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Pollution Control with the Risk of
Ireversible Accumulation

Abstract

This paper is concerned with pollution control when excessive
levels of a stock pollutant might result in a process of irreversible
accumulation. Two dynamic models are constructed. The first is a
deterministic model where a stock pollutant will increase according
to the rate of residual discharge and decrease according to a known
rate of degradation. The second model is stochastic, with the rate of
degradation going to zero if the pollution stock exceeds some critical
level. Risk arises because the critical value leading to irreversible
accumulation is not known with certainty. Stochastic dynamic
programming reveals a "probability effect” which slows the approach
to a stochastic target which may be the same or less than the optimum
in the deterministic model. If irreversible accumulation is triggered
along the approach path one of two situations must occur. Either

residual discharges continue until the pollution stock reaches a lower
optimum (at which time residual discharge ceases and output is
maintained at a lower level consistent with zero discharge) or
discharges are ceased immediately. In the latter case the pollution
stock is excessive and imposes a net social cost in perpetuity.






Pollution Control with the Risk of

Irreversible Accumulation

1. Introduction
Residual wastes are sometimes classified as degradable or

nondegradable (Kneese and Bower 1968). Degradable wastes are

typically broken down into less complex, benign compounds by
biological, chemical or physical processes. Organic residuals and
thermal discharges might be examples of degradable residuals. In
contrast, nondegradable wastes, while they may be dispersed
throughout the envircnment, are not subject to decombosition and can
only accumutlate in a closed system. Mercury and other heavy metals
would be examples of this type of waste.

While a disposal medium may have the ability to degrade a

residual into constituent components, this ability may be impaired if
high rates of discharge cause the pollution stock to accumulate.

Under extreme conditions the degradation rate might become zero, at
which time a process of irreversible accumulation ensues. We will see
that the risk of irreversibility will slow the rate of approach to a
stochastic target that may be the same or less than the deterministic

optimum. The reduced rate of residual discharge along the approach



path will be attributable to a "probability effect". It is possible that the
process of irreversible accumulation might be triggered along the
approach path. If it is then the economy will follow one of two
courses. Either residual discharges will continue until the pollutiqn
stock reaches the optimum for a zero degradation rate (when they will
cease) or they will cease immediately. In the latter case the pollution
stock is excessive and imposes a net social cost in perpetuity.

The remainder of this paper is organized as follows. In the
next section we present a dynamic model of pollution control with a
known rate of degradation. This is followed by a stochastic model with
a risk of irreversible accumulation. The section final summarizes the

major results.

II. Optimal Pollution with Known Degradation

Why might a society choose some positive level of pollution?
One possible answer is that a positive level of pollution might allovx} a
society to produce more of some positively-valued commeodity than if it
devoted scarce resources to eliminating all pollution. Suppose Q; is
the level of a positively-valued commodity in period t while R; is the
level of a jointly produced residual. We will assume a fixed factor can

be used to produce Q; or reduce R; according to an implicit



transformation function ¢(QRy = 0, with partials ¢, > O and ¢ < 0. By
devoting a significant portion of the fixed resource to pollution control
it is possible to produce Q; = Qo with no residual discharge (R; = 0).
To increase Q; above Qg the fixed resource must be reallocated from
pollution prevention toward commodity production, With no pollution

control the available fixed resource would allow Q; = Q. but residual

discharge would be Ry = Ry.¢. A plausible commodity-residual
transformation curve is drawn in Figure 1.

Residual discharge is assumed to contribute to a stock
pollutant according to the difference equation

X — X =%+ Ry (1)
where X, is the pollution stock in period t and 0 <y < 1 is the rate of
degradation. In each period the benefits of Q; and the cost of X; are

assumed to be given by W(Q.X;}. Maximization of the present value of

net benefits subject to the transformation function and the dynamics

of the pollution stock leads to the optimization problem

Maxirnize 2 pt W(QX)

=0
Xiyg — X =% + Ry
¢(QuRY =0

Qo <€ Ot Omax » 0 = R¢ < Rmax

where p = 1/(1+3) is a discount factor and 8 is the periodic discount



rate. The current value Hamiltonian may be written as
H = W(QuX0) - md(QuR) + Py [, + Ry (@)

and with W(-) concave in Q; the necessary and sufficient conditions for
an interior maximum include

oH

'é'QIzWQ_“@Q: 0 (3)

oH '

3R, - ~Hdr + Py =0 (4)
oH

Pris — A = T, —Wx + YA (5)

Given the partials for ¢(-) and assuming the partials for W{-} are Wo>0
while Wy < 0, it will be the case that u; > 0 and 4, < 0. In steady state

equations (1) and (3) - (5) can be shown to imply

Woor Wy
% - B (6)
and
R =X (7)

Equations (6)-(7) along with the transformation function constitute a
three-equation system defining the steady state optimum (X*,R*,Q").
Equation (6) can be interpreted as requiring the marginal value of an
incremental increase in R, which allows for an increase in Q according
to /9o to be equated to the present value of marginal pollution cost.

The approach to steady state will, in general, be asymptotic.
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There are, however, plausible instances where the approach to steady
state will be "most rapid" utilizing "bang-bang" controls (Spehce and
Starrett 1975). Because it will give some benchmarks by which to
evaluate the transition dynamics of the stochastic model we will
consider such a model in more detail.

Suppose that W) = pQ; - ¢X; and ¢(*) = Q¢ - b - nR = 0. This

specification assumes (1) the economy's welfare is linear in Q; (G
might be expdrted at a constant price), (2) the costs of pollution are
quadratic in X;, and (3) the transformation function is linear
permitting us to solve for Q¢ = b + nR;.

The current-value Hamiltonian becomes

H= p(b + nRy — ch + Phi Xt + Ry (8)

Equation (6) implies the optimal pollution stock is given by

« . np@+7) ©)

X = 2¢

Inspection reveals that the optimal pollution stock increases with n, p,
8, or v and decreases with c¢. For this problem the most rapid
approach path (MRAP) to X* is optimal and there exists a switching
function for Ry given by

Ogr = Pn + phesy (10)

If og > O then Ry = Rpax whereas if oy < 0 then R = 0. The first



situation occurs when the pollution stock is below the optimum
(X{<X") while the second occurs when the stock is above the optimum
(X > X’). When X; =X*, pn = -pA,,, or = 0 and R; = R* =yX",

To make things even more concrete, consider a numerical
example where b = 3.5, ¢ = 0.01, § =0.1, y=0.2, n = 0.5 and p=1. In
this case X" = 7.5, R" = 1.5 and Q" = 4.25. Ify = 0, and all other
parameters are the same, then X* = 2.5, R* =0 and Q" = 3.5. With X, =

0 and Ry, = 2.5, Figure 2 shows the solutions X-::o_z =7.5 and

X;,:O = 2.5 and the MRAP approach to each.

III. The Risk of Irreversible Accumulation

Now suppose that the rate of degradation depends on.the
pollution stock. Specifically, suppose that T =YX <X, buty, = 0if
X; > X, where X is an unknown critical value. Once the critical
pollution stock is exceeded the process of accumulation is irreversible
since the stock will never again degrade below X.. Define ©, tobe a
binary variable indicating the following state of information: ®, = 1 if
X1 £ X while ©, = 0if X; ; > X.. Thus, it is only from the perspective
of period t that one can determine if X, ; exceeded X

Let F(X; 18y = Pr(X. < X,1©,) denote the probability that the

critical value is less than or equal to X, given ®,. This distribution is



shown in Figure 3 for ©, = 1 and ©; = 0.
If the critical value had not been exceeded before period t
(©,=1) the pollution stock in period t+1 would assume one of two

values
X, = (1 - PX; + R, with probability 1 - FX18})
X, = X, + R, with probability F(X;1©p

0,1,2,....T) using stochastic dynamic programming and then, as T— e»,

deduce the existence of a stochastic target which will permit us to

make a comparison to the deterministic model of the previous section.
We wish to determine the optimal discharge policy R; which

will

T
Maximize E{z ot W(Qt.Xt)}

t=0
Subject to X1 = (1 -pX; + Ry with probability 1 - F(X;1©y)

X1 = X + Ry with probability F(X;! 8y

¢(Qt,Rt) =0
X, and F(X;|©,) given

where E{-} denotes the expectation operator.

When t=T: that is, with one period to go we wish to maximize
W(Qp,Xp) subject to ¢(Qr.R)=0. Since Wg > 0, and there is no future
cost from polluti?n, the optimal decision is QT = Qmax Via Ry = Ry«

When t=T-1 maximizing [W(Q_;,X1-1) + PE{W(Qmax. X1}l subject
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to Xt (given), ©1, = 1, and the transformation function leads to the

interior necessary condition

W 0r
g

=p Wy (1-FXp_; 101 ) + Wy F&p, 18 )] (11)

The left-hand-side (LHS) of equation (11} is evaluated at T-1. The RHS
is the expected marginal damage of an additional unit of Ryr ; when
X131 £ X. and when X, > X.. (Note that the partials of W(+) are
evaluated at XT and XT) With only two periods to go Ry_; will influence
pollution costs when t=T but it will not influence the transition
probabilities (since the horizon ends at t=T).

When t=T-2 things become more complex. If ©1, = 1 then we

face the following transition possibilities

Xpp — Xpoq — X with probability [1-F(X;. 5|6 ,)] J[1-FXp 101
XT—2 - X:I‘—I — X"r with prObabl].lty [1—F(XT_2 I ®T—2)].[F (XT——I | ®T—1)]

X1 — Xtr—l — X with probability F(Xy. 5 101 ,)

Note that irreversible accumulation eliminates the possibility of going
from an X" state back to an X' state and thus there are only three
transitions. Since Ry affects X, it will influence the likelihood of

the transitions XT_I - XT or X'T_l — XT The effect of an incremental

increase in Ry, in period T is captured in the following term
PP Wy, (1-Y(1-F(Xp; 184.1)) + Wy F(Xyy 1@y, -
[W(Q e X) — W(Qpmae X F (X ; 105 )}



The first line inside {-] is the expected marginal poliution damage. If
state X' obtains in period T the marginal damage from an increment in
Rr., will have been reduced by one period of degradation thus
reducing its effect by (1-y). If State X" obtains in period T, having been
preceded by state X' in period T-1 (ie, the second transition listed
above) then the full (undegraded) increment of Ry, will carry over

into period T.

The second line inside {-} is the "probability effect”. Given a
state of X' in period T-1, an increase in Rt will raise the likelihood of
receiving W(Qmax,X"T) and reduce the probability of receiving
W(Qmax,le), where F'(Xr.; |95 ;) > 0 is the increased likelihood of state
X" in period T. If Xpg > X, then an incremental change in Ry, would
have no effect on the probability of X' or X" in period T since X" would
occur with certainty. The combined effects in period T and T-1 from

an incremental increase in Ry, are given by

og

= p{WX'T_l(l—F(XT,2 1©ro)) + Wx"T_lF(XT—z 1@p o)} +
p*{Wy (1-)(1-FXp 4 1071 + W FXp 1 181y) -
[W(Q oo Xp) — W(Qumar XIF Ky 181} (12)
All the terms in equation (12) are negative. We are again seeking to
equate the marginal value of tranéformation to the expected marginal
cost of pollution plus the probability effect.

Working backwards in time the interior necessary condition
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becomes more complex as marginal pollution costs and probability
effects extend over a longer and ultimately infinite future-as T—» oo.
The probability effect will reduce the rate of discharge along an
approach path from an initially small pollution stock. Att = 0, and
depending on F(X1®), there will exist a stochastic target X; where
X.:,:o < X} < X;po» where X:,:o and X;O are the deterministic benchmarks
of the preceding section. The logic behind the bounds for the
stochastic target is as follows.

Suppose that the subjective distribution F(X|®) places a very
high probability that X, < X, te, F01€5=1) = Pr(X, < X}0) = 0 ).
With the same v as in the deterministic model the stochastic target
qu_ld be X;\z X:PO'___ T.h_e”approa_ch to X;; will be less rapid due to the
lowér (more cautious) discharge policy induced by the probability
effect.

Alternatively, F(X|0) may imply that X;)o is likely to exceed X..
Then the stochastic target will be X;— < X:po- The lower the prior on X,
the closer X; will be to X’;,:O.

If it turns out that X_ > X;; then the stochastic target will be
reachable, given R, > X, for all t along the approach. It is possible,
however, that along the approaéh to X;; that X. may be unexpectedly

exceeded. Suppose this occurs at t = T, in Figure 4. At this point
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Xcl <X‘y:0 (the optimal pollution stock in the deterministic model

when v = 0) In this case X is allowed to increase (more rapidly since ¥
- 0) until X, = X, at which point R; =0 and Q¢ = Qo thereafter. The

economy is obviously at a lower level of welfare than had the critical

pollution level not been exceeded at all. They might be better off,

however, than if the irreversibility had been triggered later when

X?:o <X, <XF.

If the irreversibility is triggered at t = 1, then residual
discharge stops immediately and Q; = Qo. In this case the pollution
stock is excessive and the economy incurs a net social cost iﬁ
perpetuity. At X equation (6) does not hold, rather Wy Or/0g < Wx/ 3.
To the extent that the probability effect slows the rate of residual
discharge along an approach path it may reduce the magnitude of

excessive pollution costs if a transition to irreversible accumulation

takes place.
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IV. Conclusions

The effect of the risk of irreversible accumulation was to slow
the approach {o a stochastic target X*F where X;; is bounded by the
deterministic optima when y > 0 and when y = 0 (ie, X;:O < X} < X*'pO)'
The stochastic target might be reachable and sustainable if the
unknown X_> X';)O. Since F(X10) is a subjective distribution a process
of irreversible accumulation may be triggered before reaching XF If
this occurs one of two trajectories will be followed. If the pollution
stock is less than X‘;.:O, residual discharges will continue until X; = X’;:O,
at which time they cease forever. If the pollution stock exceeds )g*.zo
residual discharges cease immediately and bgcause the pollutiqn stock
is excessive for a world where ¥ = 0 a net social cost persists in
perpetuity, The slower approach, induced by the probability effect,
may help reduce the magnitude of such social costs if irreversibility is

triggered.
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Figure 1: A Commodity—Reéidual transformation 'Curve Implied
by ¢(@,, R)=0

R,
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Figure 2: The Most Rapid Approach to X*T:0=2.5 and X*Y:O.2=7.5 from

X,=0 for the Case when b=3.5, ¢=0.01, 3=0.1, n=0.5, p=1and R~ =2.5
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Figure 3: The Conditional Distribution F(X, 10) = Pr (Xc< X, 10))
When (a) ©, = 1 (X,_ < Xc) and (b) ®p_ =0 (X _,> Xc).

(a) | (b)
F(X,10,) F(X,10,)

16



Figure 4: Approach Paths and Equilibria with the Risk of

Irreversible Accumulation
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