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Abstract 

Traditional spatial equilibrium models have assumed that markets are either perfectly 

competitive or monopolistic. In this paper, a generalized spatial equilibrium model is developed 

which allows for any degree of market conduct from perfect competition to monopoly. The model 

incorporates a "dual structure" in which there are oligopolistic consignment sellers (producer 

marketing boards) and perfectly competitive producers receiving pooled returns. 

The usefulness of the model is demonstrated using Kyushu regional milk market data in 

Japan. Numerous spatial equilibrium solutions are generated for the Kyushu milk market assuming 

alternative sets of imperfectly competitive behavior with the "dual structure." It is demonstrated that 

actual interregional milk movements in Japan are better explained by the dual structure imperfect 

spatial competition model than perfectly competitive or monopolistic spatial competition models. 

The model solutions generated by the imperfect spatial competition model are useful for analyzing 

alternative milk marketing organization policies. 

Introduction 

Spatial equilibrium models have been used frequently to analyze interregional competition 

problems. Interregional competition issues associated with dairy industries in several countries 

including Japan have been examined with these models (e.g., Sasaki; Kobayashi; Hayashi; 

McDowell; Rayner). Originally developed by Enke and Samuelson then refined by Takayama and 

Judge, spatial price equilibrium models have assumed that markets are either perfectly competitive or 
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that they're completely monopolistic. However, the structure of dairy markets in most countries are 

often neither. Therefore, a more plausible model for analyzing interregional milk movements would 

be a spatial imperfect competition equilibrium model. 

The purpose of this paper is to present a generalization of Takayama and Judge's spatial 

equilibrium model that allows for the incorporation of any degree of market structure from perfect 

competition to monopoly. The usefulness of the model is demonstrated with an application to 

interregional milk movements in the Japanese dairy industry with solutions generated and compared 

for alternative scenarios regarding the degree of market competition. 

The Japanese Dairy Industry 

Dairy policy in Japan features a quota system in the manufacturing milk market to prevent 

excess milk production from occurring because of higher than competitive market prices. As a result, 

the Japanese dairy industry can be divided into three distinct markets: the fluid market, 

manufacturing market within-payment quotas, and manufacturing market over-payment quotas. 

Prices in the manufacturing markets are set by the government based on a deficiency payment 

program. For manufacturing milk sold within-payment quotas, prefectural milk marketing boards 

(the consignment milk sellers for farmers) receive deficiency payments equal to the difference 

between the guaranteed price and the standard transaction price for manufacturing milk. Both prices 

are determined by the national government: the guaranteed price is based on milk production costs, 

while the standard transaction price is based on dairy product market conditions, and all buyers of -

manufacturing milk are required to pay this price. To discourage excess production, over-payment 

quota manufacturing milk receives the lower standard transaction price. Payment quotas for the 
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guaranteed price are not given to individual producers, but to each prefectural milk marketing board. 

Individual producers are paid the prefecture-wide uniform pooled price (weighted average prices for 

milk sold in the fluid and manufacturing milk markets). 

Given manufacturing milk prices determined by the government, discriminated price 

formation for fluid milk occurs through negotiations between each prefectural milk marketing board 

and the processors it supplies. Since the fluid milk market is more price inelastic than the 

manufacturing milk market, the fluid market has higher prices. The structure of the Japanese milk 

market includes an oligopolistic group of consignment milk sellers (prefectural milk marketing 

boards) who allocate milk to maximize sales revenues, and a large number of perfectly competitive 

producers who receive pooled returns (blend prices). We refer to this situation as a "dual structure" 

because dairy farmers are perfectly competitive in producing milk, while they are oligopolistic in 

selling it through their milk marketing boards. Previous spatial price equilibrium models have not 

accounted for this "dual structure" in the Japanese milk market. 

Conceptual Model 

Consider n milk producing and consuming regions with the geographical scope of producing 

Region i the same as consuming Region i. In each consuming region, there are three administratively 

different markets: the fluid milk market (FMMi), the manufacturing milk market within-payment 

quota (WPQi), and the manufacturing milk market over-payment quota (OPQi). Unit transportation 

cost for shipping raw milk from producing Region i to consuming Region j (Tij) is assumed to be the 

same for both fluid and manufacturing milk. 

Buyers of fluid milk in each consuming region are assumed to behave as price takers, which is 

reasonable since there are many fluid processors in Japan. Within-payment quota milk is traded at the 
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fixed guaranteed price, FPl, and the quantity of milk is limited to the fixed-payment quota. Over

payment quota milk is traded at the lower fixed standard transaction price, FP2, and it is assumed that 

the demand for this milk is perfectly elastic. It is also assumed that each region has a linear marginal 

raw milk cost function and a linear fluid demand function, with all functions known by all agents (or 

consignment sellers). 

Milk producers in Region i consign their annual milk supply, FS j, to Agent i. Agent i's role is 

to allocate farmers' milk among the 3n markets to maximize sales revenues net of transportation 

costs. The following notation is used based for the variables described above: 

Dj: quantity of milk demanded in fluid marketj G=I, 2, ..., n),
 

FSj: quantity of raw milk supplied and consigned in Region i (i= 1, 2, ... , n),
 

PSi: marginal revenue net of transportation costs for each market for Region i (i= 1, 2, ... , n),
 

Xjj : quantity ofraw milk shipped from Region i to marketj (i=l, 2, ... , n;j=l, 2, ... , 3n),
 

Xj(n+j): quantity of raw milk shipped from Region i to the manufacturing milk market within


payment quotas (WPQj) 0=1, 2, ... , n; j=l, 2, ... , n),
 

Xj(2n+j): quantity of raw milk shipped from Region i to the manufacturing milk market over


payment quotas (OPQj) 0= 1, 2, ... , n; j=1, 2, ... , n),
 

PDj: demand price in the fluid market j G= 1, 2, ... , n),
 

PPPi: producer's pooled (blend) price in Region i (i= 1, 2, ... , n),
 

Dj=ar~jPDj: demand function in fluid market j G= 1, 2, ... , n),
 

FSj=-Vj+TljPPPj: marginal cost function for raw milk in Region i (i=1, 2, ... , n), where PPPj
 -

means marginal cost. 
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Tij: unit transportation cost of shipping raw milk from producing Region i to consuming
 

Region j (i= 1, 2, ..., n; j=1, 2, ... , 3n),
 

Qi: limited quantity (payment-quota) paid the differences between the guaranteed price (FP1)
 

and the standard transaction price (FP2) 0=1, 2, ... , n),
 

SPj: shadow price of the right to sell a unit of milk in the manufacturing milk market within


payment quotas (WPQj) 0=1, 2, ... , n),
 

Rj: total milk sales revenue net of transportation costs in Region i (i=l, 2, ... , n).
 

Using the above notation, Agent i's milk sales revenue maximization problem net of
 

transportation costs can be expressed as: 

(1) Max: Rj = :Ej=lnpDjXij + Lj=l nFP 1xXj(n+j) + :Ej=lnFP2xXi(2n+j) - :Ej=13nTijXij. 

Total revenue maximization problem for all n agents is expressed as: 

(2)	 Max. ~=l nRj. 

Agent its fluid sales revenue in market j (PDjXij) can be written as: 

(3)	 PDjXij = [a/~j - (lI~j)Dj]Xij 

= [a/~j - (l/~j)(~=lnXij)]Xij 

= [a/~j - (lI~j)(Lm,.iXmj + Xij)]Xij, 

where m (m '* i) indicates all agents other than i. When Agent i believes that a change in his fluid 

supply will cause changes in all other agents' fluid supply to market j, Agent i's "perceived" marginal 

fluid revenue in market j is: 

(4)	 O(PDjXij)/oXij = [a/~j - (l/~j)Dj] - (l/~j)(OLm..iXm/OXij + I)Xij 

= PDj - (l/~j)(rij + l)Xij , 
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where rij is Agent i's conjectural variation regarding changes in all other agents' fluid supply to market 

j caused by a change in Agent i's supply. 

Using the relationship (4), the total revenue maximization problem for all n agents can be re

specified as the following net social payoff maximization problem adjusted for imperfectly 

competitive markets (ANSP): 

(5)	 Max: ANSP = 1:1=lnJ [a/~j - (lI~j)Dj]dDj + 1:1=t~=lnFPlxXi(n+j) + 1:1=ln~=lnFP2xXi(2n+j) 

- Lj=ln~=t(lI~j)(rij + l)JXijdXij - 1:1=13n~=lnTijXij 

(6)	 s.t. Dj 5 ~=lnXij, for all j, 

(7) ~=lnXi(n+j) 5 Qj, for all j, 

(8) 1:1=1
3nXij 5 FSi, for all i, 

(9)	 Dj ~ 0, Xij ~ 0, for all i and j. 

The difference between ANSP in (5) and the net social payoff (NSP) in the conventional 

spatial competitive equilibrium model by Takayama and Judge is the term: - Lj=ln~=ln(lI~j)(rij + 

1)JXijdXij- When the market is perfectly competitive (rij = -1), the term is zero and (5) is equal to the 

original Takayama and Judge model. When Coumot-Nash behavior is assumed (rij = 0), the term is 

equivalent to: - 1:1=ln~=ln(lI~j)JXijdXij, which is shown in Hashimoto's spatial Nash equilibrium 

model. Coumot-Nash behavior means that Agent i believes that the other agents will not change their 

supply in response to the agent's action. 

Using the Lagrange function (L) with the multipliers, lv, OJ, and e for the constraints (6), (7), 

-

and (8), respectively, the Kuhn-Tucker optimality'conditions for the maximization problem can be 

expressed as: 
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(10)	 aUaDj = a/~j - (lI~j)Dj - A~ 0, Dj (aUaDj) =0, for all j, 

(11)	 auaxij = -(1/~j)(rij + 1)Xij - Tij + A- e ~ 0, Xij(aUaXij)=O, for all i and j, 

(12)	 aUaXi(n+j) = FPl - Tij - ro - e ~ 0, Xi(n+j)(aUaxi(n+j»)=O, for all i and j, 

(13)	 aUaXi(2n+j) = FP2 - Tij - e ~ 0, Xi(2n+j)(aUaXi(2n+j»)=0, for all i andj, 

(14)	 aUaA = Dj - ~=lnXij ~ 0, A(aUaA) = 0, for allj, 

(15)	 aUaro = ~=lnXi(n+j) - Qj ~ 0, ro(aUaro) = 0, for all j, 

(16)	 auae = Lj=13nXij - FSi ~ 0, e(aUae) = 0, for all i. 

The Lagrange multipliers (or dual variables), A, ro, and e, measure the fluid demand price 

(PDj), the shadow price for the right to sell milk in the within-payment quota manufacturing. market 

(SPj), and marginal revenue net of transportation costs for each market (PSi), respectively. The 

Kuhn-Tucker conditions represented by (11), (12), and (13) indicates that each agent must equalize 

marginal revenue net of transportation costs across all markets where it sells milk. The equilibrium 

values can be calculated by the quadratic programming model solution. 

The term, (1/~j)(rij + I)Xij, in (11) indicates the difference between the fluid demand price and 

Agent i's marginal revenue in market j. The greater the degree of market power by agents, the larger 

this difference. For example, in the case of perfect competition, the term becomes zero because rij = 

1. On the other hand, the term becomes (1/~j)Xij when Coumot-Nash behavior (rij = 0) is assumed. 

In this paper, Coumot-Nash behavior is assumed to illustrate the imperfect competition solution, and 

coalition among agents is treated as follows. To illustrate, consider Coumot-Nash Agent 1 whose 

"perceived" marginal revenue in fluid market j is PDj - (1/~j)Xlj. If Agent 1 forms a coalition with 

Agent 2, then marginal revenue for Agents 1 and 2's coalition is PDj - (1/~j)(Xlj + X2j). In the case of 
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monopoly where Agent 1 forms a coalition with all other agents, marginal revenue for Agent 1 is PDj 

- (lI~j)(~=lnXij). Because any agent can sell the consigned milk individually or in coalition with 

some other agents, as a price taker or according to Coumot-Nash behavior, many combinations of 

agents' marketing behavior can be simulated. A tableau formulation and description of the model is 

presented in Appendix 1. 

To complete the model, individual farmers' milk supply needs to be incorporated. Unlike the 

oligopolistic marketing behavior of agents, individual farmers' milk production is competitively 

determined. Producers in Region i, as price takers, determine their supply given the producer pooled 

price. That is, their production level is determined by equating marginal cost to the producer pooled 

price. Thus, 

(17) PPPi = R/FSi for all i, 

(18) FSi = -Vi + lliPPPi for all i. 

In the comparative static equilibrium, FSi in (18) must be equal to FS i given in the above milk sales 

maximization problem. To solve the model, the following iterative solution process is used to find 

equilibrium values for FSi. 

First, the quadratic programming model is used to generate equilibrium fluid milk prices and 

equilibrium quantities of milk shipments in the sales maximization problem expressed by (5) to (16), 

based on initial values for FSi and given pattems of behavior of agents in the oligopolistic milk 

market. Second, producer pooled prices are calculated in (17). Third, new values of FSi for the next 

iteration are computed based on the calculated producer pooled prices and marginal cost functions of 
producing regions, and the assumption that producers behave as price takers in (18). Finally, the 

quadratic programming problem is solved again with new parameter values for FSi to obtain new 
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equilibrium fluid milk prices and quantities of milk shipments. This iteration process is continued 

until values for FSi become stationary. For a more detailed explanation of the solution procedures 

using a tableau format, see Appendix 2. 

An Application of the Model to the Japanese Milk Market 

This model is applied to the Kyushu area of Japan as a case study. Region 1 includes 

Fukuoka, Saga, and Nagasaki prefectures, Region 2 is the Kumamoto prefecture, Region 3 is the Oita 

prefecture, and Region 4 includes Miyazaki and Kagoshima prefectures. 

Based on the long run price elasticity of Kyushu milk supply by Ito (0.429), the Kyushu fluid 

demand price elasticity by Suzuki and Kobayashi (-0.77), and the regional price and quantity 

observations in Table 1, the linear marginal cost and fluid milk demand functions for each region are: 

FS I = 135.162 + 0.967PPPI, D l = 361.434 - 1.438PDI, 

FS2 = 118.078 + 0.832PPP2, D2 = 181.071 - 0.666PD2, 

FS3 = 43.490 + 0.293PPP3, D3 = 88.146 - 0.324PD3, 

FS4= 119.121 +0.874PPP4, D4= 163.371 - 0.639PD4, 

where FSi and Dj are measured by thousand tons, and PPPi and PDj are measured by yen/kg. Unit 

transportation costs, Tij , are: TI2=T21=4.58, TI3=T31=3.95, T I4=T41 =7.80, T23=T32=4.71, 

T24=T42=6.11, and T34=T43=6.00 yen/kg. Because little milk is traded between Kyushu and other 

regions of Japan, this milk is treated as exogenous to simplify the model. Payment quotas Qi for the 

four regions are: QI=34.0, Q2=32.9, Q3=8.1, and Q4=39.1 thousand tons. The fixed guaranteed price 

for within-payment quota is FPl = 79.83 yen/kg, and the fixed standard transaction price for over

payment quota is FP2 = 67.25 yen/kg. 
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To demonstrate how solutions vary based on market structure assumption, the model is solved 

for perfect competition, monopoly, and imperfect competition scenarios. To represent the perfectly 

competitive solution, the model is solved assuming that the four agents are all price takers. For the 

monopoly solution, the model is solved with the assumption that there is a coalition of four agents. 

To represent imperfect competition, 15 separate combinations with price takers and Coumot-Nash 

players are solved. In the first case, the four agents are all individual Coumot-Nash players (Coumot

Nash equilibrium). In the next cases, one agent is a price taker and the other three are individual 

Coumot-Nash players thereby creating four combinations of market structure. For cases six to 11, 

two agents are price takers and the other two are individual Coumot-Nash players thereby creating six 

new combinations of market structure.-FinallYi in the last four cases, three agents are price takers and 

the other one is a Coumot-Nash player thereby creating four combinations. Although there are other 

combinations with coalitions, they are not analyzed since the purpose here is to simply demonstrate 

examples of imperfectly competitive solutions. 

The "dual structure" spatial perfect competition solution is shown in Table 2. In this case, 

virtually all raw milk is allocated to the fluid market, except for a trivial amount shipped to the 

within-payment quota manufacturing milk market in Region 4. There is also only a small amount of 

interregional shipments of fluid milk, mostly to Region 1. The amount of milk allocated to the fluid 

market in the perfect competition solution is substantially higher than the actual amount allocated (see 

Table 1). This is due to the assumption that agents act as price takers, which results in equality of 

price across markets net of transportation costs instead of equality across markets of "perceived" 

-
marginal revenue net of transportation costs. Consequently, fluid milk prices and producer pooled 

prices in the perfect competition case are much lower than actual levels. 
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The "dual structure" spatial monopoly solution is shown in Table 3. In this case, the 

allocation of raw milk to the fluid market is roughly one-half of the amount allocated under perfect 

competition, and also less than actual levels (Table 1). Instead, the monopoly solution allocates 

significant amounts of raw milk to the within- and over-payment quota manufacturing milk markets. 

The model predicts no interregional shipment of milk in all three markets. Because the own price 

elasticity of fluid milk demand is inelastic, restricting allocations to the fluid milk market results in 

higher pooled returns to farmers. In fact, producer pooled prices under monopoly are 30 percent 

higher than the perfect competition case, as well as 10 percent higher than actual prices. It should be 

noted that the monopoly distribution of pooled returns to farmers is based on the assumption that the 

difference in producer 'pooled price among regions is the same as the differentials generated in the 

perfect competition solution. Alternatively, one national producer pooled price for all regions could 

have been allocated. It should also be noted that total milk supply is largest in monopoly equilibrium 

under the "dual structure." Unless agents have power to control supply, individual producers increase 

milk supply as higher blend prices are given. Real monopoly rents cannot be realized under the "dual 

structure." 

The Cournot-Nash equilibrium is shown in Table 4. The regional fluid milk and producer 

pooled prices in this solution are the closest to actual prices for the four regions (Table 1). Not 

surprisingly, the allocation of raw milk among the three markets in this case is somewhere between 

the perfect competition and monopoly cases. Unlike the two previous cases, however, the Cournot

Nash equilibrium solution results in the same two regions shipping milk to each other, e.g., Region 2 

ships 51,400 tons of fluid milk to Region 1, and Region 1 ships 29,500 tons of fluid milk to Region 2. 

While these shipping patterns are unintuitive, they do occur in reality as is clear from Table 1. The 
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other two spatial competition models did not predict these interregional milk shipment patterns. This 

suggests that the current complicated interregional milk movements may be caused by imperfectly 

competitive behavior. 

Compared with the other imperfect competition cases where at least one region is assumed to 

be a price taker (an example is given in Table 5), fluid and producer pooled prices in the Cournot

Nash equilibrium solution in Table 4 are closer to actual prices. Price takers' returns tend to be 

greater than Cournot-Nash players when both price takers and Cournot-Nash players exist as is shown 

in Table 5. This is because Cournot-Nash agents try to keep fluid milk prices higher based on their 

"perceived" marginal revenues, and price takers obtain benefits by moving their milk to the fluid milk 

markets. In this case, acting as a price taker is like "cheating" in a cartel agreement. 

Conclusion 

The traditional spatial equilibrium model assumes that market structure is either perfectly 

competitive or monopolistic. In this paper, a new, generalized "dual structure" spatial imperfect 

competition equilibrium model was developed which incorporates any degree of market structure 

from perfect competition to monopoly. The model, which was applied to the Japanese milk market as 

a case study, incorporated a "dual structure" in which there are oligopolistic consignment sellers and 

many perfectly competitive small-scale producers with pooled returns given. 

Using the model, many spatial equilibrium solutions in the Japanese milk market were 

demonstrated assuming alternative sets of imperfectly competitive behavior with the "dual structure." -

The results indicate that under perfect competition, most milk was shipped to fluid markets, and 

there were very few interregional milk movements and much lower milk prices than actual price 
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levels. Under monopoly, much less milk was shipped to fluid markets, there was no interregional 

milk movement, and milk prices were much higher than the perfect competition solution and actual 

price levels. The Coumot-Nash equilibrium solutions were the most similar to actual observations, 

and the actual interregional milk movements could be explained by assuming imperfectly competitive 

behavior. 
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Table 1. Observations in 1989 (unit: 1,000 tons and yen/kg) 

\To 
From\ 

1 

Fluid Milk Market 

1 2 3 
128.4 19.1 12.0 

4 
1.7 

Manufacturing Milk Market 
(Within Quota) 
1 2 3 4 
34.0 0 0 0 

(Over Quota) 
1 2 
10.9 0 

3 
0 

4 
0 

Total 

206.1 

2 33.1 74.7 1.5 1.6 0 32.9 0 0 0 0 0 0 143.8 

3 31.4 0 34.3 0 0 0 8.1 0 0 0 1.2 0 75.1 

4 11.3 8.5 2.0 89.0 0 0 0 39.1 0 0 0 8.3 158.0 

Total 204.2 102.3 49.8 92.3 34.0 32.9 8.1 39.1 10.9 0 1.2 8.3 583.0 

Region 
i or j 

1 

Fluid Milk Price 
PDi 
109.35 

Producer's 
Pooled Price 
PPPi 
101.62 

2 118.22 103.21 

3 118.22 107.75 

4 111.20 99.07 

Average 112.74 102.11 

Source: Suzuki and Kobayashi. 

-
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Table 2. "Dual-Structure" Spatial Perfect Competition Equilibrium (unit: 1,000 tons and yenlkg) 

\To Fluid Milk Market 
From\ 

1 2 3 
1 193.2 0 0 

4 
0 

Manufacturing Milk Market 
(Within Quota) 
1 2 3 4 
0 0 0 0 

(Over Quota) 
1 2 
0 0 

3 
0 

4 
0 

Total 

193.2 

2 4.8 125.8 0 0 0 0 0 0 0 0 0 0 130.5 

3 7.0 0 61.0 0 0 0 0 0 0 0 0 0 68.0 

4 30.5 0 0 112.4 0 0 0 1.4 0 0 0 0 144.3 

Total 235.4 125.8 61.0 112.4 0 0 0 1.4 0 0 0 0 536.0 

Region 
i or j 

1 

Agent's Marginal 
Fluid Milk Price Revenuea 

PDi PSi 
87.63 87.63 

Producer's 
Pooled Priceb 

PPPi 
88.23 

2 83.05 83.05 87.19 

3 83.68 83.68 83.68 

4 79.83 79.83 83.32 

Average 84.46 84.46 86.07 

apS j is Agent i's "perceived" marginal revenue (net of transportation costs) equalized in each market
 
(marginal revenue =market price in perfect competition) (Same in Tables 3 to 5).
 
bExogenously given milk shipments from each region to the outside of Kyushu are taken into account
 
in calculating PPPj (Same in tables 3 to 5).
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Table 3. "Dual-Structure" Spatial Monopoly Equilibrium (unit: 1,000 tons and yenlkg) 

\To Fluid Milk Market Manufacturing Milk Market Total 
From\ (Within Quota) (Over Quota) 

1 2 3 4 1 2 3 4 1 2 3 4 
1 132.4 0 0 0 34.0 0 0 0 51.8 0 0 0 218.1 

2 0 68.1 0 0 0 32.9 0 0 0 50.9 0 0 152.0 

3 0 0 33.2 0 0 0 8.1 0 0 0 34.3 0 75.6 

4 0 0 0 60.2 0 0 0 39.1 0 0 0 67.5 166.8 

Tota1132.4 68.1 33.2 60.2 34.0 32.9 8.1 39.1 51.8 50.9 34.3 67.5 612.5 

Region Agent's Marginal Producer's 
i or j Fluid Milk Price Revenue Pooled Price8 

PD·1 PSi PPPi 
159.30 67.25 114.03 

2 169.56 67.25 112.99 

3 169.65 67.25 109.48 

4 161.46 67.25 109.13 

Average 163.29 67.25 111.87 

8Estimated PPP differentials in the perfect competition equilibrium in Table 2 are used to allocate 
monopoly pooled returns and to calculate PPPj of each region. 
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Table 4. "Dual-Structure" Spatial Coumot-Nash Equilibrium (unit: 1,000 tons and yen/kg) 

\To Fluid Milk Market 
From\ 

1 2 3 
64.6 29.5 14.5 

4 
24.7 

Manufacturing Milk Market 
(Within Quota) 
1 2 3 4 
34.0 6.6 8.1 0 

(Over Quota) 
1 2 
20.5 0 

3 
0 

4 
0 

Total 

202.6 

2 51.4 29.5 12.8 22.9 0 26.3 0 0 0 0 0 0 142.9 

3 33.5 17.6 10.1 14.6 0 0 0 0 0 0 0 0 75.7 

4 50.6 27.2 13.2 28.5 0 0 0 39.1 0 0 0 0 158.6 

Total 200.1 103.8 50.6 90.7 34.0 32.9 8.1 39.1 20.5 0 0 0 579.7 

Region 
i or j 

Agent's Marginal 
Fluid Milk Price Revenue 
PD1 PSi 
112.18 67.25 

Producer's 
Pooled Price 
PPPi 
97.94 

2 116.10 71.83 102.09 

3 115.99 84.96 109.91 

4 113.76 69.20 99.70 

Average 113.85 70.73 100.89 
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Table 5. "Dual-Structure" Spatial Equilibrium in the Case Where Agent 1 is a Price taker and the 
Others are Individual Cournot-Nash Players (unit: 1,000 tons and yen/kg) 

\To Fluid Milk Market 
From\ 

1 2 3 
1 107.9 47.8 24.1 

4 
28.1 

Manufacturing Milk Market 
(Within Quota) 
1 2 3 4 
0 0 0 0 

(Over Quota) 
1 2 
0 0 

3 
0 

4 
0 

Total 

207.9 

2 36.0 22.8 9.4 20.0 16.3 32.9 0 0 0 0 0 0 137.4 

3 30.6 16.7 9.5 17.3 0 0 0 0 0 0 0 0 74.0 

4 36.0 20.9 10.0 26.0 13.0 0 8.1 39.1 0 0 0 0 153.0 

Total 210.6 108.2 52.9 91.4 29.2 32.9 8.1 39.1 0 0 0 0 572.3 

Region 
i or j 

1 

Agent's Marginal 
Fluid Milk Price Revenue 
PO- PSiJ 

104.89 104.89 

Producer's 
Pooled Price 
PPPi 
103.45 

2 109.47 75.25 95.45 

3 108.84 79.68 104.16 

4 112.69 72.03 93.37 

Average 107.95 88.60 98.43 
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Appendix 1 The Quadratic Programming Model in Tableau Form 

A convenient way to explain a quadratic programming model is using Tableau form. 

Appendix Table 1 briefly expresses the following concave quadratic programming problem. The 

problem is to find values for primal variables Xj 0=1, 2, ... , s) and dual variables Ui ~ 0 (i=I, 2, ... , r) 

which maximize the objective function F: 

Max: F= Lj=ISCCjXj - (1/2)wjX/), 

subject to: 

aIlXI+aI2X2+ +alsXs ~ bl ;UI
 

a2IX I+a22X2+ +a2sXs~ b2 ;U2
 

Wj, Xj ~ 00=1,2, ... ,s), 

where aij, bi' Cj, and Wj (i=l, 2, ... , r;j=l, 2, ... , s) are constants. 

The quadratic programming model in (5) to (16) in the text is expressed in quantity 

formulation with quantities as the primal variables. The model can be also expressed in price 

formulation with PDj, SPj, and PSi as primal variables. It is advantageous to solve the model under 

the price formulation because it is easier to solve computationally. The price formualtion using a 

tableau format defined in Appendix Table 1 is shown in Appendix Table 2. 

The following vectors of constants are used in Appendix Table 2: <X= (<Xl <X2 ••• an), 

-
~= (~l ~2 •• , ~n), FS=(FS I FS2 ... FSn), h=(1 1 ... 1) (the dimension is k), Q=(QI Q2 ... Qn), 

T.j=(Tlj T2j ... Tnj)' (j=I, 2, ... , n), e=(1 1 ... 1)', where I indicates transpose of a matrix. The following 
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vectors of variables are used in Appendix Table 2: PD=(PDl PD2 ... PDn), PS=(PS 1 PS2 ... PSn), 

(i=1, 2, ... , k) means the difference between PDj and marginal revenue of coalition i in market j (j= 1, 

2, ... , n), which is equal to (1/~j)(rij + l)Xij in the relationship (11) and qij = (1/~j)Xij in the following 

cases where Coumot-Nash behavior is assumed. Ej is an nxn matrix, and any element of jth column 

is 1, but any element of ith (i:;tj) column is 0, where j=1, 2, ... , n. 

10.010.01 
10.010.01 
10.010.01
 
LO.010.0J
 

---------.7 jth column 

I is an nxn identity (unit) matrix. 

Coalition among agents can be expressed by matrix A. There are k (k ~ n) coalitions 

behaving as Coumot-Nash players. Any coalition may be composed of only one agent, but agents 

behaving as price takers do not belong to any coalitions. The pattems of behavior for agents in the 

oligopolistic milk market are summarized below by matrix A, which has n rows corresponding to 

each agent and k columns corresponding to each coalition. The element, Aij, of matrix A 

corresponding to the ith row and the jth column is either -lor 0 (i=1,2, ... , n; j=1,2, ... , k). Aij is -1 if 

and only if Agent i belongs to coalition j, and Aij is 0 for any j if and only if Agent i behaves as a 

price taker. 
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A=	 rAIl A12 ••• Alk 1 ------tcorrespond to Agent 1 
I A2I A22 ... A2k I - - - ---tcorrespond to Agent 2 
I	 I 
LAnI An2 ... Ank	 J - - - ---tcorrespond to Agent n 

- - - - - - - - - ---tcorrespond to coalition k 

-------------------tcorrespond to coalition 2 
-----------------------tcorrespond to coalition 1 

It should be noted that if all agents behave as price takers (the perfect competition case), then 

k=O, matrix A has no columns, and is empty. If only one coalition is composed of all agents (the 

monopoly case), then k = 1, and all elements of matrix A are -1. If all agents behave individually as 

Coumot-Nash players, then k=n, all diagonal elements A jj are -1, and all other elements are O. 

-
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Appendix 2 The Solution Process for the "Dual Structure" Model for two Agents 

[Step 1] Specify matrix A, values for payment quota QI, Q2, ... , and Qn, and initial values for 

FS I, FS2, ... , and FSn. To illustrate, consider a simple case of n=2 as shown in Appendix Table 3. 

The n=2 case corresponds to the following matrix A: 

A = r -1 0 1 == AI. 
L 0 -1 J 

Matrix Al illustrates the case where there are two coalitions: one is composed of Agent 1, and the 

other is composed of Agent 2. In this instance, Agents 1 and 2 behave idividually as Coumot-Nash 

players. Another possibility is the case where there is a coalition composed of Agent 1, who behaves 

as a Coumot-Nash player, but Agent 2 behaves as a price taker. In this case, Al would be replaced by 

the following matrix A: 

A = r-1 1 == A2. 
L0 J 

In this case, the columns for variables q21 and q22 in Appendix Table 3 should be deleted. If Agents 1 

and 2 behave as price takers, then matrix A has no columns and is empty, therefore columns for 

variables qu, q21, q12, and q22 in Appendix Table 3 should be deleted. Another case would be where 

Agent 1 behaves in coalition with Agent 2 as a Coumot-Nash player. Under this situation, the 

following matrix A would be used: 

A= r-1 1 == A3. 
L-1 J 

This matrix shows that there is a coalition composed of Agents 1 and 2, therefore columns for 

variables q21 and q22 in Appendix Table 3 should be deleted, and also columns for variables qll and 

q12 should be revised according to matrix A3. 
• < 
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[Step 2] Solve the quadratic programming model to get equilibrium fluid milk demand prices 

PDj (j=1, 2, ... , n) and equilibrium quantities of milk shipments Xij 0=1, 2, ... , n; j=1, 2, ..., 3n) 

corresponding to the given specification. To illustrate, consider the following smaller two-region 

example. In this case, there are two regions, and producers in producing Region 1 (2) consign their 

milk supply FS I (FS2) to Agent 1 (2). Agents 1 and 2 sell the consigned milk individually as 

Cournot-Nash players in six (=3x2) oligopolistic milk markets: FMMI (market 1), FMM2 (market 2), 

WPQI (market 3), WPQ2 (market 4), OPQI (market 5), and OPQ2 (market 6). Milk is traded in 

market 3 (4) at the fixed guaranteed price FPl within the limit of payment quota QI (Q2), and milk is 

also traded in markets 5 and 6 at the fixed standard transaction price FP2 without any limit of demand 

quantity. The Kuhn-Tucker optimality conditions for the n=2 problem are the following: each agent's 

opportunity costs moving a unit of milk from market to market (or marginal revenue net of 

transportation costs for each market) PSI and PS2 must satisfy the following conditions: 

X11+XI2+X13+XI4+XI5+XI6~FS I, (RES.)PSI=O. 

X21+X22+X23+X24+X25+X26~ FS2, (RES.)PS2=0, 

where (RES.) means the difference between the right and left hand sides of the corresponding 

inequality. 

The fluid milk demand prices PDI and PD2 must satisfy the following: 

al-~lPDI ~ X11+X21, (RES.)PDI=O. 

a2-~2PD2~ XI2+X22, (RES.)PD2=0. 

The differences q11, q2h ql2, and q22 must satisfy the following: -
X11 ~ ~Iqll, (RES.)q11 =0. 

X21 ~ ~lq21, (RES.)q21=0. 
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X12 5 ~2q12, (RES.)q12=0. 

Xzz5 ~2qZZ, (RES. )qzz=O. 

The shadow prices SPI and SPz must satisfy the following: 

X13+XZ3 5 QI, (RES.)SPI=O. 

XI4+XZ4 5 Qz, (RES.)SPz=O. 

The shipment quantities Xll, XZI, X12, and Xzz must satisfy the following: 

(PDI-qll)-PSI 5 T ll , (RES.)Xll=O. 

(PDI-qzl)-PSz 5 TzI, (RES.)XzI=O. 

(PDz-q12)-PS I 5 T12, (RES.)Xlz=O. 

(PDz-qzz)-PS z 5 Tzz, (RES.)Xzz=O. 

The shipment quantities X13, XZ3, X 14, and XZ4 must satisfy the following: 

(FPl-SPI)-PS I 5 T ll , (RES.)X13=O. 

(FPl-SPI)-PSz 5 TzI, (RES.)XZ3=0. 

(FPl-SPz)-PS I 5 T12, (RES.)X I4=0. 

(FPl-SPz)-PSz 5 T zz, (RES.)Xz4=0. 

The shipment quantities XIS, X zs , X 16, and XZ6 must satisfy the following: 

FP2-PS I 5 T ll , (RES.)XIs=O. 

FP2-PS z 5 TZI, (RES.)Xzs=O.
 

FP2-PS I 5 T 12, (RES.)XI6=0.
 

FP2-PSz 5 Tzz , (RES.)XZ6=0.
 

We can get the following relations between the optimal values for qij and Xij 0=1,2; j=1,2) 

from the Kuhn-Tucker optimality condition for the problem. 
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Xij ~ ~jqij, (~jqWXij)qij=O, Xij ~ 0, qij ~ 0, 

Or more conveniently, using slack variables Vij, 

Xij+Vij = ~jqij, Vijqij = 0, Vij ~ 0, 

and therefore VijXij+Vi/ = ~jVijqij=O. 

Thus, we get 

Vij = 0, qij = (1/~j)Xij. 

Let the total quantity of milk shipped from agents other than Agent i (coalition i) to market j 

be denoted by x. Then marginal revenue MRij of Agent i in market j can be written as follows. 

MRij=d([(a/~j)-(l/~j)(Xij+x)]Xij)/dXij 

=[(a/~j)-( 1/~j)(Xij+X)]-( 1/~j)Xij 

=PDr(l/~j)Xij, 

where Xij is the quantity of milk shipped from Agent i to market j, equation PDj=(a/~j)-( 1/~j)Dj is the 

inverse demand function in market j, and i=1, 2; j=1, 2. 

The difference between demand price PDj and the marginal revenue MRij is equal to (1/~j)Xij 

and to the optimal value of qij, therefore MRij is equal to (PDrqij). 

The Kuhn-Tucker condition further shows the following relations: (a) MRij is not larger than 

the sum of Agent its opportunity cost moving a unit of milk from market to market PSi and unit 

transportation costs Tij, and shipment quantity Xij can be positive if and only if MRij is equal to the 

sum of PSi and Tij ; (b) shadow price SPj can be positive if and only if demand quantity in WPQj is 

equal to payment quota Qj, and a positive value of SPj means a premium for milk sold in WPQj, also, 

(FPl-SPj) is not larger than (PSi+Tij), and Xi(2+j) can be positive if and only if (FPl-SPj) is equal to 
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(PSi+Tij ); and (c) FP2 is not larger than (PSj+Tij), and Xi(4+j) can be positive if and only if FP2 is equal 

to (PSi+Tij), where i= 1, 2; j=1, 2. 

All these and other relations derived from the Kuhn-Tucker condition show that we can get a 

static equilibrium solution which corresponds to the given specification by solving the n=2 problem. 

Similarly, we can get a static equilibrium solution which corresponds to the given general 

specification by solving the model in Appendix Table 2. It should be noted that in the general case, 

the following relations hold between optimal values of vectors ~ and X.j (j=I, 2, ... , n). 

~' = (l/~j)( -A)'X.j or ~ = (l/~j)X.j'(-A) 

Based on this relation, we can show that the optimal value of qij 0=1, 2, ... , k) is equal to the 

difference between demand price PDj and marginal revenue of coalition i in market j. 

[Step 3] Calculate PPP j 0=1, 2, ... , n), based on the equilibrium solution computed in Step 2. 

[Step 4] Calculate the new "equilibrium" supply quantity FSi 0=1, 2, ... , n) of milk in each 

producing region with its marginal cost function (FSi=-Vi+lliPPPi) and the value of PPPi calculated in 

Step 3 (the quantity FSi may be revised according to exogenously given trade conditions if necessary). 

[Step 5] Compare the values of FSi calculated in Step 4 with the values of FSi currently given. 

If max{ !the new FSi - the last FSi I; i= 1, 2, ... , n)} is not larger than some specified absolute 

stopping error, then stop computation and use the equilibrium solution computed in Step 2 as an 

equilibrium solution of the "dual structure" model. Otherwise, go to the next step. 

[Step 6] Calculate FSi' = the last FSi + (1I2)(the new FSi - the last FSi) = (l/2)(the last FSi + 

the new FSi) (i=l, 2, ... , n) as the value of the "actual" supply quantity of milk in each producing 

region in the next iteration (it is assumed here that adjustment speed of milk supply is 0.5 per 
r . 
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iteration), then replace the fixed value of FSj with the value of FSj' in the quadratic programming
 

model, and go to Step 2.
 

-
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Appendix Table 1. Expression Formula for Quadratic Programming Problem 

Cl C2 C s 
Wl W2 Ws 

b l 

Xl 

all 

X2 

a12 

Xs 

Cls Ul 
b 2 a2l a22 C2s U2 

I I I I I 
b r arl a r 2 C rs Us 

Appendix Table 2. Quadratic Programming Problem for the Japanese Milk Market (Price 
Formulation) 
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Appendix Table 3. Quadratic Programming Problem (n = 2) 
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I 
I 
I 

Xu 
Xn 
X12 
X22 
X13 

X23 
Xl4 
X24 
XIS 
X2S 
X16 
X26 

Tu 
Tn 
T12 
Tn 
Tn- FP1 
Tn- FP1 
T12- FP1 
Tn- FP1 
Tn-FP2 
Tn-FP2 
T12- FP2 
Tn- FP2 

(Xl (X2 -FSI -FS2 0 0 0 0 -Ql -Q2 

~l ~2 0 0 ~l ~l ~2 ~2 0 0 
PDl PD2 PSI PS2 qu q2l q12 qn SPI SP2 

1 0 -1 0 -1 0 0 0 0 0 
1 0 0 -1 0 -1 0 0 0 0 
0 1 -1 0 0 0 -1 0 0 0 
0 1 0 -1 0 0 0 -1 0 0 
0 0 -1 0 0 0 0 0 -1 0 
0 0 0 -1 0 0 0 0 -1 0 
0 0 -1 0 0 0 0 0 0 -1 
0 0 0 -1 0 0 0 0 0 -1 
0 0 -1 0 0 0 0 0 0 0 
0 0 0 -1 0 0 0 0 0 0 
0 0 -1 0 0 0 0 0 0 0 
0 0 0 -1 0 0 0 0 0 0 



No. 96-04 

r 

No. 96-05 

No. 96-06 

No. 96-07 

No. 96-08 

No. 96-09 

No. 96-10 

No. 96-11 

OTHER A. R. M. E. RESEARCH BULLETINS 

Commodity Promotion Economics: A 
Symposium in Honor of Olan Forker's 
Retirement 

The Magnitude of and Factors 
Influencing Product Losses in 141 
Fluid Milk Plants in the United 
States 

Dairy Department Procurement 
Dynamics The Role of the 
Supermarket Buyer 

Integrating Knowledge to Improve 
Dairy Farm sustainability 

A Descriptive Analysis of the 
Characteristics and Financial 
Performance of Dairy Farms in 
Michigan, New York, ontario, 
Pennsylvania and Wisconsin 

The Feasibility of a Mid-Hudson 
Valley Wholesale Fresh Product 
Facility: A Buyer Assessment 

Impact of National Dairy 
Advertising on Dairy Markets, 
1984-95 

Dairy Farm Management Business 
Summary New York State 1995 

Jennifer Ferrero
 
Harry M. Kaiser
 
(eds. ) 

Mark W. Stephenson 
Jay Mattison 
Richard D. Aplin 
Eric M. Erba 

Edward W. McLaughlin
Debra J. Perosio 

Caroline N. 
Rasmussen, ed. 

S. Ford 
R. Gardner 
S. Gripp 
S. Harsh 
W. Knoblauch 
A. Novakovic 
L. Putnam 
M. Stephenson 
A. Weers ink 
R. Yonkers 

Craig Robert Kreider 
Edward W. McLaughlin 

Harry M. Kaiser 

Stuart F. Smith 
Wayne A. Knoblauch 
Linda D. Putnam 

-





