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Abstract

Application of optimal control theory to applied resource problems

-has been limited by the difficulty of numerical solutions. Typically,

terminal values for the length of the production peried, price, or
production have been assumed rather than optimized. The use of an
objective functional with explicit discounting gives direct solution
values for h, y(t), p(t), and monopoly profit {or consumer surplus) for
continuous or discrete problems. The method can be used for numerical
solutions to problems with linear demand, cost trend, or risk of ex-
propriation. Computer mathematics is a useful tool in exploring solution
values for specific parameters. The techniques are illustrated with
Fisher's widely used discrete problem, and with application to parameters
representing remaining world oil resources for competitive and monopo-
Tistic assumptions.
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Working on Fisher's Problem with Combutér Algebra

The theory of natural resource use over time has undergone consid-
erable evolution since Hotelling's pathbreaking work 50 years ago. Clark,
Dasgupta, Gilbert, Fisher, Kamien and Schwartz, Heal, Smith, and Solow
have been among the leaders in this effort. However, applications of this
theory to numerical problems has been difficult My purpose .here is to
describe - in a precise, but accessible, way some prob]ems and numerical
solutions in oil use, which can be used in teaching theory and analysis.
The ambition, then, is small, intending to restate in simple form material
which has been thoroughly discussed in the literature.

Some interesting implications arise from the numerical solutions.
Dramatically different time paths of 0il use can have essentially the
same objective values. It may be that, with the pfeseht world economy,. an
011 cartel could for the present ignore depletion. Similarly, the socially
optimal competitive path is unaffected by depletion for many years.

It is generally thought that production paths for monopoly and com-
petitive solutions will cross. This happens here. But cumulative pro-
duction is always greater in the competitive solution, and the difference
grows throughout the competitive period.

. The Tength of time.period is frequently assumed in optimization
problems, and is usually viewed as years to depletion. In part, this
is because of the difficulty of determining numerical answers to the prob-
lem in a continuous framework. But suppose that a monopoly has an n-year
contract. Will it make radically different decisions than a monopoly that
can decide n? Or suppose Toss of ownership as a probability question.
Does this affect numerical solutions? Of course, both answers are affir-
mative.

In addition, the technical change issue can be incorporated into the
problem, and solved. Alternatively, environmentally linked costs may he

represented in the same function, and solved.



1. Fisher's Problem and Optimal -Control

As a text for the discussion, Fisher's problem is useful since his

Resource and Environmental Economics has attained wide usage. He gives
this problem: there are 10 barrels of oil in the ground, the price de-
mand function for oil is $10 - y., cost is a constant $2, and the discount
rate is 10%. What is. optimal use over two years?

"The objectives are to compare social optimality with competitive and
monopoly solutions. If all of the o0il must beﬁused, the monopolist uses
4,95 barrels in the first year and the remaining 5.05 barrels in the sec-
ond-yeér. But the competitive solution is socially optimal, and those
values are 5.14 barrels in the first period and 4.86 barrels in the
second. ‘

[f the monopolist need not produce all the oil, the profit maximiz-
ing amounts are 4 barrels per year in each period, leaving 2 barrels un-
used. The socially optimal, competitive solution would, if unconstrained
by a resource 1imit, use marginal cost pricing, and seek to use 8 barrels
per period. Since this is not possible, the constrained values for two
years (i.e., 5.14 and 4.86) are correct. Table 1 shows these values.

- Fisher has specified the number of time periods, the demand function
as linear, and cost as constant. It is these assumptions rather than the
specific values (i.e., 10 barrels available, 2 periods) which are the key
to easy solution. But if we make n, the number of time periods, a control
variable, the probliem is more complex. In fact, for the monopoly the op-
timal number of periods is 8 years. In what follows, we find a method of
selecting n, and learn that this method is applicable for finding numer-
ical solutions for general continuous problems involving representative
world oil data and alternative objectives. '

More formally, the problem is to maximize the present value of eco-
nomic rent by finding the optimal time path of producticn and the optimal
length of time for production;l/ The time path or trajectory of production

1. This definition of the problem and first order canonical conditions
js based upon Intriligator's discussion, Chs. 11 and 14.




TABLE 1
FISHER'S OIl PROBLEM: 10 BARRELS, 2 PERIODS

Competitive

Objective Monopoly Profit Social Optimum
Period 0 use, barrels 4 5.14
Period 1 use, barrels 4 4.86
Price, period 0 56 $4.86
Price, period 1 %6 | $5.14
Total oil use 8 10
Profit present value $30.55 $28.57
Consumers® surplus,

present value - $15.27 ' $23.95

Note: Remember cost is a constant $2 per barrel. Consumers' surplus
before discounting 1is fpdy - 2y. Two periods are assumed.

is controlled by the decision maker to optimize the desired value. Price
is then determined by production, as is economic rent. Production is al-
ways the rate of change in cumulative production. Admissible values of
production must be such that price, production, and rent are always
nonnegative.

If all the resource must be used, then cumulative production reaches
the original stock at the end of the optimal time. But, of course, if

resource exhaustion is not required, then cumulative production must not
exceed the original stock, and optimization may mean that some part of
the resource is Teft unused when production ceases.

This is the basic problem for any finite resource, on any scale
whether micro (e.g., a small deposit) or macro (e.g., global oil).



First, I state the continuous problem, and then return to Fisher's
discrete problem. 1In a later section, the monopoly profit objective is
replaced by social welfare and competitive objectives, and numerical resu1ts
follow. The continuous problem, initially for a monopoly, is to maximize
the present value of profits, V, with respect to n, the length of the
production period, and y(t), the production path.

| n
maximize V= ELXlXF%_ﬁl dt;
{y(t),'ﬂ} o}

where:

=
——
b
—
I

82 - Bl.ys

Table 2 summarizes the definitions for Eq. (1). For ease of solu-
tion, p(y) is linear and cost o is constant for now.

Cumulative production at any time is X(t), a variable reflecting the
"state" of remaining resources. Production, y(t), whatever form it may
take, must be the rate of change in cumulative production. Original re-
source stock is S; it cannot be exceeded. However, the not-more-than
constraint creates modest difficulties for solutions. Will the optimal
y(t) use up all of the resource by n, or will use cease with ail stocks
still available? Finally, prices, quantities, and profit must always
be non-negative.



TABLE 2
DEFINITIONS OF VARIABLES

Yariable

Definition
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Average cost per unit

Optimal monopoly production, unconstrained

Substitution parameter

With technical change, unconstrained optimal monopoly production
Parameters in price demand function

Competitive socially optimal production, unconstrained
Competitive industry, present value of profit

Discrete V; see V below

Probability of a profit

~Hamiltonian function

Probability of Tost profit

Rate of change in average cost

Dynamic Lagrange multiplier, costate variable
Accumulation factor for regular investment at interest
Length of time period

Price or price demand function

Interest or discount rate

Sum of interest and risk discount rates

Original resource stock

Social value; present value of consumers' surplus
Time

Present value of monopoly profit

Cumulative production

Production or production time path

Risk parameter




Intuitively, we might prefer to maximize the future accumulated value
at the end of the time period, say A(n). But this is simply linked to V:
A(n) = Ve'™, so maximizing either A or ¥ is equivalent. The maximum mono-
poly profit is to be found by determining the functional form of y(t),
its actual numerical values, and the length of time n.

The best optimal control technique to use with this problem is the

maximum principle. This principle asserts that study of a simpler func-
tion based upon the relationships in . Eq. (1) can provide information use- :
ful in finding a solution. The insight is that, by examining first order g
conditions, the nature of the solution may be determined;g/ The Hamil- :
tonian function takes the function being maximized over time, here the

discounted profit function. It includes a term reflecting the rate of

changé in remaining stock. It is:

(2) n=DRllyooy
e

The X term is similar to a Lagrangian multiplier, and is a co-state vari-
able: it is co-multiplied with y, the rate of change in the state vari-

able X. It can be viewed as giving the value of the change in discounted
profit associated with a small increase in resource endowment. Approxi-
mately, A is dV¥/dS.
The Hamiltonian provides the first-order conditions to solve Eq. (1):
aH _

(3a) Either 3y 0,

(3b) or“%% = 0, and

2. A1l of the functions are continuous and differentiable, and the func-
tion being maximized (discounted profit in this section) is appropriately
concave.
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It is still the case that y = dX/dt.
Finaily, the second-order condition is:

(8) == < 0.

Before applying these relationships, I return to the discrete prob-
Tfem in order to show how 8 years is found to be the optimal monopoly pe-
riod and how Y is made explicit. The discrete general analogue is sum-
marized with slight modification of Egs. (1)-(4):

n-1
(5a) maximize DV = } plyly - oy .

e M =0 (1+nt
n-1

(5b) I vy =X(n-1) ¢S,
t=0

(5{:) H = w - AY.
(1+n?

DV is the discrete version of net present value monopoly profit.
The other constraints, conditions, and definitions in Table 2 still hold.
The logical interpretation of these relationships can be difficult since
the true optimum may fall between the integer time units.

The Fisher problem values are, as noted,

ply) = $10 - y; 82 =10, By = 1,

S = 10 barrels original endowment,
(6) r = 10% per year discount rate,

o = §$2 per barrel constant cost.

First, consider the solution when all the resource is used so X{n) = S.
Applying the first-order conditions, beginning with Eq. (3a):



PRy
-(73) 5— = T - a =40,

A B

Ba - 2B1y - «
(70) =4

(1 +r)

o t (B - a)

(7¢)  y = A0 + ) P2

2B1 2681

Apparently, the co-state multiplier does not change over timé, since
applying Eq. (3c),

Since A is constant for given parameters 1ike those inEq. (6), y in Eq. {7¢)
can be used in the Eq. (5b) definition of cumulative production using ail
the resource.

n-1 t | o - o
A1+ r) _ _ .
n-1
- i
(10) NBe + 52— ) (1 +r)” =5,
281 t=0

The summation of the interest terms is the familiar ((1 + r)n - 1)/r,
the accumulation factor for n years of regular investment at interest.
Define this @s u(n); n has to be determined. Consequently, solving for
A in {10},

-251(5 - HBO)
(1])‘ A= LL(n) N and
(s - nga)(1 + r)*
(12) Y By t n)
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Note that By, h, and S determine whether Y increases or decreases
over time. The B, term defined in Eq. {(9) is simply optimal y in the
absence of a resource constraint. It is the usual result of maximizing

py - ay. Eg. (12), then, says that optimal production in the early years
will be closest to the unconstrained levei. As time passes, Y diverges
from 8,. The sign and rate of change of this divergence (i.e.,
a(yt - B4)/9t) depends upon the numerical values of resource endowment,
the optimal production period, and the interest rate. Generally, if the
resource constraint applies and n is properly chosen, we may expect Y
to decline over time. '

Using Fisher's values given in Eq. (6), the demand function is

(10 - 4n)(1.1)%
u(n)

- (13) Yy = 4 + (t=0,1,2, ..., n).

Eq. (13) shows optimal y when n is known. Now that we know Yt given
n, this can be put back into Eq. (5a) and we can find the optimal n.

n=1 (10 - y. )y, - 2y,
L

(14) maximize DV =
{n} t=0 (1.1

y. as in Eq. (13).

This is easily programmed, and maximum discounted present value is
$51.57, the optimal time period is 8 years (i.e., n =7), and oil use
declines from'2.08 barrels in the initial period to 0.25 barrels in the
last period. Price rises from $7.92 per barrel in the initial year to

'$9.75 in the last year. Lambda, from Eq. (11), equals +$3.85. The in-
terpretation of A in this discrete format means that, given n = 7, dDV/dS =

$3.85. (Remember that the initial period has t = 0, and n = 7 means an
eight year period.) ' '
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2. Global, Discrete 0il Use:

Monopoly Solution

There are 1.189 trillion barrels of 01 remaining, more or less,
from the earth's original endowment of 2 trillion barrels. This includes
proved reserves as well as 0il remaining to be discovered.éf' If the de-
mand elasticity is -0.5 at current annual world oil use of 20 billion
'barre]s,ﬂ/ this would mean, for Tinear demand, p = $75 - 2.5y. Figuring
average world production cost at $20 per barrel, parameters for a global
0il problem are '

p(y) = $75 - 2.5y, 8> = 75, 81 = 2.5,

) = 1189 barrels remaining o0il resource,
(15) r = 10% per year discount rate,

o = $20 per barrel consfant cost,

By = 11,

Using equation (12}, oil production in year t is
(1189 - 11n)(1.1)%
u(n) )

(16) yr = 11 +

3. From USGS, Masters, et al., 1983 resource estimate, modified for
1983-84 actual use. Other accessible discussions of total oil resources

are the 0il and Gas dJournal, Exxon, Chapman, and Daly, et al.

" 4, Long run price elasticity values include Daly, et al.'s -0.73; Pindyck's
Tinear demand values which include -0.33 and -0.90; and -0.30 from Adams
and Marquez. Kouris summarizes several studies; for retail gasoline in

the U.S., values range from -0.36 to -1.02.
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Searching for optimal n is somewhat more time consuming with these
values. It is helpful to find an initial value which may be close to the
optimum. Suppose expropriation is not a problem and y declines te near
zero as is often assumed. Then, by setting y(t = n) = 0, an initial n
can be found. Taking Eq. (12), and then the global values,

r(1 + r)™(S - ngo)

(17) y{t =n) = go + - 0,
(1+r) -1
-
(18) n = %ﬁ + % - LlﬁiFﬁl—— , which gives
-n
(19) n = 118.00 - L1

Following the simple iteration first used by Hotei1ing,§/ n = 118 is the
closest integer value. Below, this method {is shown to define the unique
optimal n for the continuous problem.

"~ The present value of discretely discounted profit is $3.3274 trillion.
011 production and consumption would decline from 11 billion barrels in
year "0" to 1.09 billion barrels in year 117 (Figure 1). Price would arise
from $47.50 per barrel in the initial period to $74.77 in the final period.
(In Figure 1, the superscript d shows optimal path values, and superscripts
a, b, ¢ illustrate three non-optimal time paths.}

Given o0il use of about 20 billion barrels annually and a price of
$27 per barrel in 1985, it seems that monopoly profit maximization was not
attained,éj at least in the context of these assumptions.

5. Hotelling, p. 142.
6. The $27 per barrel figure represents an average price for all of 1985.
See Weekly Petroleum Status Report, recent issues.
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3.. Continuous Solutjons: Competition, Monopoly, and Socia] Optima

Although continuous relationships are more easily interpreted, they
_have not attained frequent use in numerical problems. In part, this is
because evaluation of present value V in Eq. (1) can be very difficult.
However, new.programs such as MACSYMAZ/ now pérmit resolution of this
difficulty. Explicit answers to the Eq. (1) problem for numerical assump-
tions in Eq. (15) follow.

Beginning with Eqs. (1) - (4), the first order {canonical} conditions

are
)
p + —Ey -0 : ,
(00 MW .0,
. ,.
: ‘ rt (Bz - ﬂ)
(21) y =28+

281 281

As above, since Eq. (3c) leads to -3H/oX = 0, then 3x/5t = 0, and
» is constant for a given n. Consequently, production over the period,

" if jt exhausts the resource, 1is

n _Aert | Ba = o
(22a) Of ( T + Bg ] dt = S, where gy = o5, ° ar,
n n
(226) 5= f e"tat + g, [ dt =S,
1o 0
rn
(22¢) - (e = 1) 4 ngy = S.

7. MACSYMA is a computer program for algebra and applied mathematics
which, because of its calculus capabilities, is particularly useful for
solving optimal control values. Rand offers a good program guide, and
complete documentation is published by the MIT Mathlab Group and Symbolics,
Inc. Microcomputers can use similar packages. '
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So, with the accumulation factor, now u(n) = (ern - 1)/r,

) 281(5-- ngyq)
(23) TAT u{n) ’
(s - nge)e"t
(24) y(t) = U(n) + BO: t = 0: n.

This y(t) and » are identical to the discrete forms for yi and A, {(Egs.
(11) and (12) abpve). Clark (p. 146) outlined part of this approach 10
years ago, noting "Determination of T [the optimal exhaustion date],
however, is & non—triviai matter." He suggested iterating A.

Margaret Morgan and William Podulka contributed an explicit solution
for the optimal present value of monopoly profit by using y(t} in Eq. (1),
and

u(n)sigs? 8:(S - nBo)*®

(25) V= o - o (n)

Podulka also noted that maximizing V for n gives a unique solution
to the problem of optimal n, and that is,

e*Y‘ﬂ

r

(26) n = %E +

= =

This of course provides the basis for the Hotelling iteration for
Egs. (17)-(19). We now know that, for this problem, Eq. (26) is the single
unigue optimum length of time for production. The value for n is found

by simple iteration or by Newton's method,§/ and is 118.09.

8. Conrad and Clark (Ch. 1.6) show applications of Newton's solution
method to optimal control resource problems.
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The present value Qf monopoly profit is $3.025 trillion. This is
reassuringly close to the discrete solution. The second order condition

[Egs. {20) and (4)] is

T

82
3y

:Eﬁi < 0 .

27
(27) =

|

N

The same methods find numerical solutions to the socially optimal,
competitive probiems. Both have the same first-order conditions. The
competitive problem is

n
(28) maximize CV = | w dt, %E = 0,
) {Y(t),n} o] e y

and the social optimum problem is, for social value SV,

n o y(t) rt
(29) maximize SV = | { f (ply) - a)dy)e™ "~ dt.
{y(t).n} o o _

The competitive and socially optimal Hamiltonians, H. and Hg, are

_plyly - wy M _ g
{30) He T s 3y = 03
Y ( _
_ y) - oajdy _
(31) He = g ¥ Ay

For each, the first-order condition is identical.

()  W-pze.,.

Again, since the first order condition sx/st = -sH/aX is zero, A
is constant for any time period n. Continuing, and using yc for the
socially optimal, competitive path, '
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S .
_ (S - ngs)e” _ 82 -
(33) yc(t) U(n) + B3, where B3 Rl N
| - -(S - nB3)p1
(34) re G L,
s .1 e™M
(35) e =% s T
2
(36) i m—‘E% < 0.
ayz e

As with the monopoly, social value is made explicit with Eq. (33)
in Eq. (28), and n. in Eq. (35) maximizes this social value:

(37) Sy = 61832}1{”) - (S = nBS)z

Zern 2u(n)

In comparing monopoly and competition for {ym{t)snyt and {yc(t).nclh,
for these global values, the productien and price paths intersect near nc.
The socially optimal path begins at an annual 22 billion barrels, and
declines for 64.02 years until the resource is exhausted. The monopoly
path begins at 11 billion barrels, stays at this level for many years, and
then declines toward zero. Egs.(38 } and (39) summarize these numerical
resulits, as do Figures 2-4.

Jdt
.81
(38) y,(t) = 11 - —%ﬁ%ﬁ%ﬁ—- , and
(39) yo (t) = 22 - 0364 e T .

The subscript ¢ indicates competitive, socially optimal solutions,
and m indicates monopoly solutions. The price paths do have the expected
relationships to the interest rate and opportunity cost:

(40) %%m = .5rhmert >0,
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(a1) Lo =meToo0,

Here Ay is .04 of 1¢ and-lc ijs 9¢. The depletion periods are con-
siderably different. The implication would be that an increment to world.
0il resources is more valuable to a competitive worid economy than it
would be to a world cartel.
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4. The Numerical Paradox}‘ Impatience and Myopia are Almost Optimal

" Figure 1 had shown that for the discrete problem, production paths

that diverge sharply from the optimal can give essentially equivalent profit.
It is not surprising that this is equally applicable to continuous solu-
tions for both the social optimum and monopoly problems. Suppose we examine
these numerical relationships in a mare systematic matter. - Will the
paradox of widely divergent policies having nearly optimal present value
continue? In a general sense, the answer is affirmative, at least for the
domain of varied parameters considered here.
| Define a myopic plannér as setting y at a constant gs 1evel until the
resource is exhausted after 5/g; years. (Recall g3 is the socially eptimal
Tevel of production in the absence of a finite resource constraint.) Will
the present value of net social value be similar to that for optimal y*
for significant variations in interest rate, demand parameters, cost, and
0il resources? '

Define an impatient p1anne% as wishing to initiate production at the
g; level, gain a net social value comparable to the true optimum $6.03
trillion, and leave the 0i1 business. This can be accomplished as follows.
First, use a form y3(t) = gs + gqert. Second, define comparable social
value (or monopoly profit) as 95% of the optimum value:
SVaLya(t),nd} = .95 SVELy*(t),n¥}, or V3{ya(t),na} = .95 VXLyx(t).n").
Now find B, which, meeting the non-negativity constraints, gives the least
years of production nd. This is also the maximum By which satisfies the
comparability requirement. For Figure 5, for example, with the basic
parameters for the maximum social value problem, the impatient planner path
is ya(t) = 22 + .577e" L,
The net social value for this dramatically different path is $5.74 trillion,

Petroleum use jncreases over a 36 year period.

95% of the true optimum. _
Figure 6 is showing a case where the basic assumptions are changed
significantly in directions intended to reduce this apparent divergence
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in production plans for policies with comparable net social value. Demand
elasticity is increased from -0.5 to -1.2, cost is reduced to $10 per
barrel, interest is 5%, and remaining resources are assumed to be one-half

of 1189 billion barrels. This combination increases optimal net social
value to $8.13 trillion. The jmpatient plan Y2 attains 95% of this when
the resource is exhausted in 2006.

The implication is that optimal planning may not be necessary to gain
‘either monopoly profit or social value. Strongly divergent production
paths are comparably good in terms of objective function numerical values.
This is obviously not the case for all possibilities, particularly where
the resource is very limited. In the Fisher probiem above, for example,
the paradox disappears.

A sensitivity analysis indicates that the paradox may apply to a broad
domain of parameter values applicab1e to world oi] markets. In Figure 5,
the unshaded area represents 0il production common to both divergent path
¥ and optimal path Y*. The shaded area is production not common to both
paths. A divergence ratio can be the ratio of the sum of not-common pro-
duction to the total resource produced on the optimal path. Graphically,
‘this is the ratio of shaded area in Figures 5 and 6 to the appropriate S
for each case. Numerically, this is: [{]y3(t) - y*(t) 1/S dt. 9/

Table 3 shows a sensitivity analysis where divergence ratios are
compared for several monopoly and social optimum-competition cases. In
each instance, original resources, interest rate, cost, or elasticity
are varied by sizable decrements for each market strycture. Optimal paths and op-
timal lengths of production vary accordingly, as does the impatient path
va& for each case. Figures analogous to Figures 5 and 6 exist for each of
the 10 cases. Divergence ratios are noticeably large for all cases.

A similar sensitivity analysis for the myopic planner (Yb{t) = gy
for monopoly, Bs for social optimum) is not shown, but in eight of the ten
cases the value attained or exceeded 95% of the true optimum. '

9. Since Y@ usually acce1erates.while y* declines, and the production

period for Y& is always shorter, a correlation measure of divergence seemed
less descriptive.
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TABLE 3

DIVERGENCE PARADOX RATIOS

Caseé : ‘ Monopoly Competition or
Socially Optimal Plan

Original global oil parameters, Eg. 15 .75 .53

1.

2. But r = 5% .5h3 .41
3. v = 10%, but S = 594.5 billion bl .53 41
4. v = 5% and S = 594.5 billion bl .40 .39
5. Elasticity is -1.2, cost is $10 b1,

r = 5%, S = 594.5 billion bl .39 .40
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In early 1986, the average world contract price is $15 per barrel
and spot market prices are lower. U.S. petroleum use'is increasing as a
consequence. A general conclusion is that world oil markets have moved.
from a mixed competition/cartel combination in 1985 to a competitive market
in 1986. The presence or absence of an effective world monopoly is probably
much more important in determining annual use, prices, and the years to
exhaustion than are specific parameter values.

There is no intention here to determine the empirical'parameters of
world oil markets and the nature or duration of the current transition
to a primarily competitive market. Griffin's recent article on OPEC is
considerably more relevant on this point. Solow observed 12 years ago
that because optimal n is longer for monopoly than for the competitive
social optimum, "the monopolist is the conservationist's friend" (p. 8).
However, the numbers show a relationship often obscured. Potential
monopoly profit with basic parameters is $3 trillion, one-half of the
potential net social value of $6 trillion,

The modest significance here 1s that numerical analysis with optimal
control gives different economic interpretations than would be possible
with theory alone, and that dramatically non-optimal paths can have almost
optimal objective function values.
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5. Qualifications and Conclusions: Risk; Technology Shift

and External Social Cost

~~ Fisher's summary (p. 46) of Koopmans, Heal, et al. indicates the
nature of risk discounting. The virtue of the quadratic form is that
risk and probability can be added, and numerical solutions attained.
Define the probability that profit in year t is lost through expropriation
or other reasons as h(t), and have that probability increase over time.
The probability of a profit is q(t), which decreases over time.

(42a) n(t)=1-e?t 0<z<1;

(42b) glt) = 1 - h(t).= e 2t

Then, the expected profit EV is modified from Eq. (1) as-

n n
(43) maximize EV = I pY)y = oy g(t) dt :-j plyly ~ ay dt .
y(t)onr o e"t A R

So, by simply introducing z into "risk discounting," the denominator
in EV is replaced by ept, and o is simply r + z. For example, for our
numerical solutions, suppose r = 9.5% annual interest and z = .005 for
the risk term. Since p is the same 0.1, all the numerical solutions are
jdentical.

Technological change can be represented simply by a factor such as

gt ot,

e’", with & being the rate of change in average cost. If o = age
then (3a/st)/a = 6. Speculating, & may have been negative between 1859
and 1970, and positive now.

Also, a growing recognition of external social cost and its inter-
nalization may be taking place, causing 8 to be positive,

Eq. (1) is restated, and the Hamiltonian and first order conditions
and solution follow for monopoly profit.

n et
)

ply)y - (age

ert

Y dt

(44) maximize VC = |
{y(t),n} 0
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et
Yoy

(45) H = .P(Y)y - (age

ert

The derivation f0110ws_the exposition used above, and the optimal
production path becomes

' t
_ (s - nggle" ) .
(4‘6) .y(t) Bﬂ(t) + | }l(n) 9 t Os'n:
| ot
(47a) Bolt) = B2=505—, and
(47b)  pe = L2 ag(e”™ - 1)

281 on2g:

The exact solution for y(t) in Eq. (46) is the same as Eq. (24)
except for the technical change impact in go(t) and sﬁ. Finding n 1is
somewhat more complex, but analogous to the ear}ier methods. The result
is

L1 -e™ goln)

(48) n "
r Bo

mlm

1f there is no technical or environmentally induced cost change and
o = 0, then both g¢(n) and Bt are simply Bo. Eq. (48), then, becomes
- Eq. (26). :
Suppose © = .0462 so that average cost doubles to $40 per barrel by
2000 and quadruples by 2015. The numerical solution for y{t} requires
attention to interpreting the constraints in Eq. {1). Non-negative profit
requires production to cease in 28.60 years when cost exceeds price, and
Eq. (48) is inapplicable. S50 n* = 28.60 and

(49) y(t) = golt), t = 0, 28.60.

Here, 8o{t) represents time dependent optimal production with rising
cost in the absence of an effective resaurce constraint. The mono-
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polist ceases production in 2013, when cost reaches $75. Cumulative use
is 292 billion barrels. _ '

The rate of cost increase must be no greater than .743 of 1% for all
~of the 1189 billion barrels to be used. Suppose 6 = .005. Then Egs.
(46)-(48) are applicable. Eq. (48). gives 135.8 years as one solution.

The integral for present value Eq. (44) is considerably more comp]éx.
However, using the MACSYMA program again, the optimum mohopo1y profit is
$2 9 trillion. '

In other words, if cost shift is rapid, the 0pt1ma1 production period
is shorter, and there may be unused resources when production ceases.

To recapitulate, finding numerical values for the optimal length of
a production period has been difficult, and finding numerical vaiues for
economic rent and social value functions has been nearly impossible.

With computer-assisted algebra and analytic solutions, the process can be
shortened to minutes. The steps are (a) define the first-order. canonical
conditions with discounting explicit, (b) express y, the equilibrium quan-
tity, as a function of the parameters for demand, cost, and the co-state
multiplier, (c) solve for the co-state multiplier X as a function of the
resource stock, the demand and cost parameters, and the interest accumu-
Jation factor, (d) solve for y, now an explicit function of n, t, the
resource stock, and the demand and cost parameters, (e) find 0pt1mé1 n,

(f) evaluate the objéctive function, and (g) evaluate the second-order con-
ditions. '

The same general technique should be followed for possible optima in
which all of the resources need not be used. In both cases be sure that
only permissible values of quantities, prices, and profit are examined.
Compare as appropriate the constrained optimum path and Tength of time
period in which all of the resource must be used with the unconstrained
optimum,

These steps lead quickly to numerical answers for different decision
goals, whether that be monopoly profit, consumers’ surp]us, or competitive
equilibria. Both continuous and discrete. formulations are easily solved,
and the method is easily extended to incliude the risk of expropriation,
and a technical change/environmental cost continuous shift. With these
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“problems capable of being solved in minutes with MACSYMA and other computer
algebra, classroom use and applied research may both be expected to grow

at exponential rates.
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