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Pollution Control and Resource Management

Abstract
Certain levels of pollution, while not posing a direct or

immediate threat to human health may directly affect the health or
abundance of a species of value to man. These values might derive
from commercial or recreational harvest, or from "nonconsumptive"
activities such as observation or photography. A model is constructed
where a stock pollutant adversely affects the growth of a renewable
resource. Denoting resource biomass by X, the harvest rate by Y, the
pollution stock by Z, the rate of commodity production by @ and the
jointly produced residual by S, the equations of motion are given as

X=FX,Z)-Yand Z=—yZ + S, where F(:) is a growth function for the
renewable resource and vy is the rate of biodegradation. Positive levels
for S and Z may be optimal because S > 0 allows for an increase in Q
according to the transformation function ¢(Q,S)=0. With Y and Q
providing welfare flows according W(Y,Q) the general (nonlinear)
problem becomes

Maximizef W(Y,Q)edt
0

Subject to X = FX,Z)-Y

.'iZ-——qZ+S
$(@Q,8)=0

where § is the instantaneous rate of discount. The first order
necessary conditions for this problem are obtained and evaluated in

steady state. They provide insight into the optimal balance between a
marginal increase in Q, S and Z and the reduction in Y through
diminished growth. When W(+) and ¢(-) are separable and linear in Y,Q
and Q,S, respectively, analytic solutions for X* and Z2° are possible. The
comparative statics yield different results than those obtained in
single-state pollution or renewable resource models. For these models
the current value Hamiltonian is linear in Y and S and the most rapid
approach path is optimal. Two special cases, where pollution affects
the intrinsic growth rate or the environmental carrying capacity, are
analyzed in detail. A simple algorithm for driving (X,Z) to the
optimum is developed and numerically applied to the case of rate-
dependent pollution. A policy for coordinating pollution control and
resource management is described.






Pollution Control and Resource Management
I. Introduction and Overview
Certain levels of pollution, while not posing a direct or
immediate threat to human health, may directly affect the health or

—gbundance -of a species-of value-to-man.—These-values-might-derive

from commercial or recreational harvest of the species,
"nonconsumptive” activities such as observation and photography, or
simply knowing that the species and it environment are in a "healthy
state”. For example, at current levels the emission of the acid
precursors SO, and NO,, while not posing a direct threat to human
health, are known to have eliminated certain species of fish from

freshwater lakes in the U. S., Canada, and Northern Europe. In the

Chesapeake Bay agricultural runoff of nutrients and herbicides along
with industrial wastes are thought to have diminished the habitat for
striped bass and oysters (see Kahn and Kemp 1985).

This paper is concerned with the optimal discharge of a
residual waste and the simultaneous management of a renewable
resource adversely affected by the stock of a pollutant. In the next

section we introduce a general (nonlinear) model and derive



conditions for optimal pollution control and resource management. In
the third section we consider a specific form for the growth function
for the renewable resource and examine two cases where the pollution
stock may (1) adversely' affect the intrinsic growth rate, or (2}
adversely affect environmental carrying capacity. These cases are
referred to as rate- and capacity-dependent pollution, respectively.

The fourth section imposes additional form by assuming that
the net benefit function and the transformation function are separable
and linear in their arguments. Analytic solutions for steady state are
possible for both rate- and capacity-dependent pollution. The
comparative statics of steady-state are presented for both models. The
two-state models-exhibit different comparative staties than typieally -
found in single-state resource or pollution models. For the
separable/linear models the optimal approach to steady state is the
most rapid approach path (MRAP) using "bang-bang" controls While
conceptually straightforward the MRAP approach proved difficult to
identify numerically and an alternative algorithm is presented which
permits rapid convergence to the steady-state optimum. The
algorithm is illustrated for the case of rate-dependent pollution.

The final section discusses the implications of the models for

pollution control and resource management.
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II. The General Model
Let X be the population of some species at time t and Z the
stock of a pollutant. Assume the species is harvested at rate Y and that

the instantaneous change in population is given by

X=F(X2) -Y (1)

where F(-} is the net growth function.

Let Q be the level of output of some positively-valued
commodity and S the level of a residual waste, jointly produced
according to the implicit function ¢(Q;S) =0. By convention we
assume 3¢(+)/9Q = ¢, > 0 and 3¢(+)/9S = ¢s < 0 and that if it were desired,
the fixed input implicit in ¢(Q;S) could be allocated between
commodity production and residual reduction so as to produce Q = Qo

with S = 0. If the level of Q is to be increased beyond Q, then

resources must be diverted -from residual reduction toward commodity
production. If all of the fixed resource is allocated to commodity
production it is possible to produce Q = Quax and S = Sy, (see Figure
1).

Thé rate of residual discharge, if larger than the rate of

degradation, can increase the pollution stock according to

Z=—Z+S 2)



where v is the rate of biodegradation.

Finally, we will assume that the social welfare of harvest Y and
commodity Q are given by W(Y,Q). and thus neither the resource
population nor the pollution stock directly affect welfare.

Maximization of the present value of welfare subject to the
equations for resource and pollution dynamics and the implicit

transformation function may be stated mathematically as

Maximize JMW(Y,Q)e'atdt
0

Subject to X= FX,Z)-Y

i:—yz + S
0(Q.8)=0

---where-8-is-the-instantaneous rate-of-discount. - ‘This leads to the
- current-value Hamiltonian

H = W() + WF() YT + w,I—Z + SI — 0o(*) (3)

with first order necessary conditions that include

H,=W,—lx=0 (4)
Hq = Wg - @dg = 0 (5)
Ho =, ~ 00y = 0 . (6)
b = Bt = —Hy =~ (7)



by — Bty = —H, = —LF, + VI, ®)
where pi > 0 and p, < O are the current value shadow prices on the
resource and pollution stocks, respectively.

In steady state equations (1)-(2), (4)-(8) and the

transformation function can be shown to imply

Fro=38 (9)
Wy = WyF,[6,/04/( +7) (10)
Y =FX:Z) (11)
S =vZ (12)
¢@:8) =0 (13)

Equation (9) is a familiar expression in resource economics. In
the nonlinear bioeconomic model (Clark 1976, p. 95) it requires that

the optimal stock equate the biological growth rate to the rate of

discount. In the present model the partial derivative F, may involve
both X and Z and so (9) may not uniquely determine the optimal
population level. |

Equation (10} may be interpreted as equating the
instantaneous marginal social benefit of Q to the the discounted
marginal social cost of an incre:;se in S. Note that [¢,/¢] is the

reciprocal of the marginal rate of transformation of residual S into



commodity Q. An incremental incréase in S, allowing Q to increase,
will increase the steady-state stock of pollution. The increase in the
pollution stock will reduce the net growth in X, which in turn will
decrease Y, with a marginal loss of Wy in perpetuity. With W(-) concave
in Y and Q equations (9)-(13) will define a unique steady-state
optimum (X*,Z°.Y*,S".Q").

The local stability, and thus the approach to steady state
proved difficult to ascertain for the general model. If W() and ¢(:} are
separable in Y,Q and Q,S respectively, then taking the time derivatives

of (4) and {6) and noting from the transformation function that

Q= -t S /q;q, it is possible to show that

. \hfy

Y= -W;[S—FX] (14)
3 .

G Va0 i G- Wy, a5

Wy 0s 03— 03 Waq 0 + W 05 8qq
which along with equations (1) and (2) comprise a four dimensional
dynamical system:.

Even with the presumption of separability it was not possible to

qualitatively deduce the dynamics in state (X,Z) space. We proceed by

adding some additional structure.



III. Rate- and Capacity-Dependent Pollution

How might pollution affect the growth function of a renewable
resource? We will consider two forms of growth suppression due to
pollution. Recall that the logistic growth function takes the form

F(X) =rX(1 - X/K) (16)

where r is the intrinsic growth rate and K is the environmental

carrying capacity. We will consider two cases where r = r(Z) or K =
K(Z) with r'(Z) < 0 and K'(Z) < 0. In the first case pollution reduces
the growth rate, while in the second case pollution reduces
environmental carrying capacity. We refer to these cases as rate-
dependent and capacity-dependent pollution, respectively.

Consider the rate-dependent case when r{Z) = r/(1 + Z}. The

pollution-dependent growth function becomes

FX,Z)=1rX(1 -X/K)/(1 + 2) (17)

For Z = 2 (a constant} equation (17) retains the "logistic shape”
(symmetric, concave from below) with roots at X = 0 and X = K and
with a maximum sustainable yield (MSY) of rK/[4(1 + pA) occurring at X
= K/2.

In the case of capacity-dependent pollution the form K(Z) =

K/(1 + Z) leads to the growth function

F(X,2) =1rX(1 - X(1 + Z2)/K) (18)




With Z = Z equation (18) again retains the logistic shape with roots at
X=0and X=K/(1 + 7). Maximum sustainabié yield again equals
rK/[4(1 + Z)] but occurs at X = K/[2(1 + Z)]. When Z = 0 equations (17)
and (18) both collapse to (186).
IV. The Separable/Linear Model

To inquire further into the long run (equilibrium) and short
run (dynamic) properties of these models we impose the additional
assumption that W(-} and ¢(-) are linear, taking the forms

W({Y,.Q =pY+Q (19)
and

$(Q.8)=Q-(c+ nS)=0 (20)
The parameter p is the relative price of a unit of the harvested
resource, Y. Such a situation might arise for a small country or region
facing constant prices for Y and Q.

The transformation function implies Q@ = ¢ + nS, and the curve
of Figure 1 becomes a straight line with Q, = ¢ and a slope dS/dQ =
1/n. Substituting the expression for Q directly into W{:) allows the

current value Hamiltonian to be written as

H=@p-puJY+Mm+p)S+c+ i FXZ)-p, vZ (21)
which is linear in Y and S. The switching functions for Y and S are

Oy =p - HUyand 6g=n+j,. Wheno,<0,Y=0, while ifcy>0,Y=Ymax.
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Since the current value shadow price on the pollution stock isp, <O
we observe S = 0 when o, < 0 and S = S, when ¢, > 0. We also
assume that Y, is greater than maximum sustainable yield and that
Smax > Y Z for all Z. The shadow prices themselves can be shown to

change according to

Py =Pyl ="TFyl

i, = - F, + G + Y, (23)

Only in steady state, when o, =0, =0, will Y = Y and S =5". We will
derive the steady-state solutions for rate- and capacity-dependent
pollution and then discuss the approach dynamics.

For the case of rate-dependent pollution equation (17} implies
F, = (1 - 2X/K)/(1 + Z) and F, = —rX(1 - X/K)/(1 + Z)>. When p, = O,

. F,= 8 implies Z = [r(1 ~ 2X/K) - 8]/8. When ;:Lz =0, F,=-(6+vn/p and

we can solve for a second expression Z = VprX(1 - X/K)/[n(6 +y)] - 1.

Equating these two expressions and solving for X yields

2
X == 1_,\/ pYK (24)
2 4rn(8 + 7) + ps°K

The comparative statics of §, v, K, n, p and r on X' and Z* are

summarized in Table 1. An increase in § causes a decline in both X*




and Z*. While the decline in X* is observed in most single-state
bioeconomic models, the decline in Z° is not typical. In the single-
state polllution model briefly described in Appendix A an increase in
the discount rate results in an increasé in the pollution stock (see
Conrad 1988 for additional details and a stochastic extension).

An increase in y results in an increase in X* and a decline in Z*.
This result seems jointly plausible, since a lower pollution stock would
allow higher rates of growth, and "capital-theoretic" considerations
would compel a larger resource stock. In the single-state model of
Appendix A, however, an increase in vy leads to an increase in the
steady-state pollution stock.

‘The remaining results in Table-1 are plausible, although it must -
be kept in mind that these are long-run equilibrium effects. For
example, the decline in X* resulting from an increase in price will be
associated with a short-run increase in Y (ie, an increase in supply) as
the stock is being reduced to its new long-run equilibrium level. Long
run supply will decline if the initial equilibrium stock is less than X;,.,.

For the case of capacity-dependent pollution, equation (18)
implies Fy = r(1 — 2X(1 + Z)/K) and F, = -rX*/K. When f..ﬁ,x = 0 we obtain

Z=[K(r -8) - 2rX]/(2rX) (25)

while pz = 0 uniquely determines the optimal resource stock as

10



X = VK + y)n/(pr) (26)
The comparative statics for this case are summarized in Table 2. In
contrast to rate-dependent pollution, and most single-state
bioeconomic models, an increase in the discount rate leads to an

increase in the steady-state resource stock. Equally surprising is the

result that an increase in the intrinsic” gfowt'h rate leads to-a decrease
in the resource stock. The explanation may lie in the relative
influence of the pollution stock in the rate- and capacity-dependent

" models. In the latter model the influence of Z on K is apparently
strong enough to offset the usual comparative statics of the single-state
model. For example, an increase in 3§, results in a decline in the
pollution stock which allows a net increase in the resource stock. An

increase in r leads to an increase in Z which in turn reduces the

carrying capacity to such an extent that the optimal biomass (X*)
actually declines.

It was initially thought that these results might be specific to
the separable/linear forms. Relaxing either assumption makes the
possibility of analytic solutions for either X* or Z* less likely. In a
model where the transformation function took the form @ = V¢ + nS

and all other functions were the same, numerical analysis again
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produced dX*/d$ > 0 and dX*/dr < 0. Thus, it would appear that the
interaction between the stock pollutant and the renewable resource
can produce comparative static results not typically encountered in
single-state models.

In the separable/linear models, systemm dynamics are governed
by four differential equations (X,Zuxuz) and the two switching
functions oy and o, Qualitative analysis of a point in state space, R?, is
made difficult because the complete dynamics takes place in %°. A
discrete-time analog was constructed and simulated for initial guesses

for p, o and p, , and nonequilibrium values for X, and Z,. Fairly

intensive search failed to uncover the stable manifold which would

“lead to the known steady-state optimum. This 1§ ot too surprising

and may be analogous to numerically trying to track a convergent
separatrix to a saddle point equilibrium in a single-state model. It is
more than a numerical inconvenience, however, since practical
management might also be concerned with the optimal or at least
"near-optimal" approach to a desired equilibrium.

Appendix B contains code {written in BASIC} for a simple
algorithm which can assure convergence to a previously calcuiated
equilibrium. It employs bang-bang controls to drive Z and Z' and X to

X' as rapidly as possible and is thus similar "in spirit" to the MRAP

12



solution. It does not employ the switching functions as the MRAP
solution must, thus we cannot claim that the solutions obtained from
the algorithm are optimal. The algorithm compares Z; to z,
determines whether Z* can be reached in t+1, and selects that S;
(subject to O < S; < Spax) Which brings Z;,; closest to Z". A similar set

of calculations is made for Y; based on a comparison of X; and X".

Figure 2 shows four trajectories obtained from the initial
conditions (1.0, 0), (0.7, 0.5), (0.1, 0.25) and (0.1, 0.15) when c=1,
5=0.1, y=0.1, K=1, n=2, and r=0.5, for the case of rate-dependent
pollution when Y, = 0.20 and Sy, =0.03. The numerical values for
X., Z, Y, and S, for each are trajectory also given in Appendix B.

From the initial condition (1.0, 0) the point (X;,Z;) moves
northwesterly reaching X* first. At X; = X" harvest is set equal to Y

which, since the pollution stock is less than Z*, will be less than

growth, F(X*,Z,). Thus, X;,; will actually increase slightly above X*,
requiring Yi,; > Y* so as to drive X,, back to X*. All the while S; = Sya
and Z; is increasing toward Z* as X; undergoes damped oscillations
along and slightly to the right of X*.

The approach from (0.7, 0.5) proceeds southwesteriy, again
reaching X* first. Since Z; > Z* harvest at Y* causes X, to drop below

X*. The "zig-zag" down the left side of X" is damped as Z; approaches

13



Z with S; =01if Z,,; = (1-7)Z; > Z*.

When a trajectory reaches Z* first, S; = S* and Z; locks onto Z*
regardless of X;. This is Simply because the resource stock does not
influence the dynamics of the pollution stock. This is revealed in the
trajectories from (0.1, 0.25) and (0.1, 0.15).

The speed of convergence obviously depends on the relative
growth rate, the rate of biodegradation, Y, . and S, .. The lower
bounds of zero for Y; and S; presume that the species cannot be
restocked from another location or hatchery, and that dredging of an
excessive pollution stock is not feasible. In reality there are instances
where both restocking and dredging have been employed to hasten

recovery.

V. Policy

What are the implications, if any, of the above models for
-applied pollution control and resource management? The application
of control theory to the management of environmental quality and
renewable resources has been hampered by several factors. First,
there are limited time-series data on which to generate estimates of

the resource stock and even less data on the levels of pollution. These
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data limitations may make it difficult to estimate F(X,Z). Second, a
single species is typically embedded in a larger system where food
sources, predators, competitors and the physical environnient are in a
state of flux. These "external" factors frequently dominate the
influence of biomass (X) on the change in biomass ().(), making the

estimation of pollution-dependent growth functions statistically

difficult even if sufficient time-series data can be assembled. Finally,
while the preceding models presumed a commercial species with a
marginal value equal to its per unit price, this need not always be the
case. If a species' value derives from observation (as is the case for
many marine mammals} then nonmarket valuation £echm‘ques must be
employed. While recent advances in contingent valuation have
increased the ability to estimate such values, significant problems
remain and the validity of this approach is still controversial. How
should one proceed?

Envifonmental economists when faced with the difficulty of
estimating pollution damages have suggested that society should
attempt to determine (via their elected representatives} an acceptable
standard for ambient environmental quality. The objective of
environmental policy might then be to achieve that standard at least

cost. Suppose in an estuary that Z is the maximum acceptable value
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for some stock pollutant and that the existing stock exceeds the target
(ie, Z, > é). If a pollution-dependent growth function had been
estimated, optimal biomass could be calculated by finding the value of
X which satisfies 8 = F, when Z = Z. Denote this value as X. If stock
assessment reveals X, < X then the separable/linear model of the
preceding section would call for a moratorium on residual discharge
and harvest. Such a policy is likely to have both commercial
harvesters and the polluting firms "up-in-arms". A less rapid approach
to (3{,.%) might be desirable. |

Without some candidate F(X,Z) it is not clear what levels of
pollution are consistent with the resource stock and sustainable yield.
This does not mean that pollution control and resource management
should proceed independently. One feasible approach, not totally
inconsistent with the separable/linear models of the preceding
section, is shown in Figure 3.

Suppose a team of scientists is empaneled to scrutinize all
available historical data on harvest, discharge rates, estimates of the
resource stock and the level of pollution. One of the panel's objectives
is to provide interval estimates for the "optimal" resource and
pollution stocks and point estimates of yield and residual discharge

consistent with X and Z in those intervals. Suppose the optimal
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intervals are X < X" <X, and Z, < Z* < Z,, and Y and é are the
estimates for sustainable yield and residual discharge in those
intervals.

The second objective is to identify upper and lower bounds for
Y and S which can "drive the system" (that is, cause X and Z to

increase or decrease) and which are politically acceptable. These

bounds are denoted as Yy Ymin » Smaxs and Sy - Then, the initial
condition (X,,Zg) must fall in one of the nine zones shown in Figure 3.
The values for Y and S are uniquely determined by the initial condition
and the subsequent evolution of the system. If the scientific
committee has come up with a reasonably accurate assessment of the
system's dynamics, the values for Y and S listed in the nine zones in
Figure 3 might be thought of as "approximately optimal feedback

controls” and they would guide the system to the "zone of optimality”.

There is no guarantee, however, given the initial state of ignorance
and the political pressure which might influence the upper and lower
bounds for Y and S, that the system will move toward this zone. Time
may reveal the initial intervals to be inconsistent with the (true)
underlying resource and pollution dynamics or less desirable than
initially thought. It is again important for X and Z to be monitored as

the initial feedback controls are applied. Such information may allow
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the estimation of a formal model, clarify the relative value (cost] of the
resource (pollution} stock, and permit the identification of superior
adaptive strategies.

Environmental economists have long realized that residuals
management may require a multimedia approach. It is likely that
pollution control and resource management will require greater
synthesis and coordination in the future. This paper is an attempt at
identifying the type of models and policies that may be useful in that

synthesis.
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Table 1: Comparative Statics in the Case of Rate-Dependent Pollution

) ¥ K n P r
- + + + - +
z - - + - + +
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Table 2: Comparative Statics in the Case of Capacity-Dependent Pollution

o y K n p r
+ + + + - -
z - - + - + +
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Figure 1. A Graph of the Commodity-Residual Transformation
Curve Implied by ¢(Q,S) = O
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Figure 2: Convergence to the equilibrium (X*Z*) for the case of Rate-Dependent Pollution when c=1, $=0.1,
v=0.1, K=1, n=2, p=5 and r=0.5 from initial conditions (1.0, 0}, {0.7, 0.5), (0.1, 0.25) and (0.1, 0.15) when
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Figure 3. Harvest and Residual Discharge Based on Interval

Guesses for Optimal Pollution and the Resource

Stock
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Appendix A

This appendix derives the steady-state comparative statics for a
single-state pollution model. These results are useful in evaluating the
comparative statics for the cases of rate- and capacity-dependent
pollution.

Consider the problem

Maximize J W(Q,Z)e‘Stdt
0

Subject to Z =—yZ+5

0@Q,5 =0
where W(+) is a net benefit function with W, > 0 and W, < 0. The
current value Hamiltonian may be written
H = W(Q,Z) + ul-yZ + SI — @(Q.S)
with first order conditions that include

oH
EQ—'=Wq—(D¢q=O
ol

35 THT0%=0

. oH
p— dp = -5 =W, —yl

In steady state these equations will imply

Wq = Wz{q)q/q)s]/(a +7)

When W(Q,Z) = pQ - aZ2, so that pollution damage is quadratic in the
stock, and Q = ¢ + nS, then the above equation may be solved for Z
yielding

« nplB+7y
Z =753

and the comparative statics are immediately apparent; namely that the

optimal pollution stock increases with an increase in n, p, §, or ¥y and
decreases with an increase in a. The MRAP is optimal.
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Rate-Dependent Pollution, 0%Y;& 0.2, 025 <£0.03

DATA 1,0.1,

0.1
20 READ C,D,G,K,N
/

DIS=P* (D~ 2) *

APPENDIX B
Program for Driving Z{ to 7* and Xi to X* for the Case of

1,2,5,0.5
P,R
4%R

(

=K* (1-SQR(DIS) ) /2
Z=R* (1-2%X/K) /D-1
Y=R*X* (1-X/K) / (1+2)

S=G*Z

Q=C+N*3
PRINT "C=";(C;
PRINT:PRINT

PRINT USING "X=##.,###4#",¥
PRINT USING "Z=##.####“;Z
PRINT USING "Y=##.###4";Yy
PRINT USING "S=##.####“;S
PRINT USING "Q=##.4#444";:0
INPUT "HORIZON LENGTH = ";TT

DIM X(TT),Z(

Nt iD;vG= :G "K=" K "N=" iN: " p=n 1P "R=" 'R
"When pollution affects the growth rate:"

X(0)=.7:YMAX=.
Z(0)=.5:SMAX=.03
FOR T=0 TO TT-1

F=R*X(T) * (1-X(T)/K)/(1+Z(T))

TT) ,Y(TT) ,S(TT)
2

IF Z(T)=Z THEN S(T)=S:GOTO 260

IF Z(T)*(1-G)>=2Z THEN S(T)=0:GOTO 260
IF 2(T)*(1-G)+SMAX<=Z THEN S (T

S(T)=2-(1~G)

*Z (T)

IF X(T)=X THEN Y(T)=Y:GOTO 300

IF X(T)+F<=X THEN Y(T)=0:G0TO 300

IF X(T)+F-YMAX>=X THEN Y (T)=YMAX:GOTO 300

Y(T)=X(T)+F-X

X(T+1)=X(T)+F-Y (T) :Z (T+1)=(1
PRINT: PRINT "X (";T;")=";X(T)
PRINT "Z("“;T

PRINT "Y(";T
PRINT "S(";T

IF ABS (X(T)-X

NEXT T
GOTO 390
PRINT "“Stead

INPUT "Do you want a
IF W=0 GOTO 540

LPRINT "For rate-de
LPRINT:LPRINT "C=
LPRINT:LPRINT USI

LPRINT USING
LPRINT USING
LPRINT USING

,'")=",‘Z(T)
,‘")=",'Y(T)
;Il):ll;S(T)

NZ=jd. REHH ;7

MY=ii, dhdgny

"S=f4. #4440 ;s

"O=H#. #4440
tli . "

X" '

*N* (D+G) +P* (DA2) *K)

Y State Attained at t=";T
print-ocut of X(t),2(t),¥(t) and S(t)? Yes=1, No=0.";

=G) *Z (T)+S(T)

"oK: "N=":N;:"p=n ;P;"R=":R

Z",

) =SMAX:GOTO 260

)+ABS (Z(T)~2)<.00001 GOTO 380

pendent pollution when:"
" ;C:"D=",‘D,‘"G=" ;G "K=
NG "X=##._ ###4r;x

YII’ " SI!

LPRINT USING
LPRINT
LPRINT "
LPRINT "

FOR I=0 TO T

LPRINT USING
NEXT I
END

"#######.####":I,X(I),Z(I),Y(I),S(I)
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APPENDLA B cont.
Actual Values of Xt’ Zt’ Yt and St for Trajectories in Figure 2.

From (Xg.Z5) = (1,0)

t X Z Y s
0.0000 1.0000 0.0000 0.2000 0.0300
1.0000 0.8000 0.0300 0.2000 0.0300
2.0000 0.6777 0.0570 0.2000 0.0300
3,0000 0.5810 0.0813 0.2000 0.0300
4,0000 0.4936 0.1032 0.2000 0.0300
5.0000 0.4069 0.1229 0.1356 0.0300
6.0000 0.3787 0.1406 0.0970 0.0300
7.0000 0.3849 0.1565 0.1085 0.0300
8.0000 0.3787 0.1709 0.0970 0.0300
9.0000 0.3822 0.1838 0.1032 0.0300

10.0000 0.3787 0.1954 0.0970 0.0300

11.0000 6.3801 0. 2059 0 099T 0. 0274

12.0000 0.3787 0.2127 0.0970 0.0213

From (XO,ZO) = (0.7,0.5)

t X y4 Y S
0.0000 0.7000 0.5000 0.2000 0.0000
1.0000 0.5700 0.4500 0.2000 0.0000
2.0000 0.4545 0.4050 0.1640 0.0000
3.0000 0.3787 0.3645 0.0970 0.0000
4.0000 0.3679 0.3280 0.0768 0.0000
5.,0000 0.3787 0.2952 0.0970 0.0000
6.0000 0.3725 0.2657 0.0862 0.0000
7.0000 0.3787 0.2391 0.0970 0.0000
8.0000 0.3767 0.2152 0.0945 0.0190
9.0000 0.3787 0.2127 0.0970 0.0213

From (Xg,Z,) = (0.1,0.25)

t X yA b4 S
0.0000 0.1000 0.2500 0.0000 0.0000
1.0000 0.1360 0.2250 0.0000 0.0102
2.0000 0.1840 0.2127 0.0000 0.0213
3.0000 0.2459 0.2127 0.0000 0.0213
4.0000 0.3223 0.2127 0.0336 0.0213
5.0000 0.3787 0.2127 0.0970 0.0213

From (Xg,Zg) = (0.1,0.15)

t X A v s
0.0000 0.1000 0.1500 0.0000 0.0300
1.0000 0.1391 0.1650 0.0000 0.0300
2.0000 0.1905 0.1785 0.0000 0.0300
3.0000 0.2560 0.1906 0.0000 0.0300
4.0000 0.3359 0.2016 0.0500 . 0.0300
5.0000 0.3787 0.2114 0.0970 0.0224
6.0000 0.3788 0.2127 0.0971 0.0213
7.0000 0.3787 0.2127 0.0970 0.0213
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