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BIOECONOMICS AND THE HARVEST OF 'IWO
COMPETING SPECIES

I. Introduction and Overview

Much of the economic wisdom on how to manage fishery resources 1is
based on a single species model where the resource in question is degcribed
by a single state variable, usually representing biomass. While single-
species biomass models have afforded important descriptive and prescrip-
tive insights into the causes of overfishing and the form that effective
policy might take, they are typically regarded as simplistic from both
an economic and ecological perspective. Recent research has sought to
determine the economic importance of stochastic environmental effects
(Sutinen 1981), price uncertainty (Andersen 1982), age structure
(Conrad 1982), and searching strategles to locate schools of fish
(Mangel and Clark 1982).

Yet another area of interest is the management of multispecies
systems. Clark (1976a) examines several two-species models where ecolo-
gical or technical interdependencies may exist. An ecological interde-
pendency would occur if the two gpecies exhibited a pxey-predator, competi-
tive, or symbiotjizrelationship. A technical interdependency is said to
occur if the two species are subject to joint (nonselective) harvest.

Tn his analysis, Clark assumes a pristine system attributed to
Gause (1935) and examines £he bioeconomic consequences when only one of
the two species is harvested (Clark 1976a, pp. 311-317), and when both
species are harvested selectively (Clark 1976a, pp. 317-325).

Getz (1979) also examines the selective harvest of two competing

species and shows that when each production function ig linear im




effort, (a) the maximum sustainable rent (MSR) solution ig singular,

(b) the optimal approach to MSR lies along partially_singular curves, and
{c) while it may not be optimal, a minimum-time solution exists which may
be determined in a relatively straightforward fashion. The minimum-time
or most rapid approach path (MRAP) will drive the system ffom its initdial
condition to the MSR in the 1easf amount of time, subject to constraints
'on harvest. Spence and Starrett (1975) define conditions.where MRA? is
optimal for the singleﬁspecies biomass model. |

Neither Clark nor Getz, however, examines the problem of harvest-
ing competing species when technology (fishing gear) is nonselective.
There are at least two important fisheries where this situation is thodght
to eﬁist. In the Fastern Tropical Atlantic (ETA), Yellowfin and Skipjack
tuna, often mixed within a single school, are thought to be intergpecific
competitors and are harvested jointly by purse seiners. On Georges Bank,
off the coast of Massachﬁsetts, cod and haddock may compete for a common,
food source and are jointly havested by trawlers. This Paper will focus
on the nonselective harvest of competing species.

In the next section we will develop a relatively general statement
of the problem, derive expressions for the steady state optimum and con-
ditions for stability. The third section presents a particular‘specifi-
cation employing a Gaussian system of interspecific competition and two
transcendental production functions. A numerical example is ﬁrovided to
illustrate analytical techniques and the behavior which might result
when competitive gpecies are harvested.undef conditions of open access
and central management. The final section summarizes the major conclu-

sions and policy implications,



TI. The Nonselective Harvest of Competing Species

To set the stage for the numerical analysis in the next section
and in view of the data typically encountered in empirical research,
we have chosen to partition time into discrete intervals. The system we

wish to consider is comprised of three difference equations of the general

form:
Xy el Py oo X0 EJ s
Xy 41 T Tap,e Fopf B 1
Et+1 - N(Xl,t’ Xi,t; Et) .

The first two equations determine the population tevels of specles one
and two in period t4+1 as a function of atocks and fishing effort in
period t. The third equation determines the level of fishing effort in
period t+l, again as a function of stocks and effort in period t. The
first two equations are Lio-technical in nature, in the sense that they
reflect biological interactions betweén species one and species‘two, and
the technical relationship between effort and the yield or harvest of
each species. By joint or nonselective harvest, we mean a situation
where a positive level of effort results in a positive yield of both
species (assuming neither extinct). Seléctive harvesting would be char-
acterized by two types of effort (technology), say El,t and E , where

2,t
the yield of specles one depends on only the level of E1 t and the yield
¥
of species two on EZ,t'

The third equation is a behavioral equation in the sense that it

determines how fishermen adjust (or are allowed to adjust) effort as an

implicit funection of net value. Yield, gross revenue, cost, and user

cost can be shown to be explicit functions of stocks and effort, and



thus implicit in the third equation of our system is the bhehavioral
response of fishermen or a central management avthority to net private
oY net soeial vélue.

The first order partial derivatives of Fl(-), FZ(-) and N(.) may

take the following signsg:

Ay

E)]ﬁ“i(')_/BX‘i o ,

BFi(°)/8Xj <0

aFi(-)/aE < g , i,3=1,2 (2)

BN(')/BXi >a ., 173

, >
aN(:) /5E < 6]

A stationary or fixed point (Xl, X2; E) is one where

: Xl = Fl(Xl’ X2; E) ,

X, = Fy(X,, X5 B) (3)

F = N(Xl, Xz; E) .

The 1local stability of such a point may be determined from the Eigen values

of the Jacobian Matrix

aFl(-')/aXl aFl(-)/axz oF, (+)/3E
J = an(-)/aXl aFZ(-)/ax2 oF, (-} /9E % (4)
aN(-)/ax1 3N(~)/3X2' ONE:)/3E } .
— 4

The characteristic equation of this matrix is a cubic with real coeffi-
cients. The equation can have either three real roots or one real and
two complex (conjugates). Many cases can occur depending on the arrange-—

ments of the roots Al,_hz, and A3 in the plane of the complex variable 3.



Seven nondegenerative cases are described in Tabie 1. There are three types
of invariant manifolds: (a) stable, which is tangent to the space B> spanned

by the Eigen vectors corresponding €O Eigen values with lljl < 1; (b) unstable,
which is tangent to the space e spanned by the Eigen vectors corresponding

to Eigen values with lkjl > 13 and (c) center, which is tangent to the space
EC gpanned by Eigen vecltors corresponding to Eigen values with \lj\ =.1., In
rTable 1, points lying along the horizontal axis of the unit circle correspond
to real roots, while those lying above or below are complex. In phase space

triple arrows indicate the direction of most rapid movement.

e will consider a slightly less general system of the form:

e+l G1(}{1,1:’ XZ,t) - H:L(XIL,t’ Et) ’
Xy o1 - S22, X, ) 7 H Ky e B (3
Bopp = B * UUICSTFEIES W E)

in this form we may define pristine, open acess, and managed systems.
By a pristine system we mean a system with po conmercial harvest, that
is, Et = 0 for the interval under consideration. In this case it is
assumed that Hl(xl,t’ 0) = HZ(XZ,t’ 0) = 0, and (5) reverts to a two-
equaticn dynamical system.

By open access we meai a system where the level of effort is
determined by a large number of competitive, unregulated fishermen. it
is assumed that effort will expand as long as net revenue (fishery rent)
ig positive., In open access w(+) will represent net revenue and n>0
will determine the responsiveness of effort in t+l to net revenues in
perilod t.

In the managed system, the first two equations, describing the

bio-technical aspects of the system, are assumed the same as undex
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open access. The third, behavioral equation will change in that ©(*)
will now reflect marginal market value, marginal harvest cost, and user
cost. The management authority will allow effort to jncrease as long

as marginal market value net of harvest and user costs is positive. The
adjustment parameter (n}, while still positive, will probably differ

from that which results from_the actions of competitive fishermen, and
the management authority may wish to regard n as a cholce variable. The
magnitude of n will influence the stability of open access and management
equilibria.

When considering the harvest of two competing species, one might
logically ask the following quéstions: (1) What statiomnary points exist
for the pristine, open acCess, and managed systems;(Z) what is the local
stability of such points3 and (3) if reachable, what is the best way for
the system to move from a pristine or open access equilibrium to a bio-
economic optimum? These questions are addressed in the next section
where two Gaussian competitors are harvested according to two gimple

transcendental production functions.

TII. A Numerical Example
The discrete-time analogue of the Gaussian system of interspecific
competition takes the form

=X + r

SRS R Xy X

TR SA LA L T I
(6)

= X +rxt(1—x /K

Xy w1~ Fo,e T T2, o 8P TR

X
1,t72,t 7
where Ty and‘r2 are referred to as intrinsic growth rates, Kl and K2
are the environmental carrying capacities if no competitor were present,

and ay and ¢y are coefficients of competition oY interference. All

parameters are assumed positive.




Clark (1976a, pp. 205-207) reviews the type of stationary points
which can result in the continuous time (differential equation) system.

If rl/ql > K, and rz/a > Kl,-species will coexist at a stable node

2 2
where
P _ _ -
P L S PL STACTEI S TyTy)

(7)

X2 = rl(azKl - r2)K2/(u oK K )

1727102 T Tt
If rl/al < K2 and r2/ 5 < Kl’ the pristine equilibrium defined by (7)
will be a saddle point, and there will exist two stable nodes (Kl, 0)
and {0, KZ) where one or the other srecies may be driven to extinction
(competitive exclusion) depending on the initial population levels.

In the discrete-time analogue employed here, we will assume that
the underlying pristine system exhibits stable, competitive coexistence.
In addition, it is assumed that 0 < T, < 2, i=1,2, thus avoiding the prob-
lem of excessive overshooting which can arise in difference equation
models of tﬁis sort.

Effort will produce a yield of species one and two according to

-8 E
1%t
1,0 "% L -e

!
il

),
. (8)
-8.E
_ 27t
Y2,t = X2,t(l e

)

where 0 < Bi < 1 are production parameters indicating the relative effi-
clency of fishing effort in harvesting each species. Thus, with Xlgt
and Xz,t both positive, a positive level of effort will yield something
of both species. 1In the open access and managed systems, yields of

species one and two are deducted from the right-hand-side {RHS) of

their respective difference equations to determine stock in t+].



Net revenue is determined according to

B | ~6,8,
T = plxl,t(l - a Y+ pZXZ,t(l - e y - cEt , {9)

where pl and p2 are per unit prices for species oneland two, and ¢ 1Is

the per unit cost of effort. Under open aécess, effort will increase if
net revenue is positive, decrease if net revenue is negative, and remain
unchanged if net revenue is zero, according to the last equation in (5.
After a bit of algebra, it can be shown that the open access equilibfium

with both species present is defined by

8" 6B
XQ } rz(uler— rl)Kl - ulKle(l - e )y + rZKl(l - e ) ,
1 (uluzKle - rlrz)
-SlEO -82E0
XO _ rl(azKl - rz)K2 - aZKiKZ(l - e )} + rle(l - e ) .
2
(ulazKle - rlrz)
0 -8,E 0 -'BzEO
0 . R -e )l t-e ) (1)
c

Given the paramelters T . Ty Kl’ K2, s Gos Bl, 82, pl, p2, and c, we
can numerically solve for the open access equilibrium by selecting an
ipitial value for E, solving the first two equations in (10) for Xg and
Xg, substituting the resulting stocks and initial effort into (9), deter—
mining the sign of T, and adjusting E accordingly. The stability of the
open access equilibrium can be determined by calculating the Eigen values

g; EO). The adjustment parameter 0 will in-

of (4) evaluated at (Xg, X
fluence the stability of the open access equilibrium, but in a complex
way. Computer analysis to date indicates that n must be very amall; that

is, effort must adjust slowly when moving from an initial effort level

less than the equilibrium level EO.
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Under management, it igs assumed that a sole owner or regulatory

agency can control effort and would seek to

BB ~B, b
imize % of 1t 27
maximize tEOp {Ple,t(l - e )+ p2X2,t(l - e ) - CEt} ,
{E }
t
subject to (11
“BiF¢
e TR PN G- k) - Wt T A T,
“BoPy
fo,ea1 T Ry PRy L O- Xy /K - "%, %0 T X M- T

where p = 1/(1 + 6) ig a discount factor and § isg the discount rate. In
addition to the difference equations describing stock dynamics, the first

order conditions for an Interior maximum require

“EEy =B,
Py = 02y %) LBpe oy = 0dy )%y (gl =c o, (12)

—B.E  -B.E

_ _ T _ _ It

Al,t = pl(l e Y+ p)\l-’t+l(r1 Zrlxl,t/Kl alX2,t + e )
TP %% 13
@,E ~B.E

_ oF¢ 2Fe

AZ,t = pz(l e ) + pxz’t+1(r2 2r2X2,t/K2 ule’t + e )
RS TR TSI Do | (14)

where Ai : is the multipiier or shadow price associated with an additional
» .

.th . \ . . . .
unit of the 1 species (dn:the water) in period t. At a stationary
state with positive stocks and effort, the bioceconomic optimum is de-

fined by

. ~82E —BlE
rz(ale,— rl)K1 - alKle(l-— e ) + rzKl(l - e ) s

1 (ulazKlKZ - rer)
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"BlE —82E
. - rl(azKl - rz)K2 - uzKle(l - e ) + rle(l*- e )
, = (16)

(aya,K Ky = 1y75)

~g.E -8B -8,E

1 2 2
_ pl(l e ){l—p(r2—2r2X2/K2—u2X1+e )]—pa2X2p2(1~e )
Wy, = (17
1 BB “BE 2
[l—p(rl-Zrle/Kl-ulX2+e )][lwp(r2~2r2X2/K2-a2Xl+e I-p alaZXIXZ
“BZE ‘ —BlE —BlE
) p2(l~e )[l~p(rl-2rle/Kl—alXZ+e )]“pulxlpl(l-e )
An = (18)
2 BB “BE o
[lwp(rl—ZrIXl/Kl—a1X2+e )][1~p(r2—2r2X2/K2—a2Xl+e Y 1-p ululexz
_BlE *BzE
(py - pr )X, Bqe + (p, - ph, )X, B e -ec=0 . (19)

Equations (15) and (16) defining the optimal stock levels are the
same as the first twoe equations in (10) defining the open access equili-
.brium. This is to be expected becauée the bio-technical relationship
between stocks and effort is not affected by the property rights status
of the multispecies fishery. What differs is the criterion for setting
the level of flshing effort. The sole owner or manager takes into account
user costs represented by pkl and pkz in equation (19). Given the pre-
vious parameters and a rate of discount &, the‘sole owner or management
agency equipped with a micre computer could: (a) select an initial effort
level E, (b) solve equations (15) and (16) for Xl and X2’ {(c) substitute
E and the resultant Xl and X2 into (17) and (18) to obtain Al and Az,

(d) substitute E, Xl, XZ’ Al’ and Az into the LHS of (19) tc determine
itg sign, and (e) adjust effort according to the rule:
bositive, AE > 0
1f the sign of the LES of {19) is zero, AE = 0 (20)

negative, AE < O .
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Thus, the LHS of (19) plays the role of w(:) in the last equa—
tion in (5). The locdl stability of the bioceconomic optimum could be
determined by calculating the Eigen values of (4) evaluated at (Xg,
X%; E¥*), .The presumed stability of the pristine system, coupled with the
strict concavity of the prodﬁction functions, imply that the solution to
(15) - (19) will be a strict global maximum.

To illustrate the above methods of analysis, consider the numerical

example where

= 1.300 Kl = 220 ay = 0.002 Bl = 0.016
t, = 1.500 K2 = 180 a, = 3.00L 62 = 0.014 (21)
Py = 1,300 Py = 1,200 ¢ = 3,000 s = 0.100

The pristine, open access, and biceconomic equilibria and the algorithm
used to derive them are given in Table 2. At the pristine equilibrium,
Interspecific competition reduces species' stocks below their respective

K-values such that Xf =~ 165.811 and xP = 160.103. The open access equi-

1 2
librium is associated with an effort of EO = 40,900 and stocks Xg ¥ 99,553
and Xg = 115.740. Net revenue is very sensitive to changes in effort,

and to drive net revenues closer to zero would involve variations in E on
the order of 10_6. The interactive search, done via the solution dlgo-
rithm, was terminated at N = 0.004785. The characteristic roots of the
open access equilibrium were 0.7758, and 0.2164 t 0.8967i corresponding
to case 4 in Table 1.

Under management a bioeconomic optimum was obtained at E* = 18.657,
.Xf = 130.019, and X§ = 136.813. Effort was more than halved in comparison .

to open access. The LHS of equation (19) was designated M (see statement

180 in the soclution algorithm). It too was sensitive to slight variations



TABLE 2
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THE PRISTINE, OPEN ACCESS, AND BIOECONOMIC EQUILTIBRIA AND

THE ASSOCIATED SOLUTION ALGORITHM

PRISTINE

F= @
Xi= 165.8114176
X2= 16@.1826299

Y= B
Y2= @
N= @

M= 3138.6081668

OPEN ACCESS

E= 48.98848

Xi= 93,55336273
XZ2= 115.7388,33
Yi= 47.8185194]
Y2= 358.43564./463
N= B,0047835
M=~1833. 345717

BIOECONOMIC

E= 18.635/25

X1= 132.8187718

X2= 136.8128342
Y1= 33.535545121
y2= 31.44875125
N= 25390.83808
M= 3.P2353169

 SOLUTTON ALGORITHM USED TO CALCULATE

18:0ATA 1.3, 1.3, 2

ha
=

48
a6:
6a:
28
88:
96:

1@:

118:

2@,180,08.882,08
.P8},0.016,0.0
14
sREAD R1,RZ, K1,

K2,81,n2,BL,B2 .

cATA 1308, 1208
, 3008, 8. 1

READ PI1,FP2, 0, D
INPUT "E=":E
R=1-¢C1+3)
ZA=O1KAZKK 1 RK
~RI1%XRZ
Z1=1—EXP (-Blx
E3J

Z2=1-EXP {(-BZ2%
£
KI=(R2K(AT¥K2~
RINKKI-AT¥K1%K
2XT2HR2AKK %21
<28
RZ=(RI¥(AZRK ]~
R2ZIXK2Z2-R2¥K T¥K
2kZ1+R1I¥K2%22)
289

120

138:

1780

180:

150:
200:
218:
220

Z3=1-R¥(R1-ZXR
TaX17KI-REEXZH
EXP (~Bl¥ED)
24=1-R¥(RZ-2%R
2HK2/KL2-A2KR]LH
EXP (-B2¥E 2

1 Z25=(RAZ2IKALIXAZ

XX 1¥kX2

sL1=(P1%Z1%24-R

XA2KX2KP2KZ20 7
(23%Z24-25)

L2=(P2¥22% 23R

KALTkRI¥PIRZ] 37
(Z3%24-75)
N=PIxX1%Z1+P2%
R2%Z2-CKE
M=CP1-R¥L1 %X
¥B1kEXP (—~BI¥E
JH(P2-R¥L2)¥X2
¥B2XEXP (-BZ¥E
-C

Y1=X1%Z1
Y2EX2¥22
LPRINT "E="iE
LPRINT "X1="iX
4

THE PRISTINE, OPEN ACCESS, AND BIOECONOMIC EQUILIBRIA . . . ..
LPRINT “X2="3X%

230
z
24p: LPRINT “Y1=";Y

1

250: LPRINT "v¥2="1Y
2z

26@: LPRINT "N="3N

2781 LPRINT "M="3M

288: INPUT "CHANGE?

YES=1, NO=B8. "
W

I[F W=1607T0 5@

LPRINT "BYE-BY
g

s END

o T e i o Mg i
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in E, and the interactive convergence process wag terminated at M =
0.00353169, F¥or n = 0.001, characteristic rocots at the biceconomic
optimum were 0.9208, 0.3364, and -0.0934 corresponding to case 1 in
Table 1.

Table 3 contains a phase-plane diagram showing the movement from

= l_and

.the pristine equilibrium to the open access equilibrium when EO

n = 0.001. After an initial period of irregular movement, the point
(Xl,t’ XZ,t) followed a convergent spiral. After 101 periods, effort
had moved teo ElOl = 40.729, and the stocks of species one and two had
been reduced to 95.727 and 111.191 respectively. Fér n = 0.022, however,
thé system failed to converge to the open access eduilibrium. Thus, it
would appear that effort must adjust "slowly" if it is not to destabilize
the system. This result was also noted by May et al. (1979) in their
analysis of multispecies systems in the Southern Ocean.

The optimal approach from either the pristine or open access equi-
librium to the bioceconomic optimum will be asymptotic. The authors were
unable to derive closed form solutions for the infinite-horizon problem.
Alternatively, 1f one knew the values for effort and stocks at the bio-
economlc optimum, one could specify a finite horizon problem with the
optimal stocks as terminal values. The optimal approach might be deter-
mined for numerical examples using the discrete-time maximum principle
or dynamic progrémming.. While the most rapid (or minimum time)
approach paths will not be optimal, Clark (1976b) has found instances
in problems with delayed recruitment where sﬁch paths were only slightly

suboptimal.
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PHASE-PLANE ALGORITHM AND DTAGRAM OF MOVEMENT FROM

THE PRISTINE EQUILIBRIUM TO THE OPEN ACCESS EQUILIBRIUM

18:

28:
38:
48:
58
60:
78:
8a:
S H
128:

118:
120:

136:

paTA 1.3, 1.3, 2
29, 180,0.8282,0
.2p1,0.016,8.08
14

READ R1, R2, Kl;
K2, A1, A2, B}, B2
DaTR 1300, 1208
; 3009, 8.081
READ PI1, P2, C U
DIM X1C1B1), X2
(191>, NCIB1) E
(181>

INPUT "EC@)="3
EC@>

INPUT "X1{@)="
iX1(8)

INPUT "R208)="
%2080

INPUT "X10="3%
10

INPUT "X20="3

20

FOR T=4T0O 128

X1CT+10=X1CTIX
(R1¥C1-X1CTHsK
I)-ATKX2CT o+

ExP ¢(~Bl¥ECT2)

2
XZ2(T+12=X2CT0%.

(R2¥(1-X2(T)/K
2)-Q2%R1CTI+
ExP (~-B2XECTID
b

14@:

158

168:
1278
180
198:

208a:

NCTI=PLIkXI(T)X
(1-EXF (-BIXEC
TX))+P2%X2(TIX
(1-EXP (-B2¥EC
T2))-CxECT)
CECT+10=E(TI)+U%
NCT

NEXT T
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IV. Conclusions and Pﬁlicy Implications

The joint harvest of two or more interacting species is a prob-
lem of both theoretical and practical interest. While the problem is
complex, and this paper has by no means provided complete analysis,.it
would appear that the problem may be more tractable than considered
initially. We have attempted to cast the problem in a general way
amenable to fixed-point and stability analysis. -A particular specifi-~
cation employing a Gaussian model of interspecific competition and
transcendental jolnt production was evaluated by analytical and numerical
techniques. Two simple algorithms were developed. The first allowed
for the interactive determination of the pristine, open access, and bio-

economic equilibria. The second plotted the movement in the X phase

17%;
space of open access dynamics from an initial state, such as the pristine
equilibrium. The optimal approach to the bioeconomic optimum from
either the pristine or open access equilibria will be asymptotic, .and a
closed form solution for the infinite-horizon problem could not be deter-
mined. While not optimal, minimal-time (or most-rapid) approach paths
provide a tractable approach strategy that may be near optimal. Alter-
‘natively, the bioeconomic optimum might be calculated using the algorithm
in Table 2, and Xi, X§ might be specified as terminal conditions for a
finite horizon problem.

Within the basic (single-species) bioeconomic model, economists
have recommended landings taxes, transferrable quotas, or both as manage—
ment policies which would éuide the system toward, and maintain it at,

the bloeconomic optimum. When jointly harvesting two competing species,

catch related management policies run into the difficulty that the tax
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or aggregate quoté for one speciés may not be consistent with the tax

or quota on the competing species. While effort 1s notoriously diffieult
to measure and contrel, it would seem the more logical management instru-
ment when species are jointly harvested. Direct regulation of effort or
a tax on effort (thereby increasing the per unit cost of effort to c + 1)
would in theory permit a management agency to achieve the optimal level
of effort implied by equation (19). In designing a dynamic tax policy,
an equilibrium tax 1% might bé calculated which would choke-off effort
until stocks reach X#, X%, or a dynamic tax policy might be determined

2

for a finlite-horizon problem employing X¥ and Xé as terminal conditions.

1
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