THE DYNAMICS OF AN OPEN ACCESS FISHERY

Trond Bjørndal

Jon Conrad

November 1985
No. 85-31
It is the policy of Cornell University actively to support equality of educational and employment opportunity. No person shall be denied admission to any educational program or activity or be denied employment on the basis of any legally prohibited discrimination involving, but not limited to, such factors as race, color, creed, religion, national or ethnic origin, sex, age or handicap. The University is committed to the maintenance of affirmative action programs which will assure the continuation of such equality of opportunity.
THE DYNAMICS OF AN OPEN ACCESS FISHERY

by

Trond Bjørndal

and

Jon M. Conrad

Norwegian School of Economics, Institute of Fisheries Economics, Helleveien 30, N-5035 Bergen, Norway

Cornell University, Department of Agricultural Economics, 310 Warren Hall, Ithaca, N.Y. 14853, U.S.A.

An earlier version of this paper was presented at the World Congress of the Econometric Society, Boston, Mass. August 17-24, 1985.
1. INTRODUCTION

Open access exploitation of common property fisheries resources frequently causes severe stock depletion. Indeed, the question whether open access may cause stock extinction has been analyzed by several authors (Smith, 1968; Berck, 1979; Hartwick, 1982). Moreover, as Smith has pointed out, although stock equilibrium under open access may be positive, the stock may be driven to extinction along the path of adjustment.

With the exception of Wilen (1976) the work on the dynamics of open access fisheries is mainly theoretical. The purpose of this paper is to provide an empirical application, based on the North Sea herring fishery, with special reference to the question of stock extinction under open access. Herring is a schooling species. The schooling behavior has permitted the development of very effective harvesting techniques. With modern fish-finding equipment, harvesting can remain profitable even at low stock levels. Open access exploitation of a number of schooling species has caused severe stock depletion (Murphy, 1977). The question of possible stock extinction thus takes on special importance for schooling species.

In section 2, we will develop a deterministic model for an open access fishery based on Smith (1968) and give a characterization of open access equilibrium. In section 3, open access exploitation of North Sea herring during the period 1963-77 will be analyzed. Alternative production functions are considered and estimated for the Norwegian purse seine fishery. The bionomic equilibrium and approach dynamics are presented when prices and costs are changing. Finally, the work is summarized and some policy implications are discussed in section 4.

2. THE OPEN ACCESS MODEL

In this section we construct a simple open access model to discuss steady state (equilibrium) conditions and system dynamics. The model will be specified in discrete time as a system of difference equations. Time is partitioned into annual increments which is consistent with the data used to estimate production and growth functions and the equation for capital (vessel) dynamics. It is also consistent with the observation that vessel owners are reluctant to incur the cost of regearing once a decision has been made to enter the herring fishery which, in the North Sea, has a season running from May
until September. While the steady state equilibria for differential equation systems and their difference-equation analogues are usually equivalent, the stability and thus approach dynamics can be qualitatively different. The distinction becomes more than a mathematical curiosity in resource systems where discrete-time and possibly lagged adjustment to biological and economic conditions can lead to overshoot and greater potential for overharvest and possibly species extinction.

The model presumes an industry production function

\[Y_t = H(K_t, S_t) \]

(1)

where \(Y_t \) is yield (harvest) in year \(t \), \(K_t \) are the number of vessels in the fishery during year \(t \) and \(S_t \) is the fishable stock at the beginning of year \(t \).

The number of vessels, \(K_t \), may be a crude measure of actual fishing effort. As Clark (1985) notes the best measure might be the volume of water "screened" by nets during the year. Net hours or vessel days, possibly adjusted by engine horsepower or other vessel/gear characteristics, might produce a more appropriate estimate of fishing effort.

For schooling stocks, like herring, there is some question as to the significance or "elasticity" of yield with respect to stock size, \(S_t \). If as a population declines it continues to concentrate in (fewer) schools of the same approximate size, and if these schools can be located with relative ease by electronic search, then yield may be essentially determined by effort, independent of stock, until the population declines to a small number of schools. If this were the case the production function \(H(\cdot) \) might depend strictly on \(K_t \) and catch per unit effort, often used to estimate stock, would not predict the collapse of the fishery (Clark and Mangel, 1979; Ulltang, 1980).

Assuming that vessel numbers are an appropriate measure of effort and that yield is stock dependent, the standard open access model proceeds by defining industry profit (net revenue) in year \(t \) as

\[\pi_t = pH(\cdot) - cK_t \]

(2)

where \(p \) and \(c \) are the per unit price for the harvested resource and cost per vessel, respectively. Two additional assumptions are implicit in equation (2). First, the fishery must be one of several sources of the species in question, otherwise price would depend on yield, i.e., \(p_t = p(Y_t) \) where \(p(\cdot) \) is
an inverse demand function. Cost per vessel is also assumed given. Secondly, the unit prices and costs are assumed constant through time. Neither assumption is likely to hold in "real world" fisheries but their maintenance permits the estimation of an open access or economic equilibrium which may given an indication of the extent of overfishing.

Vessels are assumed to enter a profitable fishery and exit an unprofitable fishery according to

\[K_{t+1} - K_t = n \pi_t \]

where \(n > 0 \) is an adjustment parameter (unit: vessels/$). With \(n \) positive it will be the case that (a) \(K_{t+1} > K_t \) if \(\pi_t > 0 \), (b) \(K_{t+1} < K_t \) if \(\pi_t < 0 \), and (c) \(K_{t+1} = K_t \) if \(\pi_t = 0 \). It is possible that the rates of entry and exit may differ, in which case \(n^+ \) might apply if \(\pi_t > 0 \) and \(n^- \) might apply if \(\pi_t < 0 \) where \(n^+, n^- > 0, n^+ \neq n^- \).

Finally, the resource stock is assumed to adjust according to

\[S_{t+1} - S_t = F(S_t) - H(K_t, S_t) \]

where \(F(S_t) \) is a net growth function. It is often assumed that there exists stock levels \(\bar{S} \) and \(\bar{S} \) where \(F(S) = F(\bar{S}) = 0 \), \(F(S) < 0 \) for \(0 < S < \bar{S} \), and \(F(S) > 0 \) for \(S > \bar{S} \).

Taken together equations (3) and (4) constitute a dynamical system (or an iterative map). More specifically, with given values for \(S_0 \) and \(K_0 \) the system

\[K_{t+1} = K_t + n[pH(K_t, S_t) - cK_t] \]

\[S_{t+1} = S_t + F(S_t) - H(K_t, S_t) \]

can be iterated forward in time. The trajectory \((S_t, K_t) \) may be plotted in phase-space. A stationary point \((S, K) \) is one for which \(K_{t+1} = K_t = K \) and \(S_{t+1} = S_t = S \) for all future \(t \). Such a point must satisfy \(K = pH(K, S)/c \) and \(H(K, S) = F(S) \).

For the Gordon-Schaefer model (Clark, 1976) where \(F(S_t) = rS_t(1-S_t/L) \) and \(H(K_t, S_t) = qK_tS_t \), the differential equation system takes the form

\[\dot{K} = n(pqKS - cK) \]

\[\dot{S} = rS(1-S/L) - qKS \]

3
where \(r \) is the intrinsic growth rate, \(L \) is the environmental carrying capacity and \(q \) is the catchability coefficient. The system has an equilibrium at \(S_0 = c/(pq) \) and \(K_0 = r/(1-S_0/L)/q \) which is the focus of a stable spiral (see Figure 1(a)).

The difference equation analogue might be written

\[
K_{t+1} = [1 + n(pqS_t - c)]K_t
\]

\[
S_{t+1} = [1 + r(1-S_t/L)-qK_t]S_t
\]

and is capable of more complex behavior including limit cycles (see Figure 1(b)).

3. THE NORTH SEA HERRING FISHERY 1963 - 1977

The North Sea herring fishery takes place in the central and northern North Sea, with the main season in the months May to September. In the present case study, data for the Norwegian purse seine fleet will be used to estimate production functions and vessel dynamics. The fishery, utilizing this technology, started in 1963. In the middle of the 1970s, however, the stock was severely depleted under an open access regime and the fishery was closed at the end of 1977. Severe regulations have been in effect ever since so as to allow the stock to recover.

Table 1 contains data on stock size, Norwegian purse seine harvest and the number of Norwegian purse seiners for the period 1963 - 1977. Other countries (Denmark, the Netherlands, West Germany and the U.K.) were also harvesting the herring stock using a variety of gears including single and pair trawl and drift nets. After 1963, however, the purse seine technology became the dominant gear and, lacking data on the number and harvest of other gear types, we used the Norwegian purse seine data to estimate parameters for several alternative production forms. The stock estimates (\(S_t \)) were obtained by virtual population analysis. Unrestricted OLS regressions were run and Table 2 shows four estimating equations (a) (i) - (d) (i) and four associated production functions (a) (ii) - (d) (ii). The exponents on \(K_t \) in (a) (ii) and (b) (ii) would indicate a yield/vessel elasticity greater than one, perhaps the result of economies of scale in searching for schools of herring. The yield/stock elasticity in (b) (ii) and (d) (ii) are both significantly positive but less than one. Thus as stock declines catch per vessel will decline and
Figure 1 (a): Phase plane analysis of system (6). The point \((S_\infty, K_\infty)\) is the focus of a stable spiral.

Figure 1 (b): Phase plane analysis of system (7). The point \((S_\infty, K_\infty)\) is the focus of a limit cycle.
Table 1: North Sea herring stock, Norwegian purse seine harvest and the number of Norwegian purse seiners.

<table>
<thead>
<tr>
<th>Year</th>
<th>Stock Size (S_t) (tonnes)</th>
<th>Norwegian Harvest (Y_t) (tonnes)</th>
<th>Number of Participating Purse seiners (K_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>2,325,000</td>
<td>3,454</td>
<td>8</td>
</tr>
<tr>
<td>1964</td>
<td>2,529,000</td>
<td>147,933</td>
<td>121</td>
</tr>
<tr>
<td>1965</td>
<td>2,348,000</td>
<td>586,318</td>
<td>209</td>
</tr>
<tr>
<td>1966</td>
<td>1,871,000</td>
<td>448,511</td>
<td>298</td>
</tr>
<tr>
<td>1967</td>
<td>1,434,000</td>
<td>334,449</td>
<td>319</td>
</tr>
<tr>
<td>1968</td>
<td>1,056,000</td>
<td>286,198</td>
<td>352</td>
</tr>
<tr>
<td>1969</td>
<td>696,000</td>
<td>134,886</td>
<td>253</td>
</tr>
<tr>
<td>1970</td>
<td>717,000</td>
<td>220,854</td>
<td>201</td>
</tr>
<tr>
<td>1971</td>
<td>501,000</td>
<td>210,733</td>
<td>230</td>
</tr>
<tr>
<td>1972</td>
<td>509,000</td>
<td>136,969</td>
<td>203</td>
</tr>
<tr>
<td>1973</td>
<td>521,000</td>
<td>135,338</td>
<td>153</td>
</tr>
<tr>
<td>1974</td>
<td>345,000</td>
<td>66,236</td>
<td>165</td>
</tr>
<tr>
<td>1975</td>
<td>259,000</td>
<td>34,221</td>
<td>102</td>
</tr>
<tr>
<td>1976</td>
<td>276,000</td>
<td>33,057</td>
<td>92</td>
</tr>
<tr>
<td>1977</td>
<td>166,000</td>
<td>3,911</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 2: Estimates of production parameters for the Norwegian purse seine fleet. All regressions OLS with t-statistics in parentheses.a)

(a) (i) \[\ln Y_t = 4.540834 + 1.409885 \ln K_t \]
\[(5.861) \quad (9.108) \]
(adjusted \(R^2 = 0.8541 \))

(ii) \[Y_t = 93.769 K_t^{1.41} \]

(b) (i) \[\ln Y_t = -2.787630 + 1.355563 \ln K_t + 0.562071 \ln S_t \]
\[(2.11) \quad (16.388) \quad (5.840) \]
(adjusted \(R^2 = 0.9589 \))

(ii) \[Y_t = 0.06157 K_t^{1.356} S_t^{0.562} \]

(c) (i) \[\ln (S_t - Y_t) = -0.568295^{\text{b)} b} + 1.039770^{\text{c)} c} \ln S_t - 0.00109569 K_t \]
\[(1.285) \quad (30.807) \]
(3.741)
(adjusted \(R^2 = 0.9861 \))

(ii) \[Y_t = S_t(1 - e^{-0.0011K_t}) \]

(d) (i) \[\ln (Y_t/K_t) = -1.671751^{\text{b)} b} + 0.608589 \ln S_t \]
\[(0.843) \quad (4.156) \]
(adjusted \(R^2 = 0.5376 \))

(ii) \[Y_t = S_t^{0.609} K_t \]

a) Autocorrelation was only indicated in equations (a) and (d). First order correction did not significantly alter the magnitude of the estimated coefficients. Two stage least squares did not indicate the presence of simultaneous equations bias which can occur if estimates of \(S_t \) are based on current period harvest. This is less of a problem when stock estimates are obtained by virtual population analysis.

b) Not significantly different from zero; parameter assumed to be zero in the associated production function.

c) Not significantly different from 1.00; parameter set equal to one in the associated production function.
there will be a stock-dependent incentive to exit from the industry, as indicated by the rather rapid departure of purse seiners from the Norwegian fleet after 1972. The remaining vessels, however, seemed more than adequate to continue harvest in excess of growth and recruitment, and from inspection of Table 1 it is still not clear whether exit would have been rapid enough for the stock to increase.

The expression for profits was specified as

\[\Pi_t = p_t H(K_t, S_t) - c_t K_t \]

where \(c_t = e_t \bar{c}_t + f_t \); \(e_t \) is the average number of days spent fishing herring, \(\bar{c}_t \) is the cost per day in year \(t \) and \(f_t \) are the fixed and opportunity costs incurred during the herring season.

Vessel dynamics were assumed to occur according to

\[K_{t+1} - K_t = n \Pi_t / (p_t K_t) \]

Equation (9) assumes that entry or exit will depend on the sign of normalized profit per boat. This form was employed to take advantage of previous analysis by Bjørøndal (1984). Estimates of \(n \) ranged between 0.08 - 0.10.

A discrete-time analogue to the logistic growth function might be written as

\[S_{t+1} - S_t = r S_t (1 - S_t / L) \]

where estimates of \(r \) and \(L \) were 0.8 and 3.2x10^6 metric tonnes. Equation (10) is actually an approximation to a more complex delay-difference equation also discussed by Bjørøndal (1984).

Of the four production models the Cobb-Douglas form \(Y_t = a K_t^b S_t^g \) resulted in the most plausible values for the bionomic equilibrium and open access dynamics. The open access system may be written as

\[K_{t+1} = K_t + n (a b^{-1} S_t^g - c_t / p_t) \]

\[S_{t+1} = S_t + r S_t (1 - S_t / L) - a K_t^b S_t^g \]

If \(c_t = c \) and \(p_t = p \) then one obtains the following equations at the bionomic equilibrium.
\[S_\alpha = \left(c_\alpha / (p_\alpha k_\alpha^{-1}) \right)^{1/g} \]
\[K_\alpha = \left[x_\alpha (1-S_\alpha / L) / (a_\alpha^{1/b}) \right]^{1/b} \]

While it is not possible to solve for explicit expressions for \(S_\alpha \) and \(K_\alpha \), it is possible to solve for \(S_\alpha \) and \(K_\alpha \) numerically. By making an initial guess for \(K_\alpha \) the first equation in (12) provides a value for \(S_\alpha \). Substituting this value into the second equation one obtains a value for \(K_\alpha \) consistent with growth and yield. Calling the initial guess \(Z_\alpha \) one can evaluate \(|Z_\alpha - K_\alpha|\). If this is not within an arbitrary \(\varepsilon \), readjust the guess according to \(Z_\alpha = (Z_\alpha + K_\alpha)/2 \). This process will converge to the bionic equilibrium from above or below \(K_\alpha \).

During the period 1963 - 1977 prices and costs were changing as indicated in Table 3. If the 1975 values of \(c = 556,580 \) and \(p = 735 \) (both in Norwegian Kroner) were somehow fixed into the future and all other parameters remained unchanged, then the bionic equilibrium is calculated at \(S_\alpha = 430,191 \) (tonnes), \(K_\alpha = 393 \) (boats) and \(V_\alpha = 297,887 \) (tonnes). When \(c_\alpha \) and \(p_\alpha \) are allowed to vary as per Table 3 the time paths for \(S_T \) and \(K_T \) are given in Table 4 and plotted in phase-space in Figure 2. The values for \(K_T \) might be interpreted as an estimate of "purse seine equivalents" fishing herring in the entire North Sea. Thus \(K_T \) is larger than the number of Norwegian purse seiners that participated in the fishery during the period. The stock actually increases until 1965 and then decreases monotonically. The estimates of the herring stock in Table 1 are a bit more ragged, lower than the simulated estimates until 1973 and higher thereafter. Of particular interest is the overshoot "past" the 1975-based bionic equilibrium and the continued decline in stock. In contrast to the results of Wilen, there is no increase in the stock and the "first loop" of a convergent spiral has not been completed.

In 1977 Norway and the EEC agreed to close the fishery. There are no official prices nor data to estimate costs after this year. One can only speculate what the future evolution of stock and vessel numbers would have been. It seems entirely plausible that with declining harvest, price increases would have exceeded cost increases with species extinction the result. If the price in 1978 were increased to 2,000 NoK/metric tonne and costs held steady, the species "simulates" to extinction in 1983. With the moratorium which
Table 3: Costs (per season per vessel) and herring price (per tonne). Figures in Norwegian kroner.*

<table>
<thead>
<tr>
<th>Year</th>
<th>C_t</th>
<th>P_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>190,380</td>
<td>232</td>
</tr>
<tr>
<td>1964</td>
<td>195,840</td>
<td>203</td>
</tr>
<tr>
<td>1965</td>
<td>198,760</td>
<td>205</td>
</tr>
<tr>
<td>1966</td>
<td>201,060</td>
<td>214</td>
</tr>
<tr>
<td>1967</td>
<td>204,880</td>
<td>141</td>
</tr>
<tr>
<td>1968</td>
<td>206,800</td>
<td>128</td>
</tr>
<tr>
<td>1969</td>
<td>215,200</td>
<td>185</td>
</tr>
<tr>
<td>1970</td>
<td>277,820</td>
<td>262</td>
</tr>
<tr>
<td>1971</td>
<td>382,880</td>
<td>244</td>
</tr>
<tr>
<td>1972</td>
<td>455,340</td>
<td>214</td>
</tr>
<tr>
<td>1973</td>
<td>565,780</td>
<td>384</td>
</tr>
<tr>
<td>1974</td>
<td>686,240</td>
<td>498</td>
</tr>
<tr>
<td>1975</td>
<td>556,580</td>
<td>735</td>
</tr>
<tr>
<td>1976</td>
<td>721,640</td>
<td>853</td>
</tr>
<tr>
<td>1977</td>
<td>857,000</td>
<td>1,415</td>
</tr>
</tbody>
</table>

* Price figures have been adjusted by a factor of 0.6, which represents the boat owner's share of income. Costs only cover costs covered by the boat owner.

Sources:
- P_t: The Directorate of Fisheries, Norway.
- C_t: The Budget Committee for the Fishing Industry, Norway.
Table 4: Bionomic Equilibrium and Open Access Dynamics.

System

\[K_{t+1} = K_t + n(aK_t^{b-1}S_t - c_t/p_t) \]
\[S_{t+1} = S_t + rs_t(1-S_t/L) - aK_tS_t \]

Parameter values

\(a = 0.06157, \quad b = 1.356, \quad c = 556,580, \quad g = 0.562 \)
\(L = 3,200,000, \quad n = 0.1, \quad p = 735, \quad r = 0.8 \)

Bionomic equilibrium

\(S_\infty = 430,191, \quad K_\infty = 393, \quad Y_\infty = 297,887 \)

Open access dynamics

With \(S_t \) and \(p_t \) as given in Table 3, \(S_0 = 2,325,000, \ K_0 = 120, \) then

<table>
<thead>
<tr>
<th>t</th>
<th>St</th>
<th>Kt</th>
<th>Yt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>2,325,000</td>
<td>120</td>
<td>153,698</td>
</tr>
<tr>
<td>1964</td>
<td>2,679,895</td>
<td>166</td>
<td>258,531</td>
</tr>
<tr>
<td>1965</td>
<td>2,769,820</td>
<td>225</td>
<td>398,376</td>
</tr>
<tr>
<td>1966</td>
<td>2,669,323</td>
<td>305</td>
<td>588,874</td>
</tr>
<tr>
<td>1967</td>
<td>2,434,586</td>
<td>404</td>
<td>818,564</td>
</tr>
<tr>
<td>1968</td>
<td>2,081,887</td>
<td>461</td>
<td>897,077</td>
</tr>
<tr>
<td>1969</td>
<td>1,766,756</td>
<td>494</td>
<td>898,025</td>
</tr>
<tr>
<td>1970</td>
<td>1,501,779</td>
<td>559</td>
<td>970,003</td>
</tr>
<tr>
<td>1971</td>
<td>1,169,363</td>
<td>626</td>
<td>983,051</td>
</tr>
<tr>
<td>1972</td>
<td>779,950</td>
<td>626</td>
<td>782,754*</td>
</tr>
<tr>
<td>1973</td>
<td>469,075</td>
<td>538</td>
<td>479,232</td>
</tr>
<tr>
<td>1974</td>
<td>310,096</td>
<td>480</td>
<td>325,061</td>
</tr>
<tr>
<td>1975</td>
<td>209,071</td>
<td>410</td>
<td>210,287</td>
</tr>
<tr>
<td>1976</td>
<td>155,113</td>
<td>385</td>
<td>163,580</td>
</tr>
<tr>
<td>1977</td>
<td>109,609</td>
<td>343</td>
<td>115,016</td>
</tr>
</tbody>
</table>

* Beyond 1972 harvest exceeds \(S_t \) but not \(S_t \) plus growth. This is possible, since growth to the resource occurs before harvesting (see equation for \(S_{t+1} \) above).
Figure 2. Simulation of North Sea Herring Fishery

K

(hundreds of vessels)

(S_∞, K_∞)

1977

1970

1963

S

Herring Stock
(millions of metric tons)
lasted until 1981, the stock was allowed to recover and fisheries scientists estimated the 1983 stock at 800,000 metric tonnes.

4. CONCLUSIONS AND POLICY IMPLICATIONS

In the empirical analysis of open access systems it is important to note that nonlinear difference equations, with or without longer lags, are capable of more complex dynamic behavior than their continuous-time (differential equation) analogues. The lag in adjustment by both the exploited species and the harvesters themselves is often a more accurate depiction of dynamics, and the differential equation systems are best viewed as theoretical approximations.

If adjustment in an open access system is discrete there is a greater likelihood of overshoot, severe depletion and possibly extinction. When discrete adjustment takes place in a system where the species exhibits schooling, declining stocks may fail to reduce profits rapidly enough to turn the critical "first corner" in an approach to bionomic equilibrium. The fact that the economic and natural environments are subject to fluctuations places greater importance on modelling the dynamics of nonautonomous systems as opposed to the calculation of equilibria based on long run or average values.

The analysis of the North Sea herring fishery would seem to support many of the above points. During the 1963 - 1977 period the resource (1) was subject to open access exploitation by Norway and members of the EEC, (2) exhibited a weak yield/stock elasticity (because of schooling) which failed to encourage a rapid enough exit of vessels from the fishery, and (3) was saved from more severe overfishing and possibly extinction by the closure of the fishery at the end of the 1977 season.

Recent analysis by Bjørndal (1985) indicates that the optimal stock is likely to be in the range 1.0 - 1.4 million tonnes supporting a harvest of 550,000 - 600,000 tonnes. With the recovery of the resource the stock might be initially managed through a system of internationally assigned but intra-nationally transferable quotas. In the longer run a system permitting fisheries managers from one country to purchase or lease the quota rights of another should permit total allowable catch (TAC) to be harvested at least cost. The theory and institutions for management of transboundary resources are still at an early stage of development, but likely to be of critical importance if the value of fisheries resources are to be maximized among coastal countries.
REFERENCES

