AN ANALYSIS OF PRODUCER BEHAVIOR INCORPORATING

TECHNICAL CHANGE
By

Timothy D. Mount

30 December 1970 No. 22

This paper was presented at the Econometric Society Meeting in Detroit
on December 30, 1970.




AN ANALYSIS OF PRODUCER BEHAVIOR INCORPORATING TECHNICAL CHANGE

T. D. Mount

l: Introduction

Two factors contribute to observed rates of technical change within
an lndustry. One is the increased technical efficiency of new production
methods relative to established methods. The second is the rate at which
firms adopt these new methods. This analysis is directed to the latter
process, and in particular, to determining conditions under which it is
profitable for producers to change an;ekisting production metheod. It is
assumed that any change involves introduéing specific types of capital
equipment that embody the new method and possibly scrapping some obsolete
equipment. . Hence, techanical changes within a firm are directly related to
investment behavior.

A suitable analytical Framework has been developed by Salter (11) to
provide an economic rationale for the continued use of technically . inferior
- production methods by firms. Salter describes the choice of production
method in terms of a competitive model. New firms, using the best avail~
able method, determine the @roduct price.  Established firms, using o£her
methods, produce as long as current costs are covered by revenue. However,
no explicit conditions are developed to determine whether a rational pro=-
ducer“should change an existing production method when net returns are
positive. |

In enother study, Smith (12) develops a model that can be used +o
represent a producer employing a technically inferior production method.
Smith assumes that once a production plant is built, the quantity of capital
in that plant is fixed. Subsequent investments mey be made in a new plant,

but. not in addition +to existing facilities. The investment criterion is




to minimize the total ‘cost of producing .a specified targef output. Con-
sequently, this criterion does not allow for a change of the level of
output when a new production meﬁhbd'is'iﬁtroduced. If output is not
restricted fto a target quantity, it pays producers to. use existing pro-
duction methods whenever net returﬁélare positive. This is equivalent

to the Salter framework, and oﬁce aééiﬁ éonditions for introducing a new
production methed when net retﬁrns are positive are not identified.

In the analysis that follows, certain components of a given stock
of capital are assumed to be transferable'to new preduction methods. In
~ agricultural production, land provides one example of thisg type of capital.
- The possibility of receiving higher.net returns to transferable capital acts
as an incentive to change existing production methods even. though:net re-
turns are positive. Any change of production method involves some invest-
ment in equipment embodying tﬁe new method. The basic economic decision
facing producers is whether to buy this equipment and introduce the new
method, or whether to invest the same amount of money in expanding facil-
ities using the existing production method. Under these conditions, no
- gpecifications exist'restricting output to the same level when a new method
is introduced.

A theoretical-framework for analyzing investment decisions by pro~
ducers is developed in Section 2 under the assumption that each production
method is identified by a different Cobb-Douglas production function. The
decision criterion ié gpecified to bé'maximiZation of the present value of
net returns to capital less discounted replacement costs. -A constraint is
" placed on investment expenditure, and the optimum decision depends both on
~the level of this constraint and on the initial quantities of capital inputs.

The decision ecriterion implies that producers maximize net returns to capibal.



Hence, any empirical application of the theoretical model involves the
prediction of net returns, given a stock of capital inputs and a set of
current input prices.l/ In contrast, the standard estimatlon problem in
production function theory is to predict output.for glven levels of both
current and capital inﬁuts. Although if is péssible to predict net returns
using parameter estimates derived from the standerd prediction problem,
these estimates may be very inefficient. A more satisfactory estimation
procedure, based on a wmodel originally proposed by Hoch (6) and Mundlak
(10), is developed in Section 3. In the final section, an attempt is made

to apply the estimation procedure to data for the California dairy industry.

2: Theoretical Model

‘Bach production method within an industry is specified by a different
Cobb-Douglas production function. The expression for current net returns
to capital for a single production method may be written as follcws.g/
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Since Cobb»DouglaS production functlons are specified, it follows that
maximum net returns are proportional to the optlmum output level.

il

In expression 2: l each production method is specified with the same set
of (M) inputs, but differences between methods are assumed to be em-
bodied in at least one of the M capital inputs, implying that not all
inputs are identical. To account for this, it may be assumed that a
specified subset of the input coefficients are zero for each production
method. In addition, prices for corresponding current 1nputs are
allowed to vary between production methods.




where i = 1,2,...;I specifies production method i,

i

t = 1,2,...,T specifies time period f.

Yi(t) is the quantity of output.

i

Xﬁi(t) is the quantity of curremt input n; n= 1,2,...,I

1,2, uoo,Mo

i

Kmi(t) is the quantity of-capital input m; m
PY(t) is the price of output,

P .(t} is the price of current inmput n; n = 1,2,...,N.

n= 1L,2,...,8, and Tyt B 1,2,...,M are production

function parameters.

The first step in the analysis is to derive optimum conditicns for
investment in a given production method.ll Any stock of capital provides
‘arstream of income over several time.ﬁeriods. The present wvalue of net
réturns to capital may bé used as a single criterion for the complete
income stream. However, aﬁ&'stock of capital requires additional costs
after the initial purchase to cover repairs and maintenance, Two alter-
native procedures for including these additidnal costs are generally
adopted. The first is to assume that costs occur in every time period in
proportion to the level qf-éaeh capital input. The Second is to assume
that each item is used for a specified length of time and is then replaced.
In reality, both situations occur, although current maintenance costs need
not be proportional to capital input levels. Iﬁ the folldwing analysis,

replacement at regular intervals is assumed, and future replacement costs

E/ For counvenience, the 1 subscript is dropped until the problem of
changing a production method is considered.



are discounted to the present. Hence, each investment decision may be
viewed as one in a sequence of decisions occurring at discrete’ irtervals
thoud time. The actual investment criterion is te maximize the present
value of a stream of net returns to capital less discounted replacement

NP . . . . R
costs, For an infinite time horizon, the criterion 13:—/
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where R(t) is the current net returns to capital defined in 2:1.

*
Km >0 is the increment to cagpitel imput my m= 1,2,...,M.

-

K@ is the initial stock of capital input m.
Qm is the useful life of capital input m.
Lm is the present age of K&.E/

P, (t) 1is the price of capital input m.

r is the discount rate.
In 2:2, each type of capltal is compesed of two parts, the existing

stock Kﬁ and an increment to this stock K; . Consequently, the level of
' ' - %
each capital input is the sum of the two components, and Km = Km,+ Km;

¥
M= 1,2,...,M. The non-negativity of capital increments Km implies that

'}/ This critericn is consistent with a Tinite ilnvestment horizon if it is
assumed that the value of the final stock of capltal equals the dis-
counted value of potential earnings in the future.

g/ In reality, the existing stock of a single capital input may contaln
items purchased at different times in the past. However, this
complication does not influence the optimum conditions, and L
may be viewed as some weighted average of the different ages.




capital inputs can'only be expanded. This is equivalent %o making thé
scrap value of existing capital zero, since the marginal physical
productivity pf.any'capital input is always positive given a Cobb-
Douglas produc%ion function., However, it 1s also possible to consider
an investment décision when certain items in an existing stock of capital
are due for scrapping, implying that the initial stock wmay be defined
without inecluding these items. This type of investment decision provides
an opportunity to reappraise past decisions, as it is nol necessarily
optimum to replace the scrapped equipment.

 Generally, the time paths of prices are uaknown, and it is convenient
to assume that prices are constant over time so that 2:2 may be simplified.
A constraint on current investment expenditure is also introduced using a
Lagrangian multiylier. Hence, the investment criterion is to maximize
the following expression with respect to the (M) inputs.
213
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C is the constrained level of investment expenditure,

» 185 a Lagrangian maltiplier.



Necessary conditions for a maximum of 2:3 may be derived using the Kuhn-

Tucker theorem to be:l/
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As there is no expenditure constraint on current inputs, net returns

2
to capital are maxiwmized, and Xn >0 for all n-/ The optimum level of

%/ Sufficient conditiohs for a maximum are that the investment criterion
2:2 is quasi-concave [See Arrvow and Enthoven (1)].

2/ To conform with the sufficiency coanditions for unconstained maximization,
returns to scale Tor any fixed stock of capital must be decreasing,

. . N
1 ]
implying 2:1:1 B, <1




P ‘ o o : o *
each current input is proportional to the optimum level of output Y,

and may be written:

215 *
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Substituting 2:5 into 2:1, the expression for maximum net returns to
capiial is:}!
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In contrast to the N current inputsploptimum‘levels of the M
capital inputs depend on the level of the Lagranian multiplier X
unless the increment to existing capital stock is zerc (K; - 0). PFor
any posiiive increment, the optimum level of capital input is

et : L%
" PY ¥

B [(1-exp(-rq )™+ 2]

X for K. >0
&+ T ) - or £ >0,

% _
where X  is the optimum value of the Lagrangian multiplier.

E[ In addition, the optzmum level. of output: Y "~ is dlrectly proportlonal
to the maximum of current net returns to capltal(Y-— [P (1~ ﬁ )]"l R )



The optimum capitel input level 2:7 is the same as the level for unconstrained
* .
profit maximization if N = 0, implying the investment constraint is not
*
binding.g/ For situations in which A >0, the optimum ratio between two

capital inputs is:

2.8
* = -1 *
Ko * K, 7y By [(-exp(ar@ )77 + A7) . %
I - for K, K > 0
K, + K, e Pru [(l-exp(-rQu))‘ +a ]

' *
It follows that the optimum ratio is independent of » > 0 only if the

life spans of both types of capltal are the same (Qu = QV). In general,

*
the relationship between the optimum ratio and is monotonic, and the

first derivative with respect to. A is

*
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The sign of the numerator of 2:9 determines the sign of the whole expression
since the denominator is always positive. The numerator sign is positive
(negative) if the life span of capital u is shorter (longer) than the

life span of capital v, so that Q<9 (Qu ? Qv). A11 optimum

values of the Lagrangian multiplier l% are non-negative, and consequently,
any solution with 2> 0 relative to a solution with A 0 implies
that short life capital is substituted for long life capital. This
discrimination in favor of short.life capital increases as A increases.

Wo discrimination is present if investment expenditure is unconw

Strained or if cost minimization is used as the investment criterion.

1
~/ The optimum capitel imput levels for minimizing thg cost of producing
a target output are also identical to 2:7 with A~ = Q.




10

For any optimum solufion éf 2:4, the value-of. h% may be interpreted
a5 a marginal cost of the investment constréint measured by discounted
profits foregone. Relaxing the constraint implies a corresponding incre-
mental expansion in the scale of production, and k* increases (decreases)
if the production functlon exhibits economies (diseconomies) of Scale. It
follows that the optimum ratio of short-life to long-1life increases
(decreases) as the investment.constraint is felaxed whenever theré ére
econémies (diseconomies) to scale.

In genersl, no explicit solution for the Lagrangian multiplier .
‘exists, but the optimum value may be determined by an iterative procedure
for any given level of the investment constraint. It is necessary, however,
to allow for the possibility that some of the increments to capital stock
are Zero (KZ'Q‘O). .When the optimum value -L% is knova, values of the

3
o

optimum capital increments may be determined (nm; m=1,2,...,M), and also

the maximum value of the investment criterion 2:3. This gives the optimum
. investment program for expanding output using the existing production method.
The analysis up to this point mekes no allowance for alternative
production methods. Howevér, an optimum soluticn may be derived for any
production method given the initial stock of capital inputs and a specified
level of the investment constraint. In fact, the existence of alternative
production methods implies only that additional feasible solutions exish
in the maximization problem. A siumple procedure to follow is to determine
the maximum values of the investment criterion for all production methods,
and to specify the optimum investment program is to adopt the method that
yields the highest_value. It is still necessary to considér hdw to define

the initial stock of capital inputs for an alternative production méthod,
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as generally equipment embodying the existing method is scrapped when & new
method is inﬁroduced; Hence, initial stocks are not identical for different
oroduction methods. Tt is assumed that the initial capitel stocks for method
3 given that gethod i is the existing method mey be written as follows:
- 2210 | | |

i‘imj = (1.;-=1m..-‘_]).'fc'm_:L s m=1,2,...,Mand 1,3 = 1,2,...,1,

where d 'S_amij 5 j[ ig ﬁhe proportion of thé.capital.input that is
serapped when changing from method 1 to method j. In the simplest case,
the amij are zero Tor all but the single capital input inrwhich the
production method is ewmbodied. -

If the price of scerapped eguipment Ls zero, the constraint on invest-
ment expenditure is_identical foé all production methods., However, if the
price”is positive, this extra revenue may.be used to increése investment

expenditures.é/ The effective level of the constraint for production

method J given that methoed 1 is currently used is:
2:11

: E: M

where Ci is the initial level of the investment constraint
Prn (Lmi) is the scrap price of capital in m after I .

years using method i.
The optimum investment program using production method J may be

determined from the necessary conditions 2:4 by redefining the initial

3/ It is important to know the age of equipment that is serapped even though
the ages of the initial levels of capital inputs have no bearing on the
optimum conditions. The reason is that a comparison of the discounted
replacement costs for capital stock using alternative production methods
is directly influenced by these differences in initial stock levels.
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levels of eapital inputs using 2110 and the investment constraint using
2:11. It is generallJ true that if the 1nvestment constralnt is relaxed
suffic1ently the productlon method exh1b1t1ng the hmghest returns to scale

>." "’. l
in 2:6 (Zg;l

7mi ig largest for all 1) will be optlmum regardless of
which method"is currently used. waever, it may be necessary to expand the
size of the ex1st1ng firm many times for thlS change to be optlmum, and

lIMltS on Lhe avallablllty of credlt would prevent such changes occurrlng

in practlce.

3+ Estimation Procedures

In Sectlon 2, necessary condltlons for maxlmlzlng the 1nvestment
criterion 2:4 imply that producers maximize net returns to capltal stock.
As Cobb—Douglas productlon aunctlons are uPéCllled optlmum levels of
expendlture on each curreat 1nput are proportlonal to the optlmum level
of revenue. A model that 1ncorporates these proportlonal relatlonshlps
has been developed in the literature by Hoch (6) and Mundlak (lO) The
logarithmic transformation of this mQAel may be wrltten for any sPe0111ed
production method as:follows:

3:1

R
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E[@t] = E[ent] = 0 for all t and n.

Ele.®, 1= oi if t =t

0 otherwise.

- 2
Ele ]l = o, if n=n' and %= t'.

nten't‘

il

s 2 t a = .
0, ifnfn andt=t

0 otherwise

bl

Elo, € 0] =0 for all t, ' and n.

where

¥, = log ¥(t)

it

x , = log Xn(t) ;3 n

nt 1}2;..'}N

%
fl

at logKKm(t) som= 1,2, .0.0,M

-1
D, = 108 {PXn(t) PY(t) 3 n=1,2,...,8

a:l%A,%;n=L%uUm m;m:lQV“Mam %;n:L&”,
y I are unknown parsmeters

&% and €43 D= 1,2,...,¥ are unexplained residuals
1(t), X (t), K (), Py(%), Py (%), 4, B, and y  are all defined
in 2:1.
Each of the (I#1) equations in 3:1 is specified with an unexplained
residual term. The First equation is the linearized production function,
and the other I equations show the relationship between output and each

current input. If producers actually maximize net returns to capital stock,

the following conditions hold in 3:l1: an = - Log Bn and € = 0 for 211

n and t (see 2:¢5). Hence, the specified model allows for some unexplained
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variation between the optimum conditions and observed behavior. In addition,
no constraint is placed on én (n=1,2,.,.,8) so it is possible for
producers tc follow a policy that is conéistently different from the
optimum conditions. From an economic viewpoint, it may be intevesting to
test whether the difference between observed and dpbimum behavior is
significant.

The (1) equations in 3:1 form a simultaneous system with output emd N
current inputs endogenoug, and with M;capital inpﬁtsj N price ratios, and
(M+1) constant terms exogenous. Ordinary least sqﬁares estimates of the

input parameters derived from the Tirst equation in 3:1 are blased since

the N current inputs X, &re related to the residual &%} Both Hoch

(6) and Mundlak (20) have developed procedures for obtaining unbiased
estimates of these parameters. However, if the W current input equations

in 331 are defined in terms of the expected level of output E[yt} instead
of actual outpui Yy then the N current inputs X 4 are no longer

related to the residual @, - _Hencé, ordinaryileast squares estimates of

the input parameters using the producticn function only are best linear
unbiased estimates. This facf wag established by Hoch (6), and has been
.subSequently used to justify single eqﬁation estimation procedures.}/

In addition, Zellner, Kmemba, and Dréze (13) have shown that single equation
estimates are unbiased maximum likelihood estimates, if meximizing éxpected
net returns toc capital is specified as the decision criterion, and if all

regiduals are multivariate normal.

}/ Another source of estimation bias discussed in relation to 3:1 is caused
by owitting firm and time effects from the specification. However,
incorporating these effects in 3:1 is quite straightforward, but no
attempt is made to do so explicitly in our analysis.
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The use of expeeted net returns to capital as the decision criterion
seems reasonable, and this implies that leést gquares estimates of the
imput parameters are satisfactory. Howevér, if the primary objective of
the analysis is to predict net'feﬁurns to capital stock, as it is in our
case, estimates derived from the complete system of (I+1l) equations are
preferable. The reason is that the parameters of interest are not

o, ﬁn and 7 but the tranéformed parameters = a(luﬁs)fl, En =

ZN (=3

Bn(l-ﬁs)"l and ;m = 7m(l'3s)~l’ vhere B =2 . B
This conclusion follows immediately from an ihspectionwofithe expression
for.maximum net returns to capital 2:6. In statistical terms, the objective
for the single equatiocon procedure may be viewed as pre&icting output given
levels of both current and capital inputs. In contrast, the objective

using the simultaneous system is to predict oubput and current inputs given
current ilnput prices and capital lnput levels.%/ The discussion that follows
consists of two parts. The first part concerns the derivation from 3:1

o

of direct estimates of the desired parameters &; Bn and ;m' The second

part shows that alternative estimates of these parameters, derived using
single equation procedures, are relatively inefficient.
An obvious way to obtaln parameter estimates in 3:1 since this equation
is just identified, is to derive the reduced form and to estimate the
- (=R ] - . u g/ N3 Ka) D12 a3
resulting coerficients directly. In Tact, the reduced form coefficlients

are equal to &, §n and ;m’ the parameters required for predicting

Y
4

The optimum level of owbput is proporticnal to the maximum level of
net returas io capital.

The first equation in 3:1 contains (I#1) endogenous variables (y,, x__:
n=1,2,...,N) and N exogenous price variables are omitted (p ;t ot
n=1,2,...,¥). Consequently, estimates of the reduced Torm cobFficients
can be used to give unique estimates of the original parameters a,Bn and Y
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net returns,, if currenf iaput érices are nof accurately recorded for each

observation anduéﬁis is a problem iﬁ some emfirical applications, then ,

the estimatéd réduéed Torm coefficienté may be very unreliable. To overcome

this potential probléﬁ, an estimation procedure 1s developed for the

feduced form that does nof féQuire‘the direct use of price data. Hence,

it is sufficient for prediction purposes to ﬁnow the average prices for

a group of observations rather thén‘the exact prices for each observation.
The (N+l) eguations in 3:1 may be written in matrix notation as

follows: |
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The reduced form of 3:2 is l—/
513
[y XI= {[, Jljo 0]+ (K Pl v O+ [@ el
o 3] Q. I
r
[ + ot 5 -1
-8 -(Fl+Ir)
- ] s .
= tlT Jl o cc;N: N +
-56 ~a(ﬁ1ﬁ+n)
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1 ] L]
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where » = (L - L B)
This may be rewritten as follows
3.k

[y (@p)] =1, [@ - 15 6f) (@1 - 1ef1y - 108)]
+ K[y )+ pIB Pl

+ [0 w1l AE [ef 6(5_11;I + I)]

2 L - ~e - ~ -
Where—/ o =QaA l, B =BA l, and ¥y = ¥\ l.,

Y The inverse of the (W+L)x(W+l) matrix of endogenous variable parameters
is given by Mandlak (10; p.14l1).

g/ These vectors contain the parameters that are required for predicting
net returns to capital.
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The final version of the reduced Torm expresses the logarithm of output ¥
and the N vectors of current input expenditures (¥+P) as linear fﬁnctions
of a constant term, the (M+N) exogenous variables in K and P, and
a residual. A1l (1) equationsfor these endogenous variables contain
the same unknown input parameters ;' egnd E. However, the consftant terms
and residuals are different. |

The reduced form of the lineérized production function in 3:4 may
be WTitten:%/
3¢5

Y= 1, (E;‘E..J.ha'é) + Ty - BF + axt - B

If the price matriz P is unknown a substitution of (Yl& - X) for
(lTlﬁS + P + ¢) may be made. The equivalence of these two expressions

follows directly from the N current lpput equations in 3:2. With this
substitution, 3:5, may be rewritten:
316
et L) ~ ...l
Y=104 (X - Y1) B + Ky + @

The residual o is specified in 3:2 Lo be homoscedastic and A

e .

ig a scalar. Consequently, ordinary least squarés estimates of &, B and v

. . o 2 .
are congistent unbiased esclmateSv/ These estimates are:

3.7 ‘ _ 1 : !
’\a.‘ - : ‘ e -
T 1Z t H
a 1 11K ilTY”i
bl = Z'Ly, /AL 7K 7Y
| ¢ K'l,  K'Z K'K lxry

%/ It is possible to use all {(I1W1) éndogenous variable vectors in 3:4 to
obtain a single set of parameter estimates. However, this procedure can
be applied cnly if the price matrix P 1is known.

2/ The independent variables (X-Ylﬁ) in 3:6 contain a stochastic element e.

Hence, estimates 3:7 are BLUE if conditioned on e, since Blet®w] = 0 in 3:2.
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where Z = (XAYli)

The estimated variance of estimates in 3:7 isg

348 _ :
a - QO 8 - O -7 l&IZ 1K

E||b-F b -8 ='§f0 71 717 74K
S-3] l8-% K'l,  K'Z KK

where Ei o (reFebel)t [(¥-3-zB-K8)’ (Y-3-7B-K3)]

. . . 2 -1
ig an unbiased estimate of Um A

Orainary least squares estimates 3:7 are, in fact, equivalent.to-using
(78 + P+ ¢) as an instrumental variable for X in the first equation of
the original specificgtion B:l.}/ Once again (Yl%—X) = ~Z4 tay be sub-
stituted for (35 + P+ ¢). In matrix notation, the first equation in 3:1
may be written:
3:9

Y=0+XB+ Ky +ow

Estimates of ¢, B, and ¥ wusing instrumental variables are:

3:10
) T lTX l'I‘K {
bl = {81, <&'X -2k | |-Z
c L K'L, KX KK ‘_ Y|

Equivalence between 5:7 and 3:10 may be demonstrated by considering the

normal equations of 3:;10:

~/ This equivalence between estlmatlon procedures is dlscussed by'ChrlsL

(33 p.ho2).
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3:11
t 1 1
T lTX lTK a 1y
-Z‘lT wi "X YANS b = =Z'Y
Kl KA KK c K'Y

Rewriting 3:11 gives

5312
E 132 Lk T fa l— 11¥ 1 1,71 q
21, 2% 2K IR R A & BN A X
rL, Kz KK e I '_ K'Y K'ylih
1y
= { 21y | (1-1p0)
L K'Y

Defining 2= & (1-11'\Tb)“l, B =D (1-11'\;3)"1, and € =c (lull'qb)"l, estimates

-~

4, b, and & derived from 3:12 are identical to estimates a, b, and ¢

-1 1

in 3:7. Recall that E, g, and ¢ are estimates of & = QA , B = B

o . .
and ¥ = ¥» , respectively, where M\ = (l-lﬁﬁ). Hence, both preocedures

give identical estimates of the unknown parameters <, B, aﬁd v and
alsc of the tfansformed parameters. &, E, and ;.

The use of (Ylﬁ-X) = (J8 + P+ ¢) as an instrument for ¥ in
3:10 implicitly assumes that J, P, and e are gll linesrly independent
of the residual @ in 3:9. The covariances between ¢ and & are
specified as zero in 3:1 for this reason. Mundlak (10) proposes an

alternative estimation procedure that is similar to 3:7, but uses
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(35 + €) = (Ylﬁ - X - ?) as the instrument for X.}/ Hence, price data

are.required for the application of Mundlak's procedure.

"To complete the“estimation of all unknown structural paramgters in
5:1; it is necessary %o determine values for the constant terms 5n. Best
linear unbiased estimates of these parameters are: |
32153

_ ﬂn= ¥y - Xn-Pn 3 n=1,2,.00,N,

where the bar notation over a variable represents the mean value for all
T cbservations. The estimated variance of 3:15 is
3:1h

2 2 -1
E[(d}_‘l-an) ]=SnT ; ﬂzl,BJ--a,N

- = =24 .
b " ot 7Y X, Pn) 1 is

2 ~1 T
vhere s = (T-1)7" [ Z%ml (v, = =
an unbiased estimate of the residual variance Gi' If current input prices

are not recorded for each observetion, it is possible to use an approximate

value of the meen price Eﬁ to obtain an estimate of an, but it is not
possible to estimate the corresponding residual variance ci. This is

an important handicap as the expression for predicting net returns to

- .
capital R given specification 3:1, coantains the terms exp(-an);

2 B .
= 1,2,...,N.~/ In addition, the expression must include the residual

variances or estimates of these variances together with a correction

1/ I{ all current input variables are recorded as expenses rather than
in physical units, using (78 + ¢) as the instrumental variable is
justifiable. However, exact equivalence between the reduced form
estimates and the instrumental variasble estimates no longer exists.

1w

In particular, exp(=8, ) replaces f_ in 2:5. Substituting this into
el
2:1 gives the correspondlng expression for R¥,
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factor if prediction unbiaéedness is to be maintained (see Bradu and
Mundlak (2)).1/_ This problem is largely ignored in the empirical section
that follows; no simple solution seems possible when available price data
are inadequate.

The discussion now shifts to the use of the standard single equation
procedure Tor estimating the transformed coefficients &; E, and 7 in
S, IF maximization of expected profits is chosen as the investment
criterion, then ordlnary least sguares estimates of the untransformed
parameters of <, B, and 7 are best linear unbiased. With the additional

assumption that the residual vector « is multivsriate normal {0, ai]:),

the distribution of these estimates may be written:

3:1k
-1 : -
a T l%X‘ I%K 1&Y | & T léX liK
bl =X, XX XK | XV lave ormat || 5| ,05lx'1, X%k XK
c LK'lT KX XK hK'Y | 7] kK’lT K'X K'K

Since the estimates in 3:1k4 are also meximum likelihood estimates of o, f,
and v, it is possible to appeal Lo the invariance property of these

estimates and use a(l-lﬁb)—l, b(l-lﬁb)"l, and c(l-lﬁb)"l to esbimate

&; E, and ;, respectively. However, the optimuﬁ properties of these
laﬁtef estimates only hold asymptotically.

The normality of the estimates in 3:1k4 implies that the corresponding
estimate of any element of &, é, or ; is a quotient of two normal

variables.g/ If the two variables both have mean zerc, the quotient has

1/ This statement assumes that the (1) residusls in @ and e are
multivariate normal.

E/ Any sum of normal variables is also normal, and as a result, the
denominator, which in all cases is (l-lﬁb), is normal.
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a Cauchy distribution. With non-zero means, the quotient has a considerably
more compllcated distribution that is asymmenrlc. Zﬁéeller (4) has derived

the exact distribution, and in addlulon, an approxi@ate_distrihution that

is valid only if the denominator is significantlydifferent from zero. If the
denominator is not significantly different from Zero, ﬁonfidence intervals for
the quotient includerinfiniﬁy and are, consequntly, unpounged"%! Fieller's
approximate distribution for a quotient Z = uwt implies the following wenCitions
3115 |

-1 :
(Vz -T) (o‘i - 220 +-ch72)] is Normal (0,1)
- .. g » - T 2 .
where [U] are plvarlate Normal | U.I ) % O
— 2
v .VJ' _qu Gv:

An equivalent student's t distribution exisis if estimates of the
| variance-covariance components are used in 5:15.2/ The confidence interval
of the gquotient Z wmay be determined by solving the followiﬁg'quadratic
equation for Z.
3:16
272,.2. ~ 272y _

(v‘? - toav)z - 2 (uv - tocuv)z & (U? - tocu) =0
where U and V are observed values.

2 2 0 . 2 2 .

Oy Oy and O ¥ estimates of qu, 0 and duv’ respectively.

t, 1s the crifical value of %, implying that P { t3>to} = af2

for a (1-0} level of significance,

Y Fuller (5) gives an empirical application of the following procedure by
determining confidence intervals for the isecline of a quadratic
productlon functlon.‘

2/ In 3:1k; an unbiased estimate of ai is (T—N-Mhl)"l [(Ywa-Xb-Kc) !
(Y-a—Xb-hc)], and the resultlng t  statistic has (T-N-M-1) degrees
of freedonm. :
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It is possible to use 3:16 to determine confidence intervals for the single

equation estimsted a(l—lﬁb)'l, b(l~1ﬁb)“1, and c(l—lﬁb)-l. These intervals

may be compared with the corresponding intervals for the direct reduced
form estimates a, b, and ¢ in 3:7. As the reduced form estimates are
efficient and unbiased, the latter intervals are generally smaller, implying

that single equation estimates are relatively inefficient.

s Empirical Analysis

The following analysis is based on cross-section and time-series data
from a survey of 122 dairy farms in California during the years 1960-65.
Two methods of milk production, characterized by the type of barn, are
identified. Method A uses a stanchion barn, and method B uses a parlor.
During the past two decades, a number of wilk producers in California
have repiaced:ﬁanchion barng with parlors, but scwme smaller producers
are still using stanchions barns that were built over thirty years-ago.

In contrast, some large scale firms have built new stanchion barns, and
indications are that stanchion barns yield higher returns if the production
scale is sufficiently large.

The {irst objeétive in this section is to estimate production function
parameters for method A (stanchion) and method B (parlor) using both single
equation estimation 3:14 (SEE)} and reduced form estimation 3:7 (RfE).
Estimates of the transformed parameters &, E, and ; are then compared
for the two'alternative'techniques. The quantity of milk produced is the
dependenrt variable in each pfoduction function. Three current inputs and

Tive capital inputs are specified. These input vériables are:
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Current inputs: 1. Labor ‘ Capital Inputs:"l. Herd size
2. Feed : ..+ 2+ Land
3. Utilities - - ' 5. Milk barn

4. Machinery
g, Other buildings

Estimated parameters are summarized in Table 1 for both estimation_techniques.éx
A1l current input and capital input parameters are expected to be positive.
- Two of the estimated capital ébefficients are negative for production wethod
B'using SEEj and one is negative using RﬁE. In contrast, all estimated
cufrent input coefficients are negative using RFE, whereas only one
coefficient for mgthod'B is ﬁégative using SEE. However, fewer of the
estimated coefficients are significantly different from zero using SEE.E/
Predicting nét returns to capital requires estimation of the transformed
parameters &ﬁ E, and ;. Tt is on fﬁe basis of these estimates that the
two estimation procedures are compared. Both point estimates and interval
estimates are summarized in Table é. Point_estimates using SEE are derived
from the regression coefficients in Table_i, znd the corresponding interval
estimates are computed by solving 3316 forleach quotient.iy Estimates using

‘RFE are taken directly from Table 1, A comparison of ranges of the interval

‘él The estimstes are of @, B, and » using single equation estimation,
and of ¢, B, and 7y using reduced form estimation.

2/ All statistical testsare based on the assumption that the residual ©
is multivariate Normal (O,Ui;), and that ¢ is given-conditionally.

b The numerator U is one elemeant of a, b, or ¢ in-3:1l, and the
denominator 'V is (1-1ﬁb). V is significantly different from zero

for both production methods. (The critical t value is 2.576 at the
99% level of significance. The estimatéd t values are 10.034 and
6.583 for methods A and B, respectively.) The terms Uﬁ, G%, and

Guv. are computed from the variaﬁcéuéovariancg matrix of regression

coefficients in 3:1k.
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ESTIMATED REGRESSION COEFFICIENTS

SINGLE EQUATION ESTIMATION

REDUCED FORM ESTIMATION

Variable and _/ Production Production Production Production
Measurement Units Method A Method B Method A Method B
Constant term - ko016 L.6615 2.5512 2.94TL
(31.09)%  (2h.35)8/ (25.63)2/  (22.16)%/
Labor 0.0710 0.0718% -0.1964 ~0.2259
(Man months x 100) (3.72) (2.49) (15.57) (12.59)
Feed 0.5285 0.6156 ~0.5840 -0.5888
(Pounds of TDN per day)  (17.10) (13.45) (31.30) (21.42)
Utilities | 0.0522 ~0.0009% -0.0456 ~0.04%40
(Expenditure per month) -~ (4.63) (0.05) (5.7%) (5.55)
Herd size C.3824 005 0.906L 0.8987
(Wumber of cows) (11.43) (8.71) (100.98) (69.53)
Land 0.0253 -0.0089% 0.0557 -0.0183
(Current value) {h.olh) (1.01) (16.59) (3.11)
Milk barn 0.0319 -0.0382% 0.0270 0.0341
(Current value) (3.89) (2.131) (%.68) (2.81)
Machinery 0.0297 0.00513% 0.0522 0.0L40%
(Current value) (2.88) (0.40) {7.28) (1.6%)
Other buildings 0.0007# 0.0133% 0.0036% 0.0389
'(Current_value) (0.21) (1.65) (1.58) (7.29)
fgégigiieizrrelatlon .928 .909 .96k .959
Sum of squared residuals 32,8053 26,4131 16.3884 13.2518
Number of observations 1570 ohl 1570 9l

}/ The dependent variable in each regression is the logarithm of the output
of milk, standardized to 4% bubterfat and measured in pounds per month. The
1og transformations of all independent variables are used in the regressions.

2/ The pumbers in brackets are the absol

estimate.

ute values of the 't ratios' for each

* Implies that the estimated parawmeter is not significantiy different from
zero at the 99% level of significance (The critical t wvalue is 2.576).
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estimates for SEE and RFE indicates that RFE is clearly superior. The
ranges using ﬁEE are generally about five times largei. For production
method B, only three of the nine estimates using SEE are significantly
different from zero. This contragts with eight significant estimates

using RFE., In addition, point estimates using SEE are only asmptotically
unbiased even though the untransformed estimates in Table 1 are unbiased.%/
Point estimates usiﬁg RFE are unbiasedf

Estimates of returns to scale'paramaters are glso given in Table 2.
The estimated values are larger fdr production method A than for method B
using both estimation techniques. This is consistent with the initial
observation that many smaller firms have introduced parlors, and that some
'larger firms have built new stanchion varns. Estimated scale parameters
are significarntly greater than one using RFE for both production methods.
However, using SEE, returns are significantly increasing for methed A
and sigmificantiy decreasing for methed B. BSince estimated scale parameters
are unbiased using RFE and only asymptotically unblased using SEE, it appears
that returns to scale for both producition methqu are overestimated using
QEE.

The negative estimates of E using RFE are difficult to interpret in
light of economic logic. The implication is that optimum output levels for
a given stock of capital inputs increase in response to an increase of
current input prices or to a decrease of output price. Thie is inconsis-
tent with maximizing net returns to capital stock, and suggests that the
investment criterion may not be valid. Another criterion such as the

maintenance of a specific level of net returns might be considered as a

%/ Assuming producers attempt to maximize expected net returns to capital.
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more realistic alternative. However, it is also possible that the trans-

formed current input variables 2 = (X - Ylﬁ) in 317 are not independent

of the residuéln w, This:depéndence implies that the ratios of current
inputs to output are‘rela{ed'fo the ﬁnexplained output residual, and conw-
sequently;lthat ofdinary ieastEQQuarES estimates of &5 5, and ? in
‘3;7 are biased. One possiﬁle proéedure for eliminating this bias is to
éssume that the dependence results from omission of fifm and time effects
in the original sPecificationj:l. Respecifying 3:1 to include these
effecté would be sufficient to insure that estimates corresponding to

3:7 are unbiased.

.In conclusion, it seems that although the variances of reduced form
coefficients are relatively sm"all' using RFE compared with SEE, the RFE
estimates for current inputs are not consistent with the economic Iramework.
It is ffue; howe%er, that the pfediction of output fbr:giveﬁ'leveLS‘of
capital inputs and curreﬁt prices.is still unbiaééd‘using RFE even if
individual reduced fﬁrm coefficients ere biased. This property does not
apply”ﬁo SEE, as the equivalent expreséion for predicting output contains
quotieﬁts with the dependent varieble Y in both the numerator and the

denominstor.



31

BIBLICGRAPHY

10.

13,

12.

13,

Arrow, K.J, and A.C. Enthoven, "Quasi-concave Programming,"
Econcmetrica, 29, 1961, pp. 779-800.

Bradu, D., and Y. Mundlak, "Estimation of Lognormel Linear Models,”
Journal of the American Statistical Association, 65, 1970,
pp. 196-211.

Christ, C.F., Econometric Models and Methods, Wiley, New York, 1966.

Fieller, E.C., "The Distribution of the Index in a Normal Bivariate
Population,"” Biometrika, 2k, 19352, pp. L28.LkO.

Fuller, W.A., "Estimating the Reliability of Quantities Derived from
Emplrlcal Production Functions,” Journal of Farm Economics, kb,

1962, pp. 82-99.

Hoch, I., "Simultaneous Equation Bias in the Context of the Cobb-
Douglas Production Function,™ Econcmetrica, 26, 1958, pp. 566-578.

, "Estimation of Production Function Parameters Combining
Timew-Series and Cross-Section Data," Beconometrica, 30, 1962,

pp. 34-53.

Hoch, I., and Y. Mundlak, "Consequences of Alternative Specifications
in Estimation of Cobb-Douglas Production Functions," Econometrica,

33, 1965, pp. 814-828.

Mundlak, Y., "Empiricel Production Functions Free of Management Bias,™
Journal of Farm Economics, 43, 1951, pp. 4k-56,

; "Estimation of Production and Behavioral Functions from
a Combination of Cross-Section and Time-Series Data,” in Measure-
ment in Economics, ed. C.F. Christ, Stanford University, Stanford,

1963, pp. 135-166.

Salter, W.E.G., Productivity and Technical Change, Cambridge Unlver31ty
Press, Cambrldge} 2nd Edition, 1966.

Smith, V.L., Investment and Production, Harvard University Press,
Cambridge, Mass., 1961.

Zellner, A., J. Kmenta, and J. Dreze, "Specification of Cobb-Douglas
Production Function Models," Econometrica, 34, 1966, vp. 784-795.




