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The Role of Alternative Risk Programming Models in Empirical Research
by

Richard N. Boisvert#®

For at least 30 years, agricultural economists have increasingly
incorporated risk considerations into empirical econcmlc analysis. These
efforts have recognized the visk inherent in biological production
processes, the potential for discrepancies between planned production and
realized production, uncertain demand, and the need to allocate scarce
resources before prices are knownﬁ The research agenda has been equally
diverse, ranging from the study of decision processes and the
identification of preference functions, to the interaction between public
policy and the risk environment faced by the agricultural sector. The
micro, or farm level, studies have dominated the agricultural economics
literature and have been largely prescriptive, focusing on strategies for
risk efficiency. Much less attention has been given to aggregate supply
or demand studies which are descriptive. Pope (1982) attributes much of
this neglect to the poorly developed literature on economic welfare under
risk.

It would be impossible within the space availablie to desc}ibe, let
alone evaluate, the numerous empirical approaches involving agricultural
risk. To reduce the task to manageable proportions, this paper focuses
primarily on the prescriptive models at the firm level. Some attention
is given to thelr potential for resclving problems at a more aggregate

level. By necessity, the discussion is limited almost exclusively to

%*Richard N. Boisvert is a professor in the Department of
Agricultural Economics, Cornell University.




models underpinned by the expected utility paradigm. Although there is a
legitimate -debate about the appropriateness of the paradigm, alternatives
to it have recelved little attention in the empirical literature.

To_limit further the scope of the paper, little attention is given
to empirical procédures for estimating utility functions or risk aversion
parameters. These latter issues are Important but have recently been
evaluated at the 1981 meetings of the AAEA-AEA (e.g. Robison; Pope:
Hazell; Binswanger; Roe). Otﬁer articles on the subject have appeared in
the AJAE as well, the most recent by Kﬁowles, who claims to resolve some
longstanding econometric problems in the measurement of utility.

Since mumerous other autheors, including some on this technical
committee (e.g. Barry, 1984), have evaluated alternative risk models, my
intent is not merely to reiterate what most of us probably know already.
Nor is it to be unnecessarily critical of past research. Rather, I shall
attempt to assess some of the recent developments In risk analysis and
discuss how they are likely to shape future research. Much of the
discussion centers around the historical role of mathematical programming
and how its role is likely to change 1n the face of new developments in
risk énalysis.

The paper bégins with a brief statement of the micro decisien
framework and.assessment of the traditiomal rcle of programming models in
risk analyéis- Thie is followed by a general discussion of stochastic
dominance and how 1t has changed the need for probability information in
risk analysis. The remainder of the paper attempts to assess the
usefulness of beth active and passive stochastie pregramming models

!

within this context. Some recent developments in passive stochastic



programming that have found application in business and central
planning are discussed. Under specific conditioms, they can generate
important probability information about decision alternatives, and in
recent years, they have becone computatiaﬁally more tractable. Their
application to problems in agriculture, particularly at the micro level,

is an open question.

The Micro-Decision Framework

S;nce the first applications of decligion thecry based on the
expected utility maxim to firm-level decisions in agriculturé in the
1950's, agricultural economists have worked to refine the theory and
apply it empirically to a wide range of risk situatione. Developments in
gtatistics, operatious research and computer techmology, have lead to
increasingly complex empirical analysis.

Regardless of the level of complexity, the analytical framework for
any risk analysis at the firm~level must contain several components.

The framework must have some mechanism for identifying a set of
alternative courses of action. The states of nature that civcumscribe
the decision environment must be articulated, along with their
probabilities of occurrence. This information is then used in
conjunction with some performance measure Lo estimate payoff
probabilities. Finally, a decision criteria is applied to identify a
preferred course of action or, in the absence of conplete information

about preferences, & subset of actions that are risk efficient.l viewed

lyhis refers to a partial ordering of alternatives into two subsets,
those which are clearly inferior and can be eliminated from consideration
and those for which no clear preference can be determined without wore
complete information on preferences.




from a sliphtly different perspective, the decision involves the
selection of a probability distribution, although in most applications

decision rules do not require complete information about the density or

distribution functions.

The Traditional Role of Programming Models

Rarely in empirical work are these components to the decision
framework accommodated in this lock-step fashion. Once the data are
assembled, a model is constructed which simultaﬁeously processes the
relevant information on probabilitiés and the alternative courses of
action and identifies an optimal strategy or a set of efficient ones.
This strategy is most appareunt in those risk applications where it is
appropriate to characterize the alternative courses of action by a
Programming model. An attractive Ffeature of a programming approach is an
ability to consider many risk situations within a whole farm planning
context. Optimal or efficient choices are then determined from the
infinite set of feasible alternatives which differ both in terms of the
individual production components of the "portfolio” and each component's
relative importance. The complexities that can be incorporated into the
model are governed, of course, by computational considerations and other
limitations common to activity analysis based almost exclusively on
Leontief~type production technoloéy.z With one or two exceptions (Cocks,

‘ 'ZWith few notable exceptions (e.g. Johmson, 1979;: Whitson et al.
1976), most quadratic programming applications have been limited to the
consideration of a single production period. Additional complications
arise if the model is designed to cover a multiple period planning
horizon. These concerns relate to the discounting of costs and revenues
whose components may be random and to the appropriateness of assuming the
stochastic processes are stationary and independent over time.



1968, and Rae, 1971) most programming applications have focused on
decisions which must be made prior to knowing the values of the problem's

random components. Sequential programming models are concerned with

' problems where decisions at stage t make use of information kuown at all

previous stages. Generally, these applications add enormous complexity

to the analysis.

Computational limitations, particularly for quadratic programming
applications, arve less severe than they were 10 to 15 years ago.
However, the receﬁt experimentation with alternative decision criteria
has important implications for the role of nonlinear programming in
empirical research. In the case of the quadratic programming model,
one's ability to apply the expected utility maxim is conditioned by the
appropriateness of assuming normally distributed gross margins (or other
suitable performance measure) and expounential utllity, ox quadratic
utility. When gross margins are normally distributed, the informaticn
needed to generate the E-V efficiency locus can alsc be used to make
direct application of the safety-first criteria as put forth by Roy
(1952) and Katacka (1963). By appealing to Chebysahev's inequality, the
safety-first rules can be applied, but the precision associated with the
probability statements falls dramatically.

The second type of programming model mest often associated with
miero-level risk analysis is the MOTAD model developed by Hazell (1971).
The procedure is designed to generate risk efficient sets by identifying
alternatives that minimize the total absolute deviations about specified
levels of expected gross margin or income. Although not necessary, the

criteria is most often applied to problems formulated in a lineavr



programming (LP) framework. In this situation, MOTAD becomes a special
case of rthe goal programming model originally developed by Charnes and
Cooper (1961). Each goal is the deviation about mean income- for one year
in the data series of gross margins. Equal weighting of the deviations
is logical so the numerous problems faced in other goal programming
applications discussed by Willis and Perlack (1980) are avoided.

MOTAD is also often described as a linear alternative to quadratic
programming. This is true operatiomally, but it is important to remember
that it was not developed as a method for approximating the E-V

efficiency locus. Rather, in the case of normally distributed returns,

Hazell argues that a statistic d (1'13/2(9—1))1/2 involving II = 22/7, s =
the sample size and d = mean absolute deviation, can be used to estimate
the population standard deviation. Thus, discrepancies between MOTAD and
E~V efficient solutiéns derive from differences between this and the more
usual samplé standard deviation estimate. The more usual estimate is
more efficient, although both are unbiased estimators. Om this basis,
one might expect quadratic programming to discriminate more reliability
between efficient and inefficient alternatives. Any added reliability
comes at a substantial loss both in computational edse and in the
complexity of the programming model.

Both of these programmiﬁg strategies have stood the test of time.
They have been used successfully in gaining a much better understanding
of altermnative actions that are "risk" efflcient (e.g. Freund, 1956; Lin,
Deaﬁ and Moore, 1974; Brink and McCarl, 1978; and Mapp et al. 1979).
They have been used to estimafe risk preferences 1ndirectly (e.g. Wiens,

1976; Brink and McCarl) and they have been employed in more aggregate



models as well (e.g. Scandizzo et al., 1984). Nevertheless, given the
increasing reluctance to assume normality or quadratic utllity and the
advantages of defining risk efficiency in terms of second—-degree stochas-
tic dominance, the role of quadfatic programming and MOTAD models in
empirical risk analysis has diminigshed in recent years and will probably
continue to decline in the future.

Operationally, the reason is quite simple. These models have been
developed to generate only that information about the probability distri~
butions on the performancé.vériable needed to apply the decision rules
that underpinned the models. To the extent the empirical programming
models can be developed to generate more information about the nature of
the probability distributions on the performance variables, these analy-
tical frameworks will remain valid even in the face of theoretical devel-

opments in decision theory such as stochastlc efficiency.

Stochastic Dominance In Perspective

Without doubt the most pervasive development in the empirical risk
jiterature over the past 10 to 15 years has been the increasing reliance
on stochastic deminance as an efficiency criterion. Developed indepen-
dently by seve%al individuals during the 1960's, both first and second
degree_stochastic dominance or efficlency (¥SD and S6D) have been used in
aumerous empirical studies to examine alternative production activities
at the farm level, to identify risk preferences that are consistent with
participation in agricultural programs (Kramer and Pope, 1981) and to

devise methods for constructing interval measurements of a decision




maker's absolute risk aversion (King and Robison, 1981).3 The latter
.application draws heavily on Meyer's.(1977a, b) work on stochastic
dominance with respect to a function.

The intuitive appeal of stochastic efficiency derives in large
measure from one;s ability to separate alternatives into efficient and
inefficlent sets based only on the assumption that marginal utility for
the performance measure be positive (e.g. for first degree stochastic
efficiency) and that additionally the marginal utility be decreasing for
second degree stochastic efficiency. To put it another way, second
degree stochastic efficiency can be applied to risk éituations regardless
of the shape of the underlying probability functions. All that is
required. is the assumption of a concave utility function; E-V efficiency
simply becomes a special case of second degree stochastic efficiéncy when
probability distributions are normal.

By placing few restrictions on the utility functions and probability
distributions, these efficiency criteria are potentially applicable to a
broad range of problems. However, both first- and sécond degree
stochastic efficiency in general muét be stated in terms of the

cumulative probability functions. That 1s, as Anderson et al. (1977)

3Absolute risk aversion 1s defined by

a(y) = —u"(y)/u'(y)

where u(y) is a utility function in some performance measure y, and u'(y)
and u"(y) are first and second derivations.

4This is not quite true for some well known parametric distributions
such as the normal, log normal and gamma, in which SSD can be evaluated
by "plugging” into expressions that depend only on the parameters of the
probability functions (Pope and Ziemer, 1984).



suggest a risky prospeet Fl is said to dominate F2 by ¥FSD if Fll(y)_ﬁ
Flz(y) for all possible y in the range [a,b] with the strong inequality

holding for at least ome y and
¥
i i ,
(1) Foym =) de (1=1,2)
a

For Fl to dominate F2 by $SD, one requires that le(Y) ﬁ_Fzz(y) for all y

and the strong inequality hold for at least ome y and

(2 in(y) - Fli(x)dx (i=1,2).

Wt

When compared to E-~V or MOTAD efficiency, the applicaticn of
stochastic efficiency without knowing the utility functioms is extremely
demanding in terms of the probability specification. 1In the general
case, successlve integrations are required if one assumes the probability
functions are continuous. If one has some basis for assuming one of
several well known parametrie distributions (e.g., normal, log normal,
gamma), the SSD ordering rules can be evaluated by a "plug in" method
once the distribution's‘parameters have been estimated (see footnote 4).
The remaining alterpative that is followed in most cases is to estimate a
discrete empirical distribution function and evaluate the analog to
equation (2) for discrete probability distributions. This SS8D decision
rule is developed by defining Axg = X ~ Xk-1, where the x's are ranked
in ascending order and x, is the largest x. Then the analog of in is

given by

. iy .
1 _ 1 = .
(3) F,(x) = kzz F i )8%, T = 2,000
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where,
r,t(x) = 03
i i
FIPO) = BPOg) = ] £, (x); and
%

f*l(xi)= a probability mass function (Anderson et al., 1977).

This need for additional probability informatien, combined with the
fact that SSD essentially requires pairwise comparisons without benefit
of information on other alternatives, is undoubtedly among the most
serious limitations of the procedure. Anderson et al. (1977) were among
the first to allude to empirical problems that can result from the
pairwise comparisons inherent in the S$5D.

If all prospects are 'pure prospects' the process {5SD] says

little about the efficiency of possible mixtures of pure

prospects. The only way of establishing the efficiency or

otherwise of such mixtures is to specify the distributions

pertaining to the mixtures and to test these as for other

prospects {p. 294).

As a result of these needs for additional probability information
and the reliance on pairwise comparisons of alternatives, many recent
applications of SSD have been confined to specific production or
investment decisions, abstracting somewhat from the overall farm-firm
en§ironment- This is a matural research strategy during the years
following a major development in empitical analysis. Carried to its
logical extreme, the search for better probability information could lead
to an examination of a narrower and narrower set of production and
investment_alﬁernatives. To fall into this trap would be a serious

mistake at any time, but is especlally so at a time with the agricultural

sector under tremendous financial stress. Qur ability to “fine—tune" the

W
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ordering of specific visky production and investment decisions will be of
less value to our clientele if the empirical models fail to consi&er the
alternatives within the context of the whole farm firm.

The practical difficulties encountered in applying second degree
stochastic efficiency to complex décision problems suggests three avenues
of potential research5 The first relates to resclving the empirical
questions surrounding the consénsus requirement impiied by the pairwise
comparison strategy in S5D. A second issue relates to the identification
of the relatiomnship betweén the accuracy of the proﬁability informarion
available and one's ability to order decision alternatives correctly.

The third relates to identifying ways of generating the probability
information needed to evaluate complex decision alternatives.

At last year's technical committee meeting, Cochran et al. (1984)
described a computer program for convex set stochastic dominance (CSD) to
eliminate some problems of these palrwise comparisons that are made
without benefit of information from other comparisons. The CSD
eliminates the consensus requirement by comparing a given action with
convex combinations of other actions. The authors claim that this
procedure reduces type {1 errors without a corresponding increase in tvpe
I errors.” They are also quick to point out that CSﬁ cannot address the
diversification issue by creating "portfolios” or mixtures of pure
prospects and thereby enlarging the set of altermatives. Although this

procedure does have the potential for reducing the size of the 355D

55 type 1 error is made when one ranks an alternative as inefficient
when it is in fact efficient. A type 1I error is when an alternative is
dominated by others but 1is included in the efficient set erromeously.
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‘effiﬁient set, the iterative search requirements could be cumbersone,
.particularlf where numercus alternatives are involved.

Regardless of how the SSD comparisons are made, one must also be
concerned with the ability of the probébility information gensrated for
this purpose te order alternatives correctly. ©Pope (1982) has been one
of the few economists to be concerned with sampling errors in estimating
means and variances in returns from historical data and the implications
of these errors on the validity of the E-V efficiency fromtier.

The same issue arises in SSD analysis, but is potentially more
complex in that one must estimate the entire probability density, or the
parameters of selected parametric distributioms so that SSD can be
performed using the "plug in" method described a2bove. Meyer and Pope
(1980) argue that unbiased estimates of the probability function and
expected utility are desirable, but in some cases, biased estimates may
lead to an appropriate ordering of alternatives, at least on average
(Pope, 1982).

The recent paper by Pope and Ziemer {1984) 1s ome of the few to
address empirically, and in a comprehensive fashion, the 1ssues
gsurrounding sampling errors in efficiency analysis. These authors
conduct a Monte Carlo experiment for three distributlons, the normal, log
normal and gamma, and a number of parameter values and sample sizes.
They use this experiment to order distributions by the 85D and E-v
criteria. The SSD results are penerated in twe different ways: a) by
"plugging in" the maximum likelihood estimates of the parameters of these
functions in;o an agpropriate formula and b) by estimating the empirical

distribution functions. They concluded that
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the empirical distribution function (a) performe about as well

or better than ML methods, which pregume knowledge of the

underlying distributioms, and (b) is substantially more robust

than the usual EV rule, given nonnormal distributions. In

addition, the empirical distribution function generally yields

more correct rankings than the ML methods when sample size is

gmz2ll (p. 39). '

On the basis of this one study alone, it would be premature Lo
conclude that researchers should abandon efforts to identify and test for
an underlying parametric structure for the probability distribution in
risk analysis. There are other reasons for knowing as much as possible
about these distributions apart from their use in stochastic efficiéncy
orderings. The fact that empirical distributions performed well relative
to other procedures is encouraging and allays the concerns expressed by
Anderson et al. (1977) about reiiance on discrete probability
distributions. However, the analyst must still make some judgment about
the additional accuracy gained through increasing the sample size with
the additional costs of exzpanding the research effort.

Despite the encouvaging results for the empirical distribution, the
most disturbing conclusion is that the probability of correctly ranking
distributions was relatively low regardless of sample slze. Rarely did
this probability exceed 0.7 and it was much lower even when the
underlying distribution parameters differed by as much as 25%. As the
underlying distributions become more similar, the probability of
incorrect 6rderings is c¢bviously exacerbated, but in these cases, the
"eost” of a wrong decision may be reduced as well.

This observation seems Lo suggest an additional item for the
research agenda. In most studies involving stochastic dominance, the

empirical analysis 1s so oriented around the ordering of alternatives,

little attention is given to the implications of a wrong decision, either
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in terms of some simple sumnmary statistics or in tgrms of other
characteristics of the alternatives that may have implications for long~
term production and investment decisions of the decision maker. At some
point, we need to devise methods for betrer understanding the costs of
wrong decisions and be able to articulate in a more heuristic way to our
clientele how to choose among alternative stochastically efficient
cholces.

Regardless of how one displays and interprets the results from sto-
chastic efficiency analysis, the feasibility of the research itself
depends critically on one's ability to estimate the necessary probability
infermation. Anderson (1973) recognizes these &ifficulties, particularly
as they relate to whole farm planning and the general inability of well
 structured programming models to generate the necessary prebability
information for 8SD. At that time, he experimented with Monte Carlo pPro-~
gramming for generating feasible farm plans.

Briefly the method consists of selecting activities by pseudo-

random (Monte Carlo) sampling and expanding the levels to the

limits of the available resources. The feasible plans may then
be subjected to some quality tests and those that pass stored”

(p. 95). |
These plans can then be ranked by SSD by constructing empirical
cumulative distribution functions. The major disadvantage to this Monte
Carlo method is that ome cannot assume thar all risgk efficient plans will
be identified, particularly those for which 1t is desirable to leave some
resourceg unused. |

To some extent, the growth in the use of simulation methodologies
for SSD analysis islexplained by thisg ghortcoming in well-structured
programming models. The flexibility inherent in simulation models also

accommodates a more realistic representation of biclogical growth
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processes, stochastic variables and the dynamic aspects of investment and

firm growth. However, due to the lack of any preexisting structure "
few simulation models in agricultural economics have been generalized and
documented for modification and reuse" (Mapp and Helﬁers, 1984, p. 123).
Thus, one can argue effectively for additicnal research into mathematical
programming structures that can either accommodate a broader range of
decision criteria or more general probability information about the
performance meagures

One important attempt to accommodate a broader fange of decision
criteria intoc a programming framework is Tauer's (1983) Target MOTAD
medel. This LP model, which is designed to maximize expected return
subject to a constraint on the probability weighted negative deviations
from a specified target return, has been shown to generate solutions that
are efficient according to second-degree stochastic dominance (S85D). The
ranking is accomplished essentilally by evaluating discrete cumulative
probability functions.

As in the case of either the E-V or the original MOTAD model, Target
MOTAD is a twe—-attribute risk model. However, im the former two cases,
one attribute is in the objective function, while the other is in the
right hand side of one constraint. For Target MOTAD, both attributes are
in the constraints. Thus, as McCamley and Kliebenstein (1984) suggest,
the procedure for determining all Target MOTAD solutions is more complex
than generating the efficient set in the other two cases. The complete
set of Target MOTAD solutions can still be described by'a finite number
of extfeme points, but must be generated by a selective parameterization
of target return and acceptable levels of probability weighted absolute

deviations about the target.
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The jury is still out on how valuable the Target MOTAD medel will
become in empirilcal risk analysis, but I suspect the number of
individuals begiuning to experiment with the model is inecreasing
steadily. TFrom a conceptual point of view, the most serious question
‘that remains unanswered, has to do with the extent to which there are 8SD
efficient portfolios assoclated with the programming model that cannot be
identified through Target MOTAD. In light of the current enthusiasm for
S50 efficiency critevria, efforts to contribute to a ﬁetter understanding
of the formal properties of the Target MOTAD and test its usefulness in
empirical analysis should be high on the research agenda.

This discussion of Target MOTAD was motivated in large part by a
recognition that traditicnal risk programming models generate'too little
information about the prebabllity distributions on performance measures
to‘faCilitate the application of SS5D efficiency criteria. Target MOTAD
results have a direct 55D intevrpretation, whereas, an alternative is to
develop programming procedures for estimating the demsity and or
distribution functions on the performance measure so that 58D or other
decision criteria can be applied expost o the programming results. The
next section of this paper summarizes the work by one of my students and
me to contribute to the literature in this way. In so doing, the model
also contributes to our understanding of a complex general class of
stochastic programming problems which seems to have received little

attention in the recent past.

New Opportunities for Stochastic Programming?

In general, stochastic linear programming concerns the behavior of

linear programming optimization models when one or more of the
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coefficients is random. This obviously complicates the decision problem
and alsc requires a careful distinction between the timing of the outcome
and the realization of the random variables in the model.
Active and Passive Approaches

In this sense, one can think of active (here and now) models where
decisions must be made pefore the uncertainty in the model is resolved.
Tn contrast, the passive (wait and see) model assumes that the decisgion
maker knows the values of the random components prior to the gime the
decision.is made s

Most applications of gtochastic programming in agricultural econom-
ics (including QF, MOTAD and Target MOTAD, as well as chancewconstrained
models) are active formulations. Their solufions provide initial recom-—
mendations for courses of action but offer 1little advice on how plans
should be modified as the uncertainty 1s resolved over the course of the
production period.. This issue is particularly importani where the
regource vector and/or the technology matrix are assumed to have impor—
tant random components. in these cases, modifications may be required as
the production process evolvas because initial plans might not be feasi-
ble. It is also clear that the decision eriteria in the chance con~
gtrained or recourse programming models are somewhat ad hoc and may be
unsupported by axioms of ratiomal behavior.

At the other extreme, the main inquiry of passive models is into the
behavior of the optimal solutions as the random variables range over all
possible outcomes. For the problem,

(4) z{u) = max (c(u)x: A(u)x = b(u), x > 0)
X

where c(u), A(u} and b(u) are vectors of stochastic coefficients, a

family of deterministic programs is generated as u ranges over its set of
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' poseible outcomes. In turm, the optimal value of the program z{u)}
'becomes a random varlable whose probability distribution function F, can
in theory be eastimated. In practice, this is extremely difficult.

Viewad in this way, passive decision problems are nof concerned with

risk management, because at the time of optimization, there is no
remalning uncertainty. The importance in solving the problem derives
from the present value of obtaining information on the future
distribution of costs and/or revenues. This could.be particularly
important at the firm level for budgetary purposes, for evaluating large
scale investments or for planning or policf purposes at a move aggregate
level.

Discrete Sequentlal Programming

There have been few, if any, applications of passive programming in
the agricultural economics literature, although Tintner (1955) uses an
agricultural example in his original paper on stochastic programming.

| Cocks (1968) and Rae-(1971), on the other hand, combine elements of both
the active and passive approaches in their discrete stochastic sequential
programming model. In this model, the decislon maker's knowledge of the
outcomes from random events changes over time. Initial optimal
production plans are provided, as are recommendations for modifying those
plans as the uncertainty is unraveled through time.

For these reasons, this discrete sequential programming strategy has
tremendous appeal Intuitively. Additionally, one can use it to generate
the empirical distribution function of the performance measure. Howe#er,
the underlylng programming model has a block didgenal structure with a

subproblem embedded in the model for each node on the decision tree
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representing individually each value taken on by all random variables.
The potential size of thé probiem is enormous; to date there have been
only a handful of applications to problems in agricnilture°

Although this sequential programming formulation suffers from a
"ecurse of dimensionality”, the notion of combining active and passive
components of stochastic programming is appealing, particularly in
evaluating major investments where production poclicy over the life of the
investmeﬁt can be changed 1n response ¢ economic conditions. In an
attempt to contribute to this literature, a student of mine, Richard
Luckyn~Malone (1984), and 1 have attempted to solve a capital investment
decision problem within the stochastic programming framework.®
A Capacity Expansion Problem

This problen is designed to facilitate the comparison of a set V of
alternative investment projects by means of the present‘value of the
firm's profits resulting from each alternative v. The stochastic version

of the problem is given by

(5) v* = arg sup (g(F ,F )}

veV P ¥
where
(6) FP"(oo = P{p(v) < a}
(7) FyV(B) = P{th < B}

T
(8) p(v) = —c(v) + E aTth s a= 1/14r
t=1

6T am indebted to Richard for letting me summarize some of the major
results of his thesis in this paper. Any errors in interpretation etc.
are mine alone.
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(9) th(ut) = max (cx: Ax < b(u) + v, x> 0)
X

10y u, ~F_

u € Rk.
£

This formulation assuﬁes that the yearly production alternatives once the
investment decision is made are givén by the linear program in (9). Each
investment, v, affects the production capacity through the right hand
aides of the constraints, which contain the only random components. If
thelobjective function or technical coefficient matrix contained randon

- elements (9) would look like (4). -

The decision preblem is to choose one project out of the set V based
on the probabllity distribution functlons of net present value, FPV, and
yearly profit, FYV. The dnvestment decision is an active problem and the
solution to the nested passive problem gives the deéision maker maximum
information at the planning stage.

Az Bereanu (1980) pcints out, the passive stochastic inner program
{equation (%)) has a two-fold structure: one parametric and one
probabllistic. The parametric structure partitions the problem into

decision regions which correspond to the set of values on u for which a

given basis is primal and dual feasible (e.g. optimal). By defining the
ith basie of A as By, the decision regions U; on the domain of u are

defined in terms of the simplex criterion as

k

Ay v, = {u: uerk, Bi“1<b(ut)+v)_2 03

i

where D = éolumns of A not in Bi; cps cg = components of c corrésPOHding

to vectors in By and D, respectively. We know that the set of Uy is
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finite because there exists at most (mtn) bases. The actual number under
n

consideration will be reduced significantly because.for many bases, the
decision regions are empty or values of u will be su;h that (9) is
infeasible.

Although the notion of a decision region is an integral part of
solving the stochastic program, these regions are of Intrinsic interest
for other purposes as well. They wmay iﬁdicate which production

activities will never be optimal over a large range in u or those which

will dominate.

Turning now to the preobabilistic structure of the problem, the
strategy is to find the distribution function on Y¢Y. The general and
exact results are due to Bereanu (1967) and begin with two regularity
conditions.7 For decision regions i=l,...,q, We require

(12) P(U; N Uj) =0; 1# ]

q

(13) (Y U

) =1
i=1 *

and define

v . -1 v
(14) Yi (u) = CbBi (b(u) +v) if u e Ui

0 if u ¢ UiYB

/The necessary and sufficient conditions for this regularity are
given by Gleit (1977). From a practical standpoint, equation (12),
ig the most difficult. Decision regions that intersect give rise to
multiple optima and potentially lead to double counting the mass and
moments of the distribution. The problem can be resolved by constructing
an arbitrary sequence of disjoint sets out of the decision regions.

8By ignoring the t, we are essentially assuming that u 1s a
stationary stochastic process.
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From this, it can be showu that

H]

(13) P P(UY= [ 4 F(u) i=1,..0,q

v
Y

i i)

(16) P, = P(U, ) = I vd F(u) 1=1,.00,q

Uia

and the distribution function (by assumptions (12} and (13))

17y FV =p{Y'(w) <a} = J (U, ) = % { [ dF (w0}
¥ - la® 42 Ty u
where la

v
Uia f {u. usui, Yi (u) fa, a € R}.

The expected value and variance of Y  become

8 By - § ] %, (u) d F (w)};
i=1 Ui

{1y, aF - Ewn?).

1 Ui

(19) Var (Y'(u)) =

[l e W

i

These equations constitute the most general form for the exact
selution to the passive stochastic program im equation (9). The
computational congiderations remain unresclved for this general case, but
nuymerous individuals have worked to resolve them for special cases.

Luckyn Malone (1984), for example, has solved this problem when ug
has an independent, stationary multivariate pormal distribution. By
pruning the t and v from the notation, we can‘simplify the algebra,
keeping in mind that the solﬁtion procedure would be applied to all

projects. The production model in (9) can be written more simply as
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(20) Y(uw)

max (c.x: Ax = b(u) +v, x> 0}
bea) = b0 4 bpul + oo #1502 4B
h{u) = fu + (b0 + V)
w~ N (B, M)
where u has a non-singular distribution.?
The exact sclution to the distribution problem in (20) is found by
finding the a) distribution law of the resource vector; b) distribution

1aw of basic solutions; ¢) probability on decision regions; and d)

distribution law of the optimal values. These exact calculations are

summarized in Appendix A. An important result is that

... the multivariate nermal law of the random vector u carries
through to the resource vector, the basic solutions, and the
value of the objective function at each basic solution” (Luckyn
Malone, 1984, p. 97).

Unfortunately, unless the number of random variables is less than three,

it is not possible to evaluate these multivariate normal integrals for
empirical applications that could surely lead to singular distributions
and further complications in the calculations. The best that can be

hoped for is an approximate solution that can be obtained algorithmically

without difficulry.

Computational Considerations

0f the several approximation methods, perhaps the most direct
computationally is a Monte Carlo method for evaluating Fy by estimating
the multinomial probabilifies in (18A) and (19A) for a progression of
values of x. Another approach is to generate a large sample from the

pultinomial distribution and solve the associated linear problems.

Iuckyn Malone also considers the implications of u being singular,
but this is of little consequemnce here.
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Luckyn Malone (1984) on the other hand, proposes an alternative
method for approximating Fy which accounts for the double counting of the
probability mass where the regularity conditions (12) and (13) are
violated. The procedure involves two levels of approximation. In the
first, a new discrete variable Y* is used to approximate Y by taking on
values equal to the conditional expectation of Y on each decision region,
E{Y{Uj], with probability p;*.

By defining I(0) as the set of all decision regions with positive

probability pj* and Q be the union of U; for i & I(0) then

L [ Y(u)dF  for u

(21) E[Y|U,] = 5 |

i€ Q.

i
From this, one can defilne a piecewlse constant random variable which for
each outcome of the random process u gives the conditional expectation of
profit on Uj. |

(22) Y*(u) = E[Y‘Ui].lu (1)
ieI(0) ~7i

where 1u is the indicator function
~7i

(fl if ue U
(23) 1. (u) =

~Y 0 otherwise.
Luckyn Malone goes on to show that this new random variable provides
unbiased estimates of E[Y] and var [Y]. The cumulative distribution
function is then given by

0 for a < E[¥|{U
py* for E[Y|U;] < a < B[Y|U

(24) F_*(a) = P{Y* Ca} =| p *4p,* for E[YIUZ] <a < E[Y|U
b - < - -
q-1
!
i=1
\ 1 for E[Y|U 1 <a.
q

*
p,* for E[Y|Uq_1] <a < E[Y|U )
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The second level approximation is in estimating Y%, which in the
process requires the comstruction of I(O)10 and estimates of p;* and
E[Y|U;]. Since the direct estimation of py¥* is not possible for the case
of more than three random variables, upper and lower bound probabilities
are determined using Bonferronl-type inequalities (Tong, 1980). These
inequalities rely on pairwise interactions of the joint probabillities
that individual compdnents of the bases corresponding to the 1 and j
decision regions are leas than zero (Luckyn Malone, p. 110-18). For each
decision region, these estimates reduce to the computation of m
probabilities from marginal univafiate distributions and m(m-1)/2
probabilities from bivariate distributions (m being the number of
constraints). The conditicnal expectation of Y over Uy can be determined
directly by the expected value of Xxj under the truncated multinormal
distribution. To avoid evaluating multinormal distributions directly,
this conditional expectation is facilitated by approximating the jointly
normal x; by m independent normal variates. |

Others have also developed strategiles for resolving the distribution
problem in stochastic linear programming. .Ewbank, et al. (1974)
developed a2 closed form expression for the CDF (equation_(l7)) in the
case where "¢” or "b" is random by using a Jacebian transformation to
simplify the reglons of integration. Thié recognizes that the limits of
the integrals are derived from a set of simultaneous linear equations
representing the space contained by m or n hyperplanes (p- 227).

10For unimodel distributions, it may be expected that the set of
decision reglons may cluster around the one associated with the optimal
basis where u takes on its mean or modal value. It has been suggested by

Dempster and Papagaki-Papoulias (1980) that one should start with the
mean value problem, chaining in a rational way through adjacent bases.
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Foote (1980) has adapted this idea into a simplex based algorithm
for generating the bases which determine the decision regions for when
the ¢ or b vectors are random. Following a strategy similar to that by
Dempster and Papagaki-Papoulias (1980), his procedure moves to an
adjacent decision region, by selecting the incoming activity leading to
the extreme point with the highest probability mass associated with it.

The most extensive computational methods have been developed by
Bereanu (1980). His methods are based on numerical methods and computer
routines and derive inputs from any LP code which includes parameferiza—
tion procedures. Tt appears that he has used PARAOBJ and PARARHS from
IBM's MPS or MPSX codes. Much of his computational experience has been
with what he calls silmple randomization in which there are numerous
random coefficients in the model, all functioms of a single random
variable. Under these conditions, the program can handle random
variables with an arbitrary normal, exponential or uniform distribution,
along with a distribution given by a histogram with up to 100 values.

In extending his computational methods to include additional random
variablee, Bereanu argues that

+o» it seems unrealistié to.assume the knowledgé of the joint

d.f. of the thousands of coefficients of a linear program

corresponding to a real life problem, and even less to use such

a d.f. in computations, it seems appropriate to devise

approximate methods ... depending on a 'small' number of random

variables (critical random vectors, but otherwise having the

dimensions met in practice) (p. 184).

According to this strategy, the components of his general stochastic

linear programming problem are articulated by

A(e)

AO 4 ElAl <+ EzAz + s + erAr

(25) b(e) = bo + elbl + Czbz + .. + Erbr

[}

c{e) = cg + ejey +excy + oo + epey;
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where Aj, bj, ci are known matrices and (el,.,.,er) is a random vector
with known distribution function. Thus, the major limitations imposed on
the calculations depend on r and not on the number of’:andom coeffi-
cients. Empirically, the challenge is in specifying a set of known
matrices that will accommodate the major random components of the model
using the fewest number of underlying random variables.

Bereanu's computational experience is on the IBM 370/168 computer
and, to this author at least, was surprising. In the simple random
experiments, problems of diménsion up to 226 x 568 (including slacks) and
with 185 random coefficients, ran in under ome second. For the complex
cases involving more thaﬁ one rahdom variable, the cpmputational time
increased éubstantially, but was still only 13 seconds for a problem with
dimensions 102 x 181, with 48 random coefficients and two random vari-
ables. For a problem of the same size as discussed above for the simple
random experiment but with 4 random variables, run time increased to 12
minutes. It appears that this could be reduced if the capacities of MPSX
to revise coefficients, and store optimal bases for restart, the time
could have been reduced substantially.

More About Applicatiogns

Although the discussion in the previous section demonstrates that
substantial progress has been made recently for approximating fhe solu~
rion in the distributionm problem in stochastic linear programming, the
methods developed by Luckyn Malone have not been computerized, nor have
we had any first hand experience with other algorithms. Only fhrough
some extensive experimentation can the accuracy and computaticnal feasi-

pility of these alternative approximation methods be assessed.
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At this time, a more important question surrounds the applicability
of these methods for empirical work. Mosﬁ applications to date of the
capacity expansion or similar problems have been related to business
decisions, where, for example, investments had to be evaluated but the
passive inner problem dealt with uncertaln prices or demands which become
known prior to annual production decisions. The other important
application has been for central government planning. However, much of
my interest im the topic steme from a logical extensicn ¢f this kind of
application for planning capacity expansion in a regulated industry such
as the electric utilities. The model also seems quite attractive for
evaluating large scale public investment projects. There aré certainly
.public investments with significant agricultural componénts,‘such as
irrvigation or drainage, but at this time, they may be most relevant in a
development context.

The applicability of the methods for micro decisions in agriculture
is less clear than for business decisions and planning in a regulated
industry. In agriculture, it is move likely that, in addition to price
variability, rescurce supplies and/or some technical coefficients
constitute the important random components of the problem and that the
inner passive problem of the formulation above only approximately
reflects the knowledge situation of the decision maker during any
production peried. In a sense it 1s somewhere on the continuum beﬁwaen
active formulations on the one hand and discrete sequential formulaticns

on the other.!l 1In the case where a small number of elements in the "A”"

117f one assumes that the random variables are discrete, the
capacity expansion problem above 1s equivalent to the discrete stochastic
formulation by Cocks (1968) when a singular stage of production is
assumed in estimating the value of information in investment planning.
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matrix or "b" matrix are random, it may represent one possible way of
generating more information about the consaquences of investment
decisions than is forthcoming through chance constralned programming and
gther active décision models. As mentioned earlier, the solution to the
passive inner problem contains important information about production )
activities that are optimal with high probability as well as those that
are not likely to obtain under any clrcumstances. . This is a first step
+o understanding how production plans might be altered from year to year
in response to changing values of the model's random components.

Finally, since the sclution To the inner problem assumes that the
uncertainty is resolved prior to the production decisions, a comparison

of its sclution to the probability distribution implied by a solution to

the active programming counterpart, may be important.

Conclusions

When I agreed to prepare this paper, I was given a working title of
"gtrengths and Weaknesses of Alternative Models in Empirical Research:
Fitting the Tool to the Job." Within this context, my first strategy was
to attempt a general evaluation of many different approaches to risk,
including those employed at the micro and macro lévels, In addition to
being put off by the enormity of the task, I soon concluded that such an
exercise would result in just one more interpretation of what 1is
generally known by economists working in risk.

Therefore, in preparing the paper, I took a very differeﬁt
appreach. In the spirit of the workihg fitle given to me earlier, I.

have tried to state in generic terms what I think is now the biggest




30

"job"™ in risk analysis. Given our preoccupgtion with stochastic
efficiency, we are continually faced with the problem of generating
detailed probability information about risky alternatives. Research by
others has given us an indication of trhe acceptabllity of certain types
of probability information for orderingialternatives. I have tried to
speak to the importance of generating this infqrmation for risk
alternatives that comstitute a significant part of the whole farm
operation. Advances in our methods for evaluating risky alternatives
will mean little if they are used only to evaluate a narrower set of
production and investment alternatives.

The remainder of the paper has tried to assess the role of
mathematical stochastic programming in generating the probability
information needed for stochastic efficiency. Several important
contributions to the set of "active"” programming models are mentioned, as
are some recent developments in solving investment problems that combine
active and passive programming analysis. Although recent advancés in
solving these models have been made, our ability to “fit" these latter

models to the "job" at hand is less clear.



31

Appendix A

Four Stages of the Distribution Problem for Equation (20)

Distribution Law of the Resource Vaciors

(18) h(u) ~ N (M)

[

(za) @

L = E[h(w)] = Bu + (6%v)

(3A) Mh Var[h{u)] = B Mu B

[

Distribution Law of Basic Solutions

For any gilven u%*, a basic solution to (20) is defined for

non—singular basis By of rank m (i=1l,+++,9) as

(4A) x(u*,i) = (x; (*),0); xi(u*) = Bi"lh(u*) i=1,0.0,9

N -1 o -1 ;oo -1 _
(58) x, ~ N (B, (B u, +b +v), B Bu BB, ) i=1, 00,4

probabllity on Decision Regions

Let pj be the probability that By is primal feasible and p;* be the
probability that B; is both primal and dual feasible. Then for i=l,...,s
1/2) 12 |
(68) p; = (20 " | [ eee | exp{-1/2CE-u))"
0 0
..,.1 } m
LM, C(E-p e 4R,
i i j=1 j
if the distribution law on Xj is non-singular. If it is singular, then

p{ must be expressed in terms of the pdf on u by noting that

_ -1 -1..0
(7A) xi(u) = Bi Bu + Bi (b~ + v)
hence

(8a) Prix, > o} = Priu: Bi_l(Bu +p° +v) >0}
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and
(9a) p, = (m {H/Dk N N S exp{-1/2(u-p )"
Si
. M {u-u ) T qdu,
u u =1 N
where Si = {u: Binl(Bu +b° + v) Z_O}.

Now turning to the decision region; cd ~ cp Bi"l D does not depend

on u and By is either dual feasible or not dual feasible for all u e rK,

Denoting
(10A) 1, = Lif ey = ey BinlD £0
- 0 otherwise
it follows that
(La) pkx =1 p =100

This holds for all bases in A and Pi* > 0 only if B; i1s optimal on
some set of u &£ RK.

Distribution Law of the Optimal Value

For a particular outcome of the random process; u* say, the value of
the objective function at each basic solution to program (20), denoted by
2y{u*), is given by:

_.1' )
(124) zi(u*) = cb.xi(u*) = c Bi h(u#*) i=1,...,q

b

Since cpxy defines a linear sum of normal variates,

(134) Elzy] = N i=1,40.,9

I

(144) var[zj] = ¢y var[x4 Jcg! i=1,...,q

chi"lﬁ My BBinl'cb' (using 54)

it

Recalling the results of equations (14} - (17), the probability that
Y =7 is less than or equal to « for a given decision reglion i is

(154) p; = PB(U, ) = é dF (u) = Pr{xi: 020, ¢ .x; < a} . L.

ia
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Then the distribution function of prefit 1s defined for all ¢ € R as

q q
(16A) Fy(a) = P(ig1 Uia) = izl_pia .

From (154), Py is the probability of the orthant in xj-space
bounded by the linear hyperplane cp-%y = d.
We may write

(178) p;, = L [ oo ] @i(dx) 121, .00,q; 2 { @ < ®
~ v
ia

where V; = {x+ x 20,

L%y S_a}, a convex polygon, and &, is the

distribution function of xj from (5A).
Using results by Ewbank et al. (1974) to construct the limits of

integration, and 1if indeed x; has a non-singular distribution, then

(188) F(a) = izlpia

q (1) . (1)
(21-[)—(1/2)“1 z {‘Mi‘-lfz . 1i I . J‘p Jvl
i=1 0 0 0
_1 m
exp{-1/2(g-u )M, " - (Eupd} T dEy
where -
3 Ky (k
.gj(i) _ ;;%55 o - k=§+1 (2, 0y g1,

In the case of a singular distribution on Xj (e.g. when the number of

constraints exceeds the number of random variables)

B} q _
(198) ¥ (a) = (2I) (1/2)m izl {1, /2 L

= s
p—

o

=1

-1
é eoo [ oexp{~1/20u=p )M (u=p )]
ia

[ 28
B
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