-mouth-type promotion, -the state equation is
(24)  A’(£) = @(u(t)) A(t) (K - A(E)) - § A(L).

Equations (1) and (17) embrace the nonlinear wversion of the
Vidale-Wolfe sales response model as well as the nonlinear version of
the Stigler-Gould diffusion model. Also, the model reduces to the
nonlinear version of the Nerlove-Arrow goodwill one if K is treated as
infinitely large. Equations (1) and (24) encompass the nonlinear
version of the Ozga-Gould diffusion model. The optimal policy derived
from (1) and (17) is to advertise most heavily in the initial periods
and continually decrease the level of advertising efforts as the state
variable approaches its long-term equilibrium from below. 1In contrast,
the optimal policy derived from (1) and (24) begins with a low level of
expenditures, building up to a maximum which is greatet'than the long-
term equilibrium expenditure level, and then cuts on efforts as the
“state “approaches its long-term equilibrivm froem belsw,

In the special linear case where ®(u(t)) = ¢ u(t), equations (1)
and (17) repreéent the linear version of the Vidale-Wolfe sales response
medel as well as the linear wversion of the Stigler-Gould diffusion
model. Also, the model reduces to the linear version of the Nerlove-
Arrow model as K approaches infinity. With the same linear assumption
on ®, equations (1) and (24) constitute the linear version of the Ozga-
Gould diffusion model. Imposing the control constraints that u(t) must
lie between zero and u™®* [i.e. equation (3)], the above lineaf models
prescribe a bang-bang-singular advertising policy; the steady state is
to be approached as rapidly as possible and maintained thereafter,

Without the above control constraints, the models result in an impulse
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advertising policy implying a jump to the steady state at the initial
period of the contrel horizon.

In concluding the discussion, it is important to mention some
limitations of the models. First, it is clear that equations (17) and
(24) represent two polar cases. Equation (17) represents a process in
which the influence on the state is completely due to media advertising
while equation (24) represents a process in which the influence is
entirely due to social contact. A more realistic model would be one
which combines both effects, although the algebraic manipulation for
solving the problem becomes more complicated (see Kotowitz and Mathewson
for an initial attempt). Second, with regard to the diffusicn process
of (24), it may be unrealistic to assume that all the informed agents of
the population are linked with all the uninformed agents in an all-
channel social structure. This naive approach ignores the effects of
social segmentation in the process of diffusion (see Bernhardt and
Mackenzie for an extension). Finally, based on empirical evidence, it
is dubious that advertising expenditures generate maximum response
immediately and then decay exponentially over time (see Mann and Bulte=z
and Naert for various extensions and the resulting policy implications).

The-brief discussion on the model:limitations has focused only on

the specification of the state equation which distinguishes various
models considered in this paper. Other extensions can be found in Sethi
(1977%) and Little. Also, to adapt the firm-type models to generic
commodity promotions, extensions have to be made to account for such
issues as supply tresponse (entry), government reaction in support
policy, and allocation of funds between primary and secondary markets.
As the model becomes more realistic and hence complex, however, it is
less likely that one will be able to solve the problem analytically or
numerically in a precise manner. In such a case, obtaining an
approximate solution may be the only alternative. Whether or not an
approximate solution to a more precise problem is preferred is a

Judgement left to future empirical efforts.
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APPENDIX A: NERLOVE-ARROW FINITE PLANNING HORIZON MODEL

Due to management considerations, it is sometimes desirable to
specify the problem with a finite planning horizen T. 1In this case, the
objective functional is:

(A1) max [oT e [ma(e),z) - u(e)] at.
fu(t))

The state equation is (2) and the control constraint is (3. TFor
conveniences, they are reproduced here as:
(A2) A' = ¢ u(t) - & ACt), with A(O)=Ag, . . ..
(A3) 0 = u(t) = ume%,

The current-value Hamiltonian and the current-value Lagrangian are
still (4) and (5) and they are reproduced here as:
(A4) H = I(A(t)) - ult) + P(t) [¢ u(t) - 6§ A(L)],
(A5) L =H + Ay (t) u(t) + Ap(t) [u™ - u(r)].

il

Accordingly, the optimal control U must satisfy (7) and the
adjoint wvariable ¥ must satisfy (8). These two conditions are

reproduced here as:

0] a(t) <
(A6) u (L) = uSe{0,ulma¥) if £ o(t) = -1 + ¥(t) ¢ -
yax a(t) >

(A7) ¥" = (£ + 8) ¥ - 0,.
The only difference is the transversality condition which requires
--the -shadow- price -of -the- state -be-driven to-zero at the terminal tima
This condition is:
(A8) $(T) = 0.

Since all the necessary cenditions for optimality are the same
except (A8), the optimal policy should resemble the one under infinite
time horizon. That is, the optimal policy characterization is a bang-
bang control followed by a singular path. However, modification of the
final phase of the control is needed in order to satisfy (A8).

From (A6), the switching function o(t) = -1/¢ + ¥(t) = 0 aleng the
singular path. Also, in view of (A8), o(T) = -1/¢ which is negative.
Thus, one must leave the singular path before T. While off the singular
path, (A6) says that one must use bang-bang control of u*(T) = 0 because

o(T) is negative. Since the switching function o(t) is a continuocus
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function of time and it is zero on the singular path while negative at

H

T, proceeding backward in time, one must find a t* < T such that a(t#) =

0 and o(t) < 0 for t > t#. This means that the singular path should be

followed up to t* only and then the control should be switched to u® =
0.

Thus, as shown in Figure Al, the optimal policy is a bang-bang-

singular control, followed by a bang-bang control with u*(t) =0 for t >

t¥.  The last phase of the control is to drive $(t™) = 1/¢é to $(T) = 0.

In other words, with zero gross goodwill investment, T-t%

is the time
required for the equilibrium goodwill shadow price to depreciate to zero
exactly at time T.$ The policy of getting on the singular path as early
as pessible and off the path as late as possible is referred to as the
turnpike property (Samuelson).

In the above, it is implicitly assumed that T is sufficiently
large (in the sense that i >.tI in the case where Ag < A%, and £ > tII

in the case where Ay > A%Y. VWhen T is sufficiently small relative to
the time required for A to approach A® from Aq, however, it will not bhe
possible to attain the singular path and meanwhile satisfy the
transversality condition (A8). For example, consider Figure A2 where Ay

I

< A® andut._>_t#w;;0n,the one-hand, one wishes to.get on the singular

path as rapidly as possible. On the other hand, however, one knows that
once on the singular path there will not be enough time to get off the
path and meet the endgame requirement. As a compromise, the best policy
in this case is AGSA(T) which minimizes the deviation from the singular

path while satisfying the endgame conditioen.

5 Numerical methods for the determination of t# can be found in
Sethi (1977°).
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Figure Al: Bang Bang, Singular, Bang Bang Control
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Figure A2: The Case of Small T
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APPENDIX B: TNFEASIBLE SINGULAR CONTROL

Depending on the control comstraint, the singular path may not be
attainable. Arrow has introduced the term "blocked interval® to refer
to any time interval during which the constraints of a linear control
problem prevent the path A(t) from following a nonstationary singular
path A®(Z(t)). A blocked interval can also occur in the case where the
singular path is stationary. The initial bang-bang adjustment phase

discissed 18 AN exanple of A Blocked “interval s the “control is blocked

by its constraints (zero and u™@%*).
An interesting case arises where u™®¥ is strictly less than the
singular control u® = §A%/4. Consider the scenario where Ag < A%, In

accordance with the most rapid approach discussed, the maximum control
ux(t) = u™* should be applied until A® is attained. For a given uT&¥,
(2) implies A(t) = ¢umax/6 as tow, indicating that the singular A® will
never be attained if u™* is strictly less than 6§A%/¢ (i.e. u®).
However, since the optimal path must lie as close as possible to the
singular path, applying the maximum policy u™®¥ is still the best
strategy. In this case goodwill stock will accumulate (or decumulate if
Ay > pu™@*/6) over time and approach pu™®¥/§ as tow (Figure Bl).

Now, consider the opposite scenario where Ay > A%, Since u® is

not admissible, a reasonable guess of the optimal policy would be to

“méilow'AdmtamdéﬁfééiafémtémAsmﬁi“épbijiﬁgmfﬁémmiﬁiﬁﬁﬁmébﬁéfbi”t{;é?mééfag”w“'m

and then switching to the maximum policy (i.e. u™®¥) at £l with the
geal of minimizing the deviation from the singular path (Figure B2).
This poliey, in general, will not be optimal. To prepare for the fact
that the singular path cannot be maintained once it is reached, it may

# I1

be profitable to switch to the maximum policy at t™ < t

, even though
the goodwill stock is still above the singular level at that time. As
shown in Figure B2, the total area of deviation from A® is smaller for
the path (sketched in heavy line) with a switching time at t* than for
the path with a switching time at til. The optimal switching time (t7)
should be determined in such a way. that the objective functional in (1)

is maximized; a problem solvable by calculus and/or numerical methods.

35



In the preceding discussion, the exogenous variable Z(t) is
assumed fo be constant and, hence, the equilibrium goodwill stock level
AS(Z) is stationary. For a time dependent Z, a5(t) = AS(Z(t)) will be a
time function (Figure B3). 1In this situation, the characterization of
the optimal policy remains the same in the sense that the singular path
should be approached as rapidly as possible and maintained whenever
possible. The cyclical pattern of the singular path in Figure B3,
however, opens up the possibility of blocked intervals even when u™&¥ ig
large enough to maintain the singular path for most of the time period.
As before, in this case the bang-bang policy of applying either the
minimum or the maximum control must become effective and the optimal
time interval must be determined for this control as it will in general

not coincide with the interval of infeasibility.
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- Figure B1: Infeasible Singular Control (A° < A®)
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Figure B2: Infeasible Singular Control (A, > AS)
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{ Possible Area for
Blocked Interval

Figure B3:Nonstationary Singular Path
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APPENDIX C: VIDALE-WOLFE MODREL WITH A LINFEAR PROFIT

Following Sethi (1973), H(A) is assumed to be a linear function of
the state A:

(€1) max [" e % [ A(t) - u(t)] dt,
(u(t)}

s.t.
(G2) A'(t) = ¢ u(t) (K - A(L)) - 6§ A(L),
(€3) 0 = u(t) =< uma¥,
..The..current-walue Hamiltonian from {(Cl}). and.{C2).1s. ... ... o
(C4) H == A(t) - u(t) + $(t) [4 u(t) (K - A(t)) - § A(B)],
and the current-value Lagrangian is
(C5) L = H + x(£) u+ A(e) [u™F - u(e)].
The Kuhn-Tucker conditions L, = 0, Ap 2 G, Ay = 0, Aqu = 0, and

Az(umax—u) = 0 imply the following:

0 o(t) <0
(C6) u'(t) = uie[0,u™®®] if o(t) = -1 + ¥(t) ¢ (K - A(t)) =0
umax o (t) > 0.

The singular condition in (C6) indicates that the 1last dollar
spent should equal the shadow price of sales times the marginal increase
in sales due to that spending. Also necessary is the adjoint equation:
(C7) W' =(r+ 6+ ¢ ) ¢ - m,

Equation (C7) indicates that the change in the imputed walue of

theWstate-and~its~marginal-Contributionmto~the“cashmfldw~must”equal“thE““'

marginal opportunity costs of having the state at that level. Here the
opportunity costs include not only the time costs and the depreciation
costs but also costs of the diminished marginal advertising sales
effectiveness which arises as the saturation point 1is approached.
Obviously, there is a tradeoff; advertising increases sales, but the
added sales depress the effectiveness of future advertising.

According to (GC6), advertising will be at either its lower or its
upper bound except when the switching fumction ¢(t) is zero. ' In this
latter case, Y(t) (K;— A(t)) = 1/¢4. Since ¢ is a constant, one has
(C8) 0 =d[$ (K - A)]/dt = %' (K - A) - A" ¢

Substituting into (C8) A' from (C2), ' from (C7), and ¥

(evaluated at the singular path) from (CG), one obtains
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(C9) ¢ (K -A%2 _ v (R-4A5) - §K=0.
Equatién (C9) is quadratic in (K - A®) and it has two roots:
(K -85 = [r+ (> +4¢n6 )2 /(2 ¢n).
' Since K = A by definition, only the positive root can be relevant.
Hence, the singular state level is
(C10) A5 =K - [+ (X + 4 n s OY2) /(2 4 n).

Further, A® = 0 is also needed for sense. Setting A® = 0 in
(C10), one finds that A% > 0 requires m ¢ K = r + §. Expressing the
requirement in terms of the sales response coefficient p in Vidale-Wolfe
equation (153), one has:

(Cl1) m p =1 + §.

Stated 1in words, condition (Cll) says that advertising is
worthwhile expending only when the market condition (a) and the sales
response coefficient (p) are large enough, relative to the opportunity
costs of advertising arising from interest rate (r) and sales decay (&),

Substituting A® from (C10) into (C2) and taking into account that
A' is zero along the singular path, the singular advertising policy is
(C12) u® = (§ A%) / [4 (K - A®)],

providing that the singular control is feagible:®

(C13) u < ulax.
In sum, if advertising is worthwhile [i.e. (CL1)] and the steady

state control is feasible [i.e. (Cl3)], the optimal singular path ig

characterized by (Gl0) and (Cl2) and it should be approached as rapidly

as possible by selecting either the maximum or the minimum control [i.e.

(C6)].

$ The explicit condition for (C13) can be found by substituting
(C10) into (C12) and then the resulting expression into {C13). If the
singular control is infeasible (i.e. u° > u™@Xy  then the policy should

follow those discussed in Figure Bl and Figure B2.
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APPENDTX D: THE DERIVATION OF PHASE DIAGRAM (OZGA-GOULD MODEL)

From (28a), u' will be zero for points (u,A) satisfying:
(Dla) 1/, =[Ny A (K -A)] / [r+6A/ (K- A)]
h{Aa).

Since ®_l is convex in u, the left-hand side of (Dla) is an

.inereasing function of u. By inspection, the right-hand side depends

only on A and it is zero at both A=~0 and A=K. Thus, h(A) is increasing

tor small A and decreasing for large A. Figure D1 illustrates the

identification of pairs (u,A) satisfying (Dla).

As illustrated, when u is small, there will be two wvalues of A

associated with each such u. For example, at u=uq, (Dla) is szatisfied
for A=A1I and A=AlII. Similarly, the values AZI and AZII are assoclated
with u=u,. Note that as u gets larger, the associated values of A get

closer together. For u=ug, there is only one unique A=A4, and (Dla) bas
no solution for those u greater than uq. Finally, since ¢, > 0 (and
hence <I>u(0)'1 > 0) and h(0) = h(K) = 0, it follows that at u=0, the u-
igocline intersects the A axis at two points between zero and K (i.e.
AZI and AZII).

Given the discussion above, the u-isocline is shown In Figure D2.
The directional arrows there are determined as folleows. Differentiating

u’' with respect to u in (28a), one obtains au'/aulu.=0 =1y &, 4 (K - A)

> 0. Thus, for points above the u'=0 locus, u’ > 0 and for points below

u’=0 locus, u' < 0, _

Consider. the A-isocline. Setting A'=0 in {(28b), one finds that
there are two A-isoclines; the line A=0 and:
(Dlb) A = (¢ K - §) / &.

From (Dlb), it holds that A=0 implying ®(u) = §/K and, hence, u =
@—1(6/K) > 0. Also, u grows witheout boun& as A approaches K., TUsing
(D1b), ome finds dA/du = 6 &, / & > 0 and d?A/du® = [§ &, @ - 2 § & 7]
/ 8> < 0. Thus, the A-isocline described in (Dlb) is upwardly sloped
and convex in u-A plane. Further, from (28b), JA'/du = ®, A (K - 4y >0
indicates that above this isocline A is increasing and A decreases below
the isocline (Figure 6).

There are two stationary points (denoted by L and H) in the phase

diagram (Figure 7). It is necessary to examine the bhehavior of the

43




system at each. From the directional arrows in the diagram, it appears
that the high equilibrium H (the one with larger coordinates) is a
saddle point. All the paths near the separatrices (sketched in heavy
lines) seem to diverge. Also, it appéars that the trajectory near the
low equilibrium L is cycling. However, it is not clear whether the
cycle converges to L or not (though a diverging cycle is showing in the
diagram). To verify that H is a saddle and to investigate whether the
trajectory near L converge or mot, linearize (28) around an equilibrium

point (u*,A*) and express the result in the format of (13). One finds:

By = du'/8u = M, (A") o (") &% (K - a%) >0
Bly = du'/3A ? 0
oy = A /ou = o (u") A¥ (x - a%) > 0
Boy = 3A'/3A = § - B(u) K < 0.

In arriving at the sign of Byn, one uses the previous results that
the u-isocline has a positive slope and it intersects the u-axis at the

point where ®(u) = §/K. Given the signs of « one knows that saddle

ije
poeint condition (14) holds only if a1y 1s not negative. However, it can
be shown that the sign of a1, depends on the size of A¥ relative to K

and, hence, is ambiguous. The condition for saddle point in (14) is

equivalent tor o
(B2) -app /o) < - agy /ey

Now, from (13), the linearized u’'=0 locus has slope du/dA|u,=0 = -
a1y / a7 (whose sign is ambiguous) and the linearized A’=0 locus has
slope du/dA[A,=0 = - ay9 / apq (whose sign is positive). In view of
these and (D2), it is clear that the saddle point is the equilibrium
where the linearized A-isocline is steeper than the linearized u-
isocline. Examining Figure 7, the high equilibrium H is characterized
by the A'=0 locus being steeper than the u'=0 locus and, hence, is a
saddle point. On the other hand, the low equilibrium L is totally

unstable since A’=0 locus is less steep than the u’'=0 locus.
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Figure D2: u-Isocline (Ozga-Gould Diffusion Model)
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