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ABSTRACT' 

Recent concern among New York dairy fanners has grown regarding potential increases in energy costs as 

upstate utilities, under mandate from the New York Public Service Commission, move to time-of-use electricity rates. 

Furthermore, since it is often desirable to maintain relatively ftxed intervals between daily milkings, farmers have 

expressed further concern about their ability to shift electricity consumption from expensive peak period hours to 

relatively inexpensive off-peak hours. 

To determine the effects of time-of-use electricity rates on New York dairy fanns and to gain a better 

understanding of methods farmers can adopt to save energy, an empirical model estimating the time-of-day demand 

for electricity is developed. The parameters from this model are used to simulate load curves for a sample of farms. 

The time-of-use rates for four upstate utilities are used in conjunction with these load curves to estimate electricity 

costs under time-of-use and flat rates. Farm characteristics are regressed on the percentage change in the electricity 

bills for this sample of farms to derive relationships to explain how to reschedule dairy operations to reduce 

electricity costs under time-of-use rates. 

The empirical results indicate that electricity bills will fall for the majority of farms in the move to time-of

use electricity rates. Savings are an increasing function of farm size since larger fanns can more easily spread the 

higher customer charge that accompanies time-of-use rates. There appear to be few incentives for farmers to 

reschedule dairy operations to realize additional savings under time-of-use pricing. 

'The authors are fonner Graduate Research Assistant, and Professor, respectively, Department 
of Agricultural, Resource and Managerial Economics, Cornell University_ 
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THE EFFECTS OF TIME-OF-USE ELECTRICITY RATES ON
 

NEW YORK DAIRY FARMS
 

1. INTRODUCTION 

Over the past 25 years, the electric utility industry has experienced a drastic 

transformation in its cost structure, caused predominantly by the changing economic climate, by 

the OPEC oil embargoes of the early 1970's, and by increased environmental and safety concerns 

in the supply of electric power. Taken together, these factors have lead to substantial increases 

in the cost to produce and distribute electricity. Combined with increased emphasis on energy 

conservation and competition from private cogeneration, many utilities have implemented a 

number of demand side management (DSM) to help keep supply in balance with demand. These 

DSM programs are designed to contain the growth of demand and are in stark contrast to the 

utilities' historical emphasis on capacity expansion. 

DSM initiatives include conservation programs, incentives to purchase energy efficient 

equipment and appliances, and innovative pricing such as time-of-use (TOU) rates. TOU rates 

are the practical application of marginal cost pricing.l When compared with the flat rates, used 

currently by many utilities, and which set the price of electricity based primarily on the average 

cost of production, time-of-use rates set the price closer to the true marginal cost. Thus, TOU 

rates give consumers an incentive to reduce electricity consumption during the high-cost peak 

periods, and/or shift this consumption to the lower cost off-peak periods. In this way, consumers 

are given the proper price signals needed for their consumption decisions. Although many of 

these rates are being designed for specific customer classes and are to be revenue neutral,2 some 

customers within the class will experience decreases in their electric bills while others will end 

up paying more. How a customer's bill will change depends on his/her pattern of electricity 

consumption throughout the day and/or season of the year. 

Under order of the N~w York Public Service Commission (Order 88-23), most utilities 

throughout New York State are in the process of implementing time-of-use rates for their larger 

residential customers. One important group of customers that falls under this mandate are dairy 

lFor simplicity, the terms time-of-use (TOU), and time-of-day (TOD) are used 
interchangeably throughout this report. 

~o be revenue neutral, rates are to be set to generate the same total revenue from the 
customer classes. 

-

.' 
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farmers.3 Electricity is a significant input on most dairy farms, comprising around five percent 

of cash costs (Niagara Mohawk Power Corporation). The major uses are to cool milk, heat water 

clean equipment, run milking vacuum pumps, and light and ventilate herd housing structures. 

Since the distribution of electricity use throughout the day on the dairy farm is dependent 

on its fixed milking schedule, many dairy farmers have expressed concern that TOU rates will 

affect them adversely by increasing their electric bills. The concern was great enough that the 

farm community gathered support from state legislators to amend the Public Service Law to 

exempt farmers from TOU electricity rates. Although this legislation was never passed. the 

proposed amendments were based on the premise that farmers have no real flexibility in shifting 

the time at which they use electric power. 
-' 

Regardless of the inflexibility of scheduling of dairy farm operations, the extent to which 

farmers would be adversely affected depends on the rate structure as well as the times of day that 

a particular utility is at peak load. The magnitude of the effects of these TOU rates will differ 

by utility and by individual farm characteristics. For this reason, and the fact that agriculture is 

an important component of many rural economies in New York State, it is important to 

understand the financial effects on farms of moving to time-of-use rates. 

The purpose of this report is to quantify the effects of moving New York dairy farms 

from flat rates to time-of-use rates. Emphasis is given to the differences in the structure of the 

TOU rates for four major upstate electric utilities. Particular attention is also given to 

quantifying the importance of farm size and milking technology. Finally, by estimating the 

electricity consumption at peak and off-peak periods, some judgement can be made regarding the 

possibility of reducing electric bills by shifting energy use to off-peak periods. 

The data requirements to meet the study's objectives are extensive. One needs data on 

electricity consumption of the farm, separate from any household demand, energy consumption 

by major end use (e.g. feeding, milking, milk cooling etc.), and the distribution of energy 

consumption by season and time of day. 

To our knowledge, no such comprehensive data set is available for farms located in New 

York State, but several years ago, the Department of Agricultural Economics at Cornell 

University, in cooperation with Niagara Mohawk Power Corporation and the New York State -

3Farm operations that have a household on the premises are generally classified under a 

residential rate category, unless the household and the dairy buildings are metered separately. 
Consequently, most family farms would be in a residential rate category. 
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Statistical Reporting Service, conducted two extensive surveys on energy use in agriculture. 

These two data sets, along with a third data set available from the Midwest, provide the 

information necessary to conduct an evaluation of TOU rates. These data sets are described 

below as they are needed. 

To accomplish the study's objectives, the remainder of the report is organized into five 

sections. The next section examines the theory of time-of-use rates and the economic rationale 

for their use. Section 3 contains estimates of conditional electricity demands for rural households 

and for dairy farm operations, while section 4 contains a cubic spline regression model for 

distributing farm electricity demand by time-of-day and season. The focus of section 5 is on 

simulating electricity load curves for a sample of New York dairy farms from the 1987 survey. 

Then, the different time-of-use rates either currently in force or being considered by the major 

upstate New York utilities are applied to these load curves to determine how dairy farms served 

by different utilities would be affected financially by moving to TOU rates. The final section 

contains a summary of the empirical findings, along with some policy implications and 

recommendations for further research. 

2. ECONOMIC RATIONALE FOR TIME-OF-USE PRICING 

The purpose of this section is to describe in detail the sound economic rationale for why 

electric utilities around the country have begun to adopt time-of-use pricing.4 To understand 

why such rates have not been adopted until now, one must examine the historical characteristics 

of the industry that led to government regulation in the first place. We begin with a brief 

background of the evolution of the electric utility industry and then move on to describe the main 

characteristics that the industry exhibited through the mid 1960's. The major events and the 

slowdown in the technological progress of the late 1960's that made time-of-use rates feasible 

are then discussed. Finally, a model of marginal cost pricing, including a derivation of what 

costs should be included in the price, is developed. 

History of the Electric Utility Industry 

It wasn't until the latter part of the nineteenth century that it was technically feasible to 

distribute electricity commercially. Utilities were formed, each having the potential to supply -


4Much of this background material was taken out of Vennard's Management of the Electric 
Energy Business and Kahn's The Economics of Regulation. 
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electricity to a few square miles at most. During this period these new electric companies were 

in competition with one another and also previously established gas companies. Government 

officials believed that by allowing competition, prices would naturally seek levels that reflected 

the true cost to deliver a unit of electricity. Eventually the stronger and larger firms were able 

to take advantage of economies of size and began to acquire the weaker, smaller ones. This led 

to larger electric utilities that more or less controlled all the electricity distribution facilities for 

an entire area. 

Although less competitive, there was a distinct advantage in having one firm supply the 

electricity for a given area: there was no longer the need for duplication of distribution and 

transmission systems. In the earliest days of electric companies, during which time competition 

was promoted, it was not uncommon to have a large number of companies providing electricity 

for one small area. Consequently, each utility needed to string its own distribution wires. This 

duplication of capital led to urban blight and increases in the cost of electricity which were 

passed on in the form of higher prices. Clearly, it was in the public interest to allow these 

monopolies to exist. Industries in which it is less costly for one firm to supply a good or service 

as opposed to many are known as natural monopolies (Kahn, 1988). Most utilities, whether 

electricity, gas, telephone, or cable TV, are classified as natural monopolies. 

As the industry became less competitive and the monopolistic firms took advantage of 

their power, the need for price ceilings and regulations regarding quality of service became 

apparent. For this reason, many states established public service commissions that were 

responsible for the monitoring of public utilities. New York and Wisconsin were the first to 

establish them in 1907 (Vennard, 1979, p. 288). 

Since their establishment, public service commissions have played a significant role in 

setting electricity rates. This is especially true prior to the mid-1960's, when the long-run 

average cost to produce a unit of electricity was decreasing, implying that the marginal cost curve 

is everywhere below the average cost curve. The role of regulation, i.e. public service 

commissions, is to set the price of electricity at average costs to insure an adequate rate of return 

(see point A of figure 2.1). Without such regulation, natural monopolies would equate marginal 

revenues to marginal costs, reducing demand and leading to monopoly profits (see point B of 

figure 2.1). 

It is generally agreed that there are three factors that cause firms to exhibit decreasing 

costs (Kahn, 1988, p.124). All three of these have typified electric utilities from the early 1900's 

through the mid-1960's. 

..• 
f...
, 

-
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Figure 2.1 Marginal cost (MC), marginal revenue (MR), average cost (AC), and average revenue 
(AR) curves facing a decreasing cost industry. 

The short-run average costs decreased as a result of using eXlstmg capacity more 

extensively. As more and more customers were serviced with electricity, through rural 

electrification or mandates established by public service commissions, fixed costs were spread 

over a larger volume. With such a large proportion of fixed costs, any increase in the average 

variable costs was offset by the decline in average fixed cost, thereby leading to declining short

run average total costs. The fact that utilities have short-run decreasing costs was a primary 

rationale behind the implementation of decreasing block rates.5 

The second factor, although not nearly as pronounced as short-run decreasing costs, are 

long-run decreasing costs. As larger plants and transmission systems were constructed, the cost 

per unit of electricity decreased. In the generating phase, larger plants operated at higher 

-

5Decreasing block rates set the per unit price for electricity successively lower for each block 

of electricity the consumer uses. They are intended to reflect a short-run decreasing cost function 
(Vennard, p. 270). 
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temperatures, leading to greater efficiency in converting primary fuels into electrical energy. In 

addition, the adaptation of higher voltage transmission lines allowed electricity to be carried 

farther distances with relatively little power loss. As a result, neighboring utilities joined together 

and formed power pools to make better use of their baseload plants by pooling any excess 

electricity generated during off-peak hours and selling to utilities that were currently in peak 

periods. 

Advancements in technology also contributed to decreasing costs. Traditionally, decreases 

in average total cost due to technological improvements have not been considered a situation of 

decreasing costs. Technical improvements represent a downward shift in cost curves, not a 

decrease in average total cost due to producing more. However, many argue that technological 

improvements induced by higher levels of demand should be considered a situation of decreasing 

cost (Kahn, 1988, p.127). 

There have been numerous examples of technological improvements in the electric 

industry. Perhaps the most significant advancement was the development of nuclear power. In 

the beginning, these large plants took advantage of the relatively inexpensive fuels, uranium and 

plutonium. Advances in technology also lead to the construction of more efficient fossil fuel 

plants. In 1910, for example, a typical coal-fired plant required about five pounds of coal to 

produce a Kwh, today this figure is closer to one (Vennard, 1979, p.lOS). 

More recently, the average cost of electricity has escalated dramatically. Vennard (1979, 

p.96) cites a number of reasons, the most prominent being the fact that improvements in 

generating efficiency and other areas of electricity production could not keep pace with the higher 

inflation rates of the late 1960's. These inflation rates pushed up interest rates, which greatly 

increased the investment costs per kilowatt of new capacity. As a result, the expected yields for 

bonds and stocks also rose. Investor-owned utilities needed high rates of return in order to attract 

capital funds to build new plants. Recognizing the need for increased rates of return, government 

regulators, throughout this period, frequently approved rate increases requested by utilities. 

The early 1970's also marked a time when governments, in response to lobbying efforts 

and public concern, began to enact new safety and environmental standards. Utilities were 

required to meet emissions standards either by purchasing higher grade fuels or by installing 

higher smokestacks, etc. These regulations led to long delays and subsequent cost overruns of 

bringing new capacity on line, particularly nuclear capacity. Again, the only way to account for 

these additional expenses and sustain the rate of return was to increase the price of electricity. 

: 

,
I
I 
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Besides capacity, the other major cost faced by utilities is for fuel. Due to a high reliance 

on oil and natural gas, the OPEC oil embargoes led to higher electricity prices throughout the 

1970' s. Although the real price of oil has declined substantially since then, studies do indicate 

that oil reserves may be depleted sometime in the early 21st century (Vennard, 1979, p.27). 

As a result of these changes over the past 25 years, many agree that the electric utility 

industry no longer exhibits decreasing costs. Thus, much of the rationale for the historical 

reliance on average cost pricing no longer applies and marginal cost pricing is a much more 

viable option. 

Marginal Cost Pricing Applied to Electric Utilities 

From a utility's perspective, a unit of electricity produced at one time of the day is not 

the same as a unit produced at some other time. The utilities' system load is constantly changing 

throughout the day, requiring different plants to come on line and others to go off line. To 

operate the plants in the least-expensive way, utilities bring on line successively less efficient 

plants as demand rises during peak periods. This efficiency is measured mainly by the marginal 

energy costs to produce a unit of electricity, and the short-run marginal cost of the system at any 

particular moment is the marginal cost to operate the most recent plant (least efficient) to come 

on line. Thus, the cost to produce electricity varies throughout the day and rates must be 

structured accordingly. 

Besides these short-run marginal costs, or energy costs as they are often called, there are 

also two other major cost components. First is the cost to meter customers, provide distribution 

and transmission facilities, and perform other administrative tasks. For the most part, these costs 

are invariant with the quantity of electricity a customer uses. Utilities often spread these costs 

evenly among the customers in what is known as a customer charge. The second major cost is 

that of new capacity. With population increasing and new electricity-using appliances constantly 

being developed, capacity limitations will continue to be of some concern to some utilities. To 

complicate matters, many power plants are becoming obsolete and will require replacement by 

newer, more efficient plants. The additional costs due to expanding capacity, along with the 

short-run energy costs, make up the long-run marginal costs of providing electricity. 

To obtain the most efficient use of resources, the price of a good should be equated with 

its marginal cost of production, and it seems only logical that regulators should require utilities 
to practice marginal cost pricing. However, should a utility set prices according to short-run or 

long-run marginal cost? 
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To answer the question, we expand on a model initially developed III Munasinghe's 

Electric Power Economics. Although over-simplified, the results form the basis for the methods 

by which utilities develop their time-of-use rates. It turns out that proper rate structures 

incorporate both short-run and long-run marginal costs. 

To begin, we assume there are three types of plants. The underlying difference among 

these plants is the amount of capital used in their construction and the type of fuel. It is also 

assumed that once on-line, these plants operate at optimal efficiency. We can express capital 

costs in comparable terms, by dividing the total capital cost of the plant by its capacity in 

megawatts, and adjusting for the expected number of operating days to measure the capital cost 

per megawatt per day. For any plant j, we denote this capital cost as Ci. 

The short-run marginal cost of operating a power plant is composed mainly of the cost 

of fuel, compensation of personnel, and maintenance costs. Of these three, the cost of fuel is the 

most significant. For this reason, the short-run marginal cost is often used synonymously with 

the term energy cost. For any plant j, the short-run marginal cost to operate it at a capacity of 

one MW is denoted mi. 

In general, the more capital intensive a plant is, the more efficient it is at converting 

primary fuels into electrical energy. Thus, for plants x and y with ex greater than CY, it is 

generally true that mX will be less than mY. 

The three types of plants in our hypothetical model are known as peaker, intermediate and 

baseload plants. Peaker plants are inexpensive to construct and tend to use a volatile fuel such 

as natural gas to spin turbines which generate electricity. In contrast, baseload plants are capital 

intensive, but are very efficient in converting primary fuels into electrical energy. Most nuclear 

plants are classified as baseload plants. Between these two extremes are the intermediate plants 

requiring capital costs less than that of the baseload but more than the peaker. An example of 

an intermediate plant might be a coal-fired station. 

Denoting the peaker, intermediate and baseload type plants by P, I, and B, respectively, 
B Pthe capacity costs can be ordered: CB > CI > CP

, and in general: m < mI < m • In figure 2.2, 

we illustrate the daily cost to operate each of these three plants for a given number of hours; 

loads that last more than hI hours are most economically produced with the baseload plants. 

Loads that last between hP and hI are produced least expensively by the intermediate-sized plants, 

while loads lasting less than hP hours should be generated with peaker plants. Loads of the same 

size lasting exactly hP hours of the day can be produced at the same cost using either the peaker 

I· 
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$IMW 
P P P 

TC=C+m 

hP hI 

Hours of Operation 

Figure 2.2 Illustrative daily total cost curves for peaker, intermediate, and baseload power plants 
as a function of hours of operation. 

technology or the intermediate technology. That is: 

C P + h Pm P = C I + h Pm I 

This implies that at hP hours of operation: 

(2.1) 

Similarly, at hI hours: 

(2.2) 

With the aid of this graph, a "least-cost plan" in which to operate the three different plants 
can be formulated; it depends on a utility's daily load shape. Figure 2.3 represents hypothetical 

utility load profile and load duration curves for a typical summer day. The load profile curve 

gives the system demand corresponding to the different hours of the day. Notice that this system 
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Time of Day Hours of Operation 

Figure 2.3 Load duration and load profile curves for hypothetical utility. 

peaks during the middle hours of the day when air-conditioning is used most intensively The load 

duration curve gives the number of hours that a specified load exists. For example, loads of 

MW3 megawatts last for hI hours, loads of MW2 megawatts for h2 hours while loads of MW\ 

megawatts exist all day. 

These latter two figures are combined in figure 2.4. This facilitates the derivation of the 

least-cost operation schedule summarized in table 2.1. According to this schedule, the baseload 

technology handles the load of MWB that runs all day. At time t1, when demand jumps to MW1, 

the intermediate plant comes on line until time t4 satisfies the additional demand of MW1 - MWB' 

Finally, when the system peaks between the hours ~ and t3 , the peaker plants come on line 

satisfying the added peak demand of MWp - MW1• In this hypothetical example, there are three 

ways that the utility might be configured at any given time: only the base-load plants in operation 

(off-peak), both baseload and intermediate plants operating (shoulder), and all three types of 

plants operating (on-peak). Strict short-run marginal cost pricing would dictate pricing a unit of 

electricity in each of these three periods according to their marginal costs of production: during 

~ ( 
I 
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MW 
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t, t 2 t 3 t4 
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1 
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Pc
1_--'-::----'-::--- 

hP hI 

Hours of Operation 

Figure 2.4 Determination of power plant operation schedules from load profile curve, load 
duration curve, and plant operating cost curves. 

Table 2.1 Hours and duration of operation of base, intermediate and
 

peaker power plants.
 

Plant Hours of Operation Duration of Operation 

Base l2:00pm - l2:00am 24 hours 

Intermediate t, - t4 
hI - hP 

hPPeaker 1z-~ 

off-peak hours, charge mB
; during shoulder hours, charge mI

; and during peak hours, charge mP
• 

When the time arises to expand capacity, the utility and its customers will be burdened with the 

task of financing a multi-million dollar generating unit. To circumvent this problem, the rates 

are based on the long-run marginal cost of producing electricity. The long-run marginal cost 

incorporates the cost of new capacity. 
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Since it is most often demand during the peak: periods that bring about the need for 

additional capacity, the financing of new generating units should rest primarily on users during 

this period. Long-run marginal cost pricing then purports that electricity used during the peak: 

periods should be charged the long-run cost of expanding capacity, as well as the energy charges. 

Electricity consumed during periods other than the peak: periods should only be levied the energy 

charges. Table 2.2 contains the cost that should be levied on users during each of the rating 

periods. 

Table 2.2 Distribution of energy and capacity costs for off-peak:, shoulder and peak:
 

periods.
 

Rating Period 

Charges Off-peak Shoulder Peak: 

Energy 

Capacity o o 

To verify this conclusion, we illustrate several case examples that show how system costs 

and revenues change when demand changes in the different pricing periods. 

Case I: Off-Peak Demand Increases by One Megawatt: If we assume that initially the utility is 

configured in accordance with table 2.2 and the plants operate at full capacity, the total cost of 

operating the system for one day is: 

TC =MWB(CB+24m B)+(MWl- MWB)(C l+h 1m 1)+(MWP- MW1)(C P+h Pm P).o 

When off-peak demand increases by one unit, it is most efficient to invest in an additional 

unit of baseload capacity. Increasing baseload capacity by one unit relieves the intermediate 

plant one unit; therefore, the cost of operating the system is: 

TCl=(MWB+l)(CB+24m B)+(MW -1-MWB)(C l+h 1m 1) +r
(MWp-MW1)(C P+h Pm P). 

The change in cost, TC I - TCo, is: 

~Cost=C B+24m B_C Ch 1m 1 -

and adding and subtracting hlmB gives: 

~Cost=C B_C 1+(24-h l)m B+(m B_m l)h 1. 
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We know that at hI hours the total cost of operating a baseload plant is the same as the cost of 

operating an intennediate plant. Making use of equation (2) and substituting for hI gives: 

i1Cost=C B_C I+(24-h I)m B+C I_C B 
=(24-h I)m B. 

The change in cost is equal to the energy cost for the additional off-peak electricity consumed 

and therefore, no capacity costs should be imposed on the off-peak users even if they are solely 

responsible for the increase in the baseload unit. Schenkel (1993) shows that when only shoulder 

demand increases by one megawatt, shoulder-period users should pay the energy charge of the 

intennediate-sized plants. 

Case II: Peak Demand Increases One Megawatt: This case is used to show that peak-period 

users should pay the capacity charge as well as the energy charge. With initial system cost at: 

TC =MWB(CB+24m B)+(MWI-MWB)(C I+h 1m I)+(MWp-MWI)(C P+h Pm P),o

the most inexpensive response would be to increase the capacity of the peaker plant one unit. 

Total system cost would then be: 

TC 
j 
=MWB(CB+24m B)+(MWI-MWB)(C I+h 1m I)+(MWp+I-MWI)(C P+h PmP). 

Therefore, the change in cost TC j - TCo is: 

i1Cost=C P+h Pm p. 

This increase in peak demand results in both a capacity charge and an energy charge. It would 

. make sense to charge those users, the peak users, who bring about the need for this expanded 

capacity the capacity charge of cP per day in addition to the energy charge. 

As a final demonstration of the validity of this rate structure, we consider the case in 

which demand increases during all hours of the day. 

Case III: Demand During All Periods Increases One Megawatt: Obviously the most economical 

way to satisfy this increased demand would be to expand capacity of the baseload unit. The 

change in cost is CB, plus the energy costs, 24mB, but we must show that charging rates 

according to table 2.2 will raise enough revenue to cover this additional cost. The increase in 

payments from customers is: 
jPayments=(24-h I)m B+(h I-h P)m I+C P+h Pm P 

=24m B-h 1m B+h 1m I-h Pm I+C P+h Pm P 
=24m B+(m I_m B)h Ch Pm I+C P+h Pm p. 
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Making use of equation (2.2) and substituting for hI gives: 

jPayments= 24m B+C B_C I_ h Pm I+C P+m fb P 
= 24m B+C B_C I+C P+(m P-m I)h p. 

Making use of equation (2.1) and substituting for hP gives: 

jPayments=24m B+C B_C I+C P+C I_C P 
=24m B+C B. 

The increase in payments completely offsets the increase in system costs. 

To summarize, in all cases, the increased cost due to expanded demand is offset by the 

increase in revenues. Rate structures should require that non-peak users pay only the short-run 

marginal cost while peak users pay the additional capacity costs. 

).3. CONDITIONAL DEMAND FOR ELECTRICITY BY FARM OPERATIONS AND 

FARM HOUSEHOLDS 

To begin to understand the implications of time-of-use electricity rates on dairy farms 

throughout New York, it is necessary to estimate the existing demand for electricity on these 

farms, identifying the differences in demand seasonally, as well as by time of day. This is 

accomplished in several separate, but related steps, the first of which is to estimate the 

conditional demands for electricity by farm operation. 

We begin by reviewing past studies on the demand for electricity. Emphasis is placed 

on how the quality of data dictated the development of models and how the eventual collection 

of "micro" data, which is specific to individual households, allowed for the estimation of 

conditional demand models. These models make extensive use of non-economic variables such 

as the stock of appliances, the presence of conservation devices, and demographic characteristics 

for specific households in explaining electricity demand. An algebraic derivation of conditional 

demands is then given, followed by a detailed description of the 1988 survey data set used in the 

analysis. Finally, the estimates for house and farm electricity demand are presented. 

Unfortunately, the observations for farms in this data set do not separate farm and 

household electricity demand. This data set does, however, contain observations on rural 

households, in addition to customers with farm operations. Observations for rural households are 

used to estimate conditional demand for residences. By making reasonable assumptions about 
the existence of markets for all goods, the theory of household production (Singh, Squire, and 

Strauss, 1986) suggests that farm demand for electricity can be treated separately from that by 

the household, making it possible to predict farm household demand for electricity and find farm 
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demand as a residual. These residuals are used as dependent variables in estimating the 

conditional demand for farm electricity. 

Review of Past Electricity Demand Studies 

Prior to the 1970's most utilities based long-term electrical load forecasts on extrapolation 

and time trend methods (Berndt, 1991, p. 310). Few relied on econometric methods based on 

the economics of demand, in which prices and income were important explanatory variables. 

This reflected the view that, since the demand for electricity was growing steadily over time, 

prices were a minimal factor affecting the demand for electricity. 

Nevertheless, a number of econometric studies modelling the demand for electricity were 

undertaken. The 1951 model by Houthakker (in Taylor, 1975) is often referred to as the first 

major study. Houthakker used aggregated data on average electricity consumption, income, 

marginal prices for electricity and gas, and an electrical appliance stock index to model 42 towns 

in the United Kingdom. Although the model is relatively simple by today's standards, many 

present day issues pertaining to the modelling of electricity demand were addressed. 

Since the time of Houthakker's pioneering research, academicians have placed more 

emphasis on econometric issues encountered while modelling electricity demand, especially 

regarding prices. The problem of prices first evolved out of utilities' use of declining block rate 

schedules, in which electricity could be purchased in block quantities at successively lower 

prices. Under this rate structure, the price function is no longer continuous, but rather contains 

discontinuities at points where the price of electricity changes. It is difficult to find a price to 

use as an independent variable. Furthermore, simultaneity is introduced because price, often an 

independent variable, is in tum a function of the dependent variable quantity, and the use of the 

ordinary least squares estimator leads to upward-biased estimates (Berndt, 1991, p.324). To 

resolve these problems, Taylor (1975) suggests the use of an "intramarginal" price variable in 

addition to the customer's true marginal cost. These problems are analyzed in greater detail in 

the article by Taylor (1975), and in Berndt's (1991) chapter on electricity demand modelling. 

Researchers also tried to distinguish between the short-run and long-run demand. The 

model by Fisher and Kaysen (1962)6 was one of the first to estimate the short-run demand for 

electricity. This model postulates that the demand for electricity is a function of customer's -

6Both the Houthakker model and the Fisher-Kaysen model are also summarized in the article 

by Taylor (1975). 
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appliance utilization rates. These utilization rates were In tum functions of the price of 

electricity, the prices of substitute fonns of energy, and income. Like the Houthakker model, 

Fisher and Kaysen used aggregate data by averaging prices and incomes for households in 47 

states. Short-run demand is estimated since the customers' stock of appliances is fixed. 

Later models estimated the long-run demand for electricity by allowing variation to occur 

in the customers' stock of appliances. To model this long-run demand, simultaneous equation 

approaches were often adopted under the assumption that the stock of appliances is detennined 

endogenously with electricity consumption. Dennerlein (1987), estimates both the long-run 

demand for electricity and the demand for stock of appliances in a simultaneous approach. In 

a similar model, Flaig (1990) uses aggregate German household data to estimate the demand for 

electricity and the demand for household appliances. 

While these models worked well for estimating price and income elasticities, rarely were 

they used to forecast future electricity demand. As noted before, long-tenn forecasts were most 

often done with time series and extrapolation methods, methods that furnished utility personnel 

with fairly reliable forecasts in times of stable economic conditions. As the economic climate 

experienced by electric utilities changed during the late 1960' s, most of the extrapolation methods 

to forecast future loads became less reliable. Since it can take up to 10 years to construct and 

bring on-line certain forms of generating capacity, these unreliable forecasts led to power outages 

and resulted in substantial social costs for both industrial and residential customers (Lurkis. 

1982). Consumer's confidence in utilities fell and load forecasting became a prominent issue. 

It was clear that modifications needed to be made in the methods utilities used to forecast future 

electricity demand. 

To improve forecasts. many utilities began to incorporate appliance-specific estimates of 

electricity consumption (Parti and Parti. 1980). With this knowledge, utilities could make use 

of technological progress in appliances in demand forecasting and also implement programs 

targeted to reduce electricity consumption attributable to certain end uses. One method to 

estimate the appliance-specific electricity demand is through the use of conditional demand 

models that use household survey data matched with utility billing data. A more thorough 

description and algebraic derivation of conditional demand models is now given. 

Conditonal Demand Models 

Conditional demand models are multivariate regressions that use as independent variables 

the household stock of appliances, demographic characteristics and other factors that could 

, , , 
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potentially affect the amount of electricity a customer consumes (EPRI EA-341O, 1984). Like 

the Fisher and Kaysen model, the demand for electricity is assumed to be a function of utilization 

rates for household appliances. However, where Fisher and Kaysen assumed that these utilization 

rates are in tum primarily a function of prices and income, conditional demand models use the 

additional "micro" data available on the demographic characteristics of each household. 

In the terminology of conditional demand models, these "utilization rates" for appliances 

are referred to as unit energy consumption (VEC) coefficients. Specifically, the VEC coefficient 

for an appliance is a value or function relating the expected amount of electricity that the 

appliance will utilize in a given time period. 

Conditional demand models have been quite successful at determining VEC coefficients 

(EPRI EA-341O, 1984). They are also relatively inexpensive since the data are easy to obtain, 

requiring only billing data and a mailed survey. In contrast, a second method to determine unit 

energy consumption coefficients entails direct metering of each appliance under study. Although 

accurate, this method is very costly. A third method rests primarily on the engineering 

characteristics of the appliance; it does not consider variations in utilization rates across 

households due to different household characteristics or geographical location of the dwelling 

(EPRI-EA-341O, 1984; and Parti and Parti, 1980). 

Although our objective is not to find VEC coefficients per se, knowledge of them helps 

in the understanding of the derivation of the conditional demand models that are used in this 

analysis. To develop an algebraic representation of a conditional demand model assume there 

are T customers, and denote the electricity use for the tth customer for some specified time period 

as Et. Given N appliances, we define dit (i = l..N) as a dummy variable equal to one when the 

tth household has the ith appliance and equal to zero otherwise. Denote the VEC coefficient for 

these specified appliances as Vi (i=1..N). To account for electricity used through unspecified 

appliances, a VEC coefficient of V o is assigned to each household. Thus, the tth household's total 

energy consumption is: 

N 

(3.1) E t = V o + L VAt 
i= 1 

In many cases the V;' s may be functions of customer characteristics affecting how 

intensively the appliance is utilized. Denoting these customer characteristics by the M element 
vector V, the VEC coefficient for the ith appliance is written as VJV) (i=O..N). If the V;'s are 

linear in these variables, then they may be expressed as: 
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M 

(3.2) Ui = L bijVj i=O, .. ,N 
j' 0 

where Vo is unity for all households and the bij are parameters to be estimated. Thus, bio is rhe 

constant term for the ith appliance and bij is the manner in which the jth household characteristic 

affects utilization of the ith appliance. Substituting equation (2) into equation (1), and adding an 

error term et assumed to be distributed normally with zero mean and finite variance, the energy 

consumed for the tth household is: 
I 

M N M ,,r
(3.3) Et = L bOYj + L L bijVjdit + et !j=O i=1 j=O 

j", 
Equation (3.3) is linear. in its parameters and may be estimated using ordinary least I,

squares. Typically, the dependent variable Et is obtained from billing data, while the independent ,., 

variables come from survey data. 

Data Used for Estimating Conditional Demands for Farm Households 

and Dairy Farm Operations 

The data used to estimate these conditional demands come from the 1988 Rural 

Household and Farm Energy Survey conducted by the Departments of Agricultural Economics 

and Agricultural Engineering at Cornell University. The data were gathered through a mail 

survey of rural households and farms located throughout upstate New York and served by 

Niagara Mohawk Power Corporation. Surveys that were returned were matched with billing data 

supplied by Niagara Mohawk. 

Of the 5,816 surveys mailed, 3,858 were returned, a response rate of 66 percent; 1,879 

of the survey respondents indicated that they operated farms while the remaining 1,979 did not. 

Of the 1,879 that operated farms, 1,310 can be classified as dairy farms. 

All customers were instructed to complete a section with questions about characteristics 

of the household that would potentially affect electricity use. Approximately half of the questions 

required the respondent to circle the appropriate answer (i.e. How do you heat your water?), 

while the other half required some numerical response (i.e. How many of the following 

appliances do you have?). Customers indicating they operated dairy farms were instructed to fill 

out an additional section concerning production levels, milking technology, and configuration of -electricity using equipment. 
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The billing data supplied by Niagara Mohawk spanned approximately 14 months, 

beginning early 1987. Meters readings took place every other month at approximately 60-day 

intervals, giving seven readings per customer. Unfortunately, the exact dates at which the meters 

were read was not known. This knowledge would have enhanced the data by allowing for 

specific estimates of seasonal variation as other demand studies have incorporated (i.e. Parti and 

Parti, 1980). Instead, electricity consumption had to be aggregated on a yearly basis by summing 

the first six billing periods, dividing by the number of days in the six billing periods (to put on 

a daily basis), and multiplying by the number of days in a year, 365. 

The price schedule at the time the survey was conducted and the billing data collected 

consisted of a customer charge (equivalent to $104.56 per year) and an energy charge of 6.66 

cents per Kwh. For this reason, the conditional demand estimates for electricity based on this 

sample could not include price as an explanatory variable. 

For estimating conditional demands, the data set was divided into two subsets: those 

observations for rural households and those observations for farms. However, in setting up these 

subsets, a number of restrictions had to be placed on the data in order to remove, for example, 

unrepresentative outliers and extraneous billing data. 

Rural Household Subset 

The restrictions on the households are not nearly as extensive as those that also had farms: 

annual electricity consumption had to be between 3,000 and 25,000 Kwh and the billing days for 

the first six meter readings could not exceed 370 days but had to be at least 360 days. These 

restrictions reduced the number of household observations by 335, to a total of 1,644. 

Table 3.1 gives descriptive statistics for the 1,644 sample households based on annual 

electricity consumption in Kwh. As to be expected, dwellings with more occupants and a larger 

number of rooms use more electricity. Surprisingly, the number of rooms has little affect on 

electricity consumption; households consuming between 3,000 and 8,000 Kwh annually average 

just over 7.5 rooms per household, while households consuming over 18,000 Kwhs per year have 

on average only one more additional room. Perhaps the major reason for why the number of 

rooms in the house does little to affect electricity use is that only a small proportion of customers 

in this sample use electricity as a primary heat source. The proportion of customers with -
secondary electric heat, electric water heaters, dishwashers and air conditioners suggests that 

these appliances are considerably more important in determining the customer's electricity use. 
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Table 3.1 Characteristics of households from 1988 survey data set.
 

Total annual Kwh ! 

3,000 8,001 13,001 over 

to to to 18,000 

8,000 13,000 18,000 

N 571 611 338 124 

Avg. number of people 204 3.07 3.96 3.88
 

Avg. number of rooms 7.53 7.96 8.32 8.56
 

Percent with primary
 

electric heat 1% 1% 3% 6%
 

Percent with secondary
 
l' 

electric heat 11% 19% 19% 25% ; 

Percent with electric water
 

heater 52% 68% 80% 84%
 

Percent with dishwasher 21% 40% 47% 55%
 

Percent with air
 

conditioning 5% 10% 11% 19% 

Avg. number of
 

refrigerators 1.19 1.24 1.31 lAO
 

Source: 1988 Rural Household and Farm Energy Survey.
 

The conditional demand equations below examine these characteristics in a more systematic 

fashion. 

Farm Subset 

In contrast, it was much more difficult to derive a usable sample for the respondents with 

dairy farms since many failed to provide complete data needed for the analysis and some of the 

responses made little sense. Consequently, a number of restrictions were placed on the farms to 

derive a usable sample. Table 3.2 lists criteria, along with the frequency of not passing the 

criteria, that each farm had to pass in order to be included in the sample. After all of these 

criteria are taken into account, 275 farms remained. 
In looking at table 3.2 milk production per cow, total Kwh/year and number of billing 

accounts are the most restrictive criteria, with only 73.9, 71.3 anc 37.1 percent of the farms 
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Table 3.2 Screening criteria for dairy farms. 

Critical Cases Percent of 

Criteria Value Passing 1,310 

Milk per cow Between 5,000 and 25,000 

lbs annually 968 73.9 

Months in production Milk at least 10 months 

out of year 1,194 91.1 

Average price paid per 

Kwh $.06-$10 1,272 97.1 

Total Kwh/year
, 

Between 30,000 and 

125,000 Kwh 934 71.3 

Number of billing days 

for six meter readings 300 or more 1,302 99.4 

Number of cows 20 or more 1,229 93.8 

Acres of land farmed 20 or more 1,275 97.3 

Milking system Parlor, Pipeline or 

Buckets 1,156 88.2 

Annual Kwh per cow 200 or more 1,159 88.5 

Annual production of milk 

in pounds More than 0 1,038 79.2 

Number of billing 

accounts One 486 37.1 

All combinations 275 21.0 

Source: 1988 Rural Household and Farm Energy Survey. 

'Includes House 

passing, respectively. The milk per cow criterion was imposed to eliminate so called "hobby" 

farmers and to remove responses that were likely filled out in error with respect to milk 

production. Farmers that have a large number of cows but produce very little milk are removed 

by restricting average production per cow to be at least 5,000 pounds per year. Likewise, by 

restricting average production to be less than 25,060 pounds per cow removes possible errant -

responses caused by over-stating milk production in the survey. 

The justification for the accounts criterion is also worth noting. Customers operating 

farms were asked in the survey to indicate how many different electricity billing accounts they 
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had with Niagara Mohawk. Of the 1,310 dairy fann responses, about half indicated that they had r 
more than one account. These multiple billing accounts pose a problem since it isn't exactly 

known how many accounts are included in the Niagara Mohawk billing data. Consequently, the 

customers actual electricity consumption could be under-represented in the event that some of 
rthe billing accounts are not included in the billing data. To circumvent this problem, it was 

decided to use only those farms that indicated that they had one account. 

I.
;

, 
Table 3.3 contains data for the 275 sample dairy farms. The data suggest that herd size 

and milk production are important in determining the quantity of electricity consumed. There 

also exists noticeable trends with respect to the proportion of farms using different milking , 
,1

technology; farms using considerably more electricity tend to use parlor and pipeline 

technologies, while farms using comparably less electricity tend to use a bucket milking system. 

Table 3.3 Characteristics of dairy farms from 1988 survey data set.
 

Herd Size
 

50 and under 51 - 75 76-100 Over 100
 

N 71 103 53 48
 

Avg. herd size 42 64 88 136
 

Annual CWT production 5,807 9,530 13,327 20,356
 

Avg. pounds/cow 13,609 14,996 15,065 14,905
 

Milking Technology
 
~ 

28 14 1 2
 

Bucket (39.4%) (13.6%) (1.9%) (4.2%)
 

42 80 35 17
 

Pipeline (59.2%) (77.7%) (66.0%) (35.4%)
 

1 9 17 29
 

Parlor (1.4%) (8.7%) (32.1%) (60.4%)
 

Percent with electric water heater 96% 94% 87% 80%
 

Percent with heat transfer system 15% 38% 58% 67%
 

Percent with precooler 1% 13% 15% 31%
 -
Avg. number of milking units 5 5 6 

Source: 1988 Rural Household and Fann Energy Survey. 

9 
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A final note to be made about the 1988 data set concerns milk precoolers. In general, 

there are two kinds of precoolers: ones that make ice used to chill milk prior to entering the bulk 

tank cooler, often called icebanks, and others that, instead of ice, use well water which is pumped 

from the ground. While both systems reduce bulk milk cooler electricity consumption, they both 

also use electricity through the utilization of compressors and water pumps. Consequently, the 

net electrical input for milk cooling purposes on a farm may differ depending on what type of 

system is used. In the survey, customers were asked to indicate whether or not their farm used 

a milk precooler with no regard to the type of milk cooler. 

Estimating the Rural Residential Demand for Electricity 

Based on equation (3.3), the empirical estimates for the conditional demand for electricity 

by rural households are presented in this section. Initially, a number of models were estimated 

that followed closely the format of the conditional demand model derived above; dummy 

variables for major appliances were interacted with characteristics of the household believed to 

affect the appliances' use. By including certain socio-economic variables without appliance 

interaction, the statistical results improved, both in terms of overall explanatory power and the 

signs on the coefficients. Since the primary goal is to estimate the total demand for electricity 

by the household, this latter model is used in subsequent analysis. Although this results in some 

loss of appliance-specific explanatory power, this loss is justified through the increased 

improvement in overall fit. Tables 3.4 and 3.5 define the variables used in the regressions. 

Table 3.6 contains the estimated rural household demand for electricity. The dependent 

variable in this regression is the household's average daily Kwh, obtained by dividing the 

household's annual electricity consumption, based on the first six billing periods, by the number 

of days in the year, 365.7 In the models, virtually all of the estimated coefficients have the 

expected signs. Many of the t-ratios are above two, indicating that they are significant in 

explaining household electricity consumption. Where this is not true, the variable was retained 

for theoretical consistency and to improve the predictive power. 

Based on the regression results, each room in the dwelling increases daily electricity 

consumption by about one half of a Kwh. Not surprisingly, electricity consumption is correlated 

positively with the number of people (PEOP). Households that close rooms off in the winter 

-

7 The number of observations used in the regression, 1,540, is less than the number of 

observations obtained after cleaning the data, 1,644, due to missing responses to some of the 
smvey questions. 
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Table 3.4 Variable definitions for household appliances. 

Variable Defmition Variable Definition 

PSH 

SSH 

Dummy for primary electric heating 

Dummy for secondary electric 

heating 

PUMP 

DEHUM 

Dummy for well water pump 

Dummy for dehumidifier 

H2O Dummy for electric water heating POOL Dummy for swimming pool pump 

CW Dummy for clothes washer CLRTV Number of color TVs 

ELECRGE Dummy for electric cooking range BWTV Number of black and white TVs r 

,
: 
r
I

! 
t" 

FF Number of frost free refrigerators VCR Dummy for VCR 

MD Number of manual defrost PC Dummy for personal computer 

refrigerators 

MICRO Dummy for microwave ACOND Dummy for air conditioning 

DW Dummy for dishwasher H20BED Dummy for water bed 

CD Dummy for electric clothes dryer HOTTUB Dummy for hot tub 

FIRE Dummy for tire place 

realize significant savings, as reflected by the signs and magnitudes of the CLOSE and CLSRMS 

variables. 

Customers that own their home tend to use less electricity than those who rent. One 

possible explanation is that owners may be more willing to invest in conservation devices and 

are more conscientious of their electrical expenses than renters, particularly if utilities are 

included in the rent. Clock thermostats, which can be set manually by the owner and allow 

heating to be turned off when no occupants are in the home, are efficient, saving about 476 Kwh 

per year (365days*1.305Kwh/day). 

The negative signs for full time and part time workers, FULL and PART, respectively, 

seem to make sense; the more working occupants, the less electricity consumed since fewer 

occupants are around during the day. 

It is apparent from the signs and magnitudes of AGEHOMEA and AGEHOMEB that 

homes built within four years of 1988 are considerably more energy efficient than older homes. 

However, there seems to be no good explanation why the coefficient on AGEHOMEC, 

.
...
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Table 3.5 Variable definitions for household demographic characteristics. 

Variable Definition Variable Defmition 

OTHBUI Dummy if not standard or mobile home FULL Number of full time workers 

ROOMS Number of rooms PART Number of part time workers 

CLOSE Dummy for closing rooms off in the GAS Dummy for gas primary heat 
winter 

CLSRMS Number of rooms closed of in winter WOOD Dummy for wood primary heat 

OWN Dummy if home is owned FLOW Number of faucet flow restrictors 

CLOCK Dummy for clock thermostat BLANKET Dummy for hot water blanket 

OTHER Dummy for any other conservation devices SQRPEOP Number of people squared 

PEOP Number of people INCOMEA Less than $5,000 

AGEA # Occupants under 2 INCOMEB $5,000 to $9,999 

AGEB # Occupants 2 to 5 INCOMEC $10,000 to $12,499 

AGEC # Occupants 6 to 12 INCOMED $12,500 to $14,999 

AGED # Occupants 13 to 17 INCOMEE $15,000 to $19,999 

AGEE # Occupants 18 to 34 INCOMEF $20,000 to $24,999 

AGEF # Occupants 35 to 61 INCOMEG $25,000 to $34,999 

AGEG # Occupants 62 to 64 INCOMEH $35,000 to $49,999 

AGEH # Occupants over 65 INCOMEI $50,000 to $74,999 

EDUCA Elementary school highest education of INCOMEJ $75,000 or more" 

household head 

EDUCB Some high school highest education of AGEHOMEA Less than 2 years 
household head 

EDUCC High school graduate highest education of AGEHOMEB 2 to 4 years 
household head 

EDUCD Some college highest education of AGEHOMEC 5 to 7 years 
household head 

EDUCE College graduate highest education of AGEHOMED 8 to 20 years 
household head 

EDUCF Post graduate highest education of AGEHOMEE 21 to 40 years 
household head" 

AGEHOMEF Over 40 years" 

" - Indicates variable not included in regression but incorporated in intercept term. 

representing homes between the age of five to seven years, is so large and positive when the 

trend in the other variables suggests that it should be negative. -

The coefficients on the two electric heat variables, SSH and PSH, work quite well in 

explaining electricity consumption as noted by their high t-ratios, 4.1 and 5.2, respectively. A 
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Table 3.6 House regression results. 

Parameter Estimate 

INTERCEP 8.289 

OTHBUI 2.077 

ROOMS 0.58 

CLOSE -1.277 

CLSRMS -0.439 

OWN -0.551 

CLOCK -1.305 

OTHER -1.778 

PEOP 1.165 

AGEA 0.974 

AGEB -0.5 

AGEC -0.481 

AGED 1.924 

AGEE 0.581 

AGEF 1.927 

AGEG 1.216 

AGEH -0.474 

FULL -0.709 

PART -0.184 

EDUCA -2.856 

EDUCB -0.368 

EDUCC 0.291 

EDUCD -0.985 

EDUCE -0.426 

INCOMEA 2.724 

INCOMEB -1.457 

INCOMEC 0.085 

INCOMED -1.254 

INCOMEE -0.415 

INCOMEF -0.265 

N = 1540 

t-ratio 

3.552 

1.61 

4.194 

-1.432 

-1.49 

-0.593 

-1.365 

-1.279 

1.297 

0.742 

-0.481 

-0.517 

2 

0.642 

2.175 

1.152 

-0.511 

-1.53 

-0.396 

-1.877 

-0.319 

0.292 

-0.968 

-0.399 

1.654 

-1.185 

0.063 

-0.9 

-0.344 

-0.234 

Parameter 

INCOMEG 

INCOMEH 

INCOMEI 

AGEHOMEA 

AGEHOMEB 

AGEHOMEC 

AGEHOMED 

AGEHOMEE 

GAS 

WOOD 

SSH 

PSH 

H2O 

H20*PEOP 

H20*SQRPEOP 

H20*CW 

H20*BLANKET 

H20*FLOW 

ELECRGE 

FF 

MD 

MICRO 

BWTV 

CLRTV 

VCR 

PC 

ACOND 

H20BED 

FIRE 

HOTTUB 

I 
~ 

Estimate t-ratio 

-1.255 -1.219 

-0.539 -0.508 

0.357 0.289 

-15.22 -3.329 
i, 
) 00 

r 
-13.448 -2.672 

7.684 1.773 

-2.262 -1.749 

0.297 0.282 

-0.209 -0.263 

1.036 1.608 

2.814 4.059 

10.402 5.226 

-3.9 -2.199 

3.739 5.712 

-0.384 -5.608 

4.171 3.597 

-0.911 -1.115 

-0.331 -0.597 

2.228 3.736 

2.52 3.962 

1.057 1.886 

0.573 0.902 

-0.523 -1.301 

-0.326 -0.85 

0.377 0.708 

-0.626 -0.896 

1.397 2.393 

1.923 3.171 

-0.533 -1.378 

2.278 1.184 

R2 =0.44 

-
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coefficient value of 10.4 on PSH indicates that primary space heating increases annual electricity 

consumption by just under 4,000 Kwhs. 

Of all the appliances, only the water heater is modeled in true conditional demand format 

according to equation (3.2), in which it is interacted with socio-economic variables. In this 

analysis, the equation to determine the UEC is specified as: 

UECH20 = -3.9 + 3.7*PEOP -0.84*SQRPEOP + 4.2*CW
 

- 0.91 *BLANKET - 0.33*FLOW.
 

The negative sign on the people "squared" coefficient suggests that there are economies 

of size with respect to electricity use for water heating. The results of this UEC equation also 

suggest that the use of a blanket for the water heater and low flow restrictors cut down daily 

electricity consumption by about 0.9 and 0.3 Kwh, respectively, for those homes with electric 

water heaters. 

The signs and magnitudes of the coefficients corresponding to the household's income, 

age of its occupants, and educational attainment level of the household head are somewhat 

difficult to interpret. Furthermore, many of the coefficients are not significant but were included 

only to increase the explanatory power of the model. 

The remaining variables are either dummy or continuous variables for other relevant 

appliances. Most of the coefficients for these variables have the correct sign, with the exception 

that there seems to be no clear justification for the negative signs on the television variables, 

BWTC and CLRTV. The negative sign on the dummy for a PC computer suggests that 

households that have a PC might be better organized than those that don't, and thus, might be 

more conscious of their electrical consumption. 

Estimating the Farm Demand for Electricity 

After "forecasting" farm household electricity demand by substituting the farm household 

characteristics into the demand equation from table 3.6, an estimate of farm electricity use can 

be obtained by subtracting household consumption from total consumption. Using these 

estimated farm electricity consumption figures as dependent variables, it is possible to estimate -
the demand for electricity on the farm. .. 
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As for households, farm electricity demand IS assumed to be a function of farm r ., 
I
(characteristics and the stock of electrical machinery, i.e. a conditional demand. Table 3.7 defines 

these characteristics and machinery variables used in the farm electricity demand regression and 

Table 3.8 contains the farm regression results.8 

This model seems to have performed well. The overall fit, as measured by the R2 =0.7, 

is quite good for this type of cross-sectional data. The sign of the SQRMILK term indicates that , 
there are economies of size in dairying with respect to electricity use. The magnitude of the !
 

coefficient on heat transfer variable, -6.3, indicates that this device is a significant conservation
 

measure. Also, bucket milking systems use considerably less electricity than pipeline and parlors.
 

Table 3.7 Variable definitions for dairy farms. 

Variable Definition 

FANS Number of fans I
ELECH20 

HT 

PRECOOLER 

MILK 

SQRMILK 

LIGHTS 

BUCKET 

PIPELINE' 

PARLOR 

UNITS 

SQRUNITS 

I 

rElectric water heater 
1 

Heat transfer system 

Milk precooler 

Milk production in thousands of pounds 

Square of milk production 

High efficiency lighting 

Bucket milking system 

Pipeline milking system 

Parlor milking system 

Number of milking units 

Square of number of milking units 

, - Omitted from regression and incorporated in intercept term. 

"".'"', 

8Again, because of omitted responses, the number of observations included in the regression, 
268 is slightly less than the number of sample farms, 275. 

-
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Table 3.8 Fann regression results. 

Parameter Estimate Standard 

Error 

t-ratio 

INTERCEP 

FANS 

ELECH20 

HT 

PRECOOLER 

LIGHT 

MILK 

SQRMILK 

BUCKET 

PARLOR 

UNITS 

SQRUNIT 

N= 268 

0.641 

5.111 

29.189 

-6.338 

3.590 

-0.568 

0.091 

-1.01 *10"5 

-20.188 

16.236 

1.841 

-0.041 

12.642 

0.901 

7.723 

4.898 

6.470 

4.879 

0.013 

3.5*10-6 

6.622 

6.428 

1.364 

0.021 

R2 = .6844 

0.051 

5.671 

3.779 

-1.294 

0.555 

-0.116 

6.965 

-2.879 

-3.049 

2.526 

1.350 

-1.939 

4. TIME-OF-DAY ELECTRICITY DEMAND ON DAIRY FARMS 

These yearly conditional demand relationships for electricity by the dairy farm business 

are only part of the information needed to study the effects of time-of-use rates on dairy fanning. 

We must also know the electricity demand by time of day. We begin the discussion by briefly 

describing past studies dealing with this issue. Some of these studies used the cubic spline 

regression model, but the majority focused on residential power use. Following this introduction, 

we derive the cubic spline regression model and demonstrate how it can be used to model 

electricity demand by time of day for dairy fanns. A brief description of the data used in the 

analysis is followed by a discussion of the empirical results. -
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Early Time-of-Day Demand Studies 

Until about 20 years ago, interest in electricity demand modelling focused mainly on 

estimating the total demand in a given accounting period, such as a month or a year. Since most 

utilities used flat or declining block rates, little emphasis was placed on the distribution of this 

electricity by time of day. Concern for rising energy prices and the increased focus on the need 

for energy conservation in the early 1970's prompted the Federal Energy Administration (later 

the Department of Energy) in the mid 1970's, to sponsor 14 residential pricing experiments on 

the effectiveness of time differentiated rates (Caves, 1984). Hourly electricity consumption data 

were gathered for large numbers of residential customers from all regions of the country. Some 

of these pricing experiments concluded that TOU rates were an effective method in inducing 

customers to shift peak demand. As a result, Congress included in the 1978 Public Utility 

Regulatory Policies Act (PURPA) a provision compelling state regulatory commissions 

nationwide to study the feasibility of implementing time-of-use rates (Munasinghe, 1990, p.126). 

Since that time, numerous studies modelling electricity demand by time of day and customer's 

response to TOU pricing have been undertaken. 

One common approach to these studies was to aggregate daily electricity consumption into 

a small group of distinct intervals. These intervals may correspond to the specific hours of the 

day (l to 24), to the different periods (i.e. peak, shoulder and off-peak), or to different seasons. 

Mter aggregation, consumption of electricity in each interval is treated as a separate good, each 

with its own price and contribution to consumer utility. In 1971, Cargill and Meyer were among 

the first to use this strategy to estimate the total system demand for each hour of the day for two 

different regions, although their model does not distinguish the demand by customer class (i.e. 

residential, commercial, or industrial). 

Hausman et al. (1979, in EPRI report EA-1304) develops a two-level budgeting model 

where customers first allocate a share of their income to electricity, and then decide how to 

distribute this electricity throughout the day under time-of-use pricing. They apply this theory 

to Connecticut residential household data. In cases where time periods of interest do not 

correspond to the hours of the day, such as the Hausman analysis in which nighttime hours are 

aggregated, the estimated functions do not generate the necessary information to predict a load 

curve. Rather, they yield estimates for consumption of electricity in each period. These models 

-
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are often employed to estimate the customer's response to TOU rates by deriving own and cross 

price elasticities of demand for periods of interest.9 

The second common approach to modelling time-of-day electricity demand proceeds in 

two stages, both of which involve some sort of regression or estimating routine. In the first 

stage, a time-series regression is used to parameterize each customer's load curve by a fixed 

number of coefficients. Then, in the second stage, these coefficients are used as dependent 

variables in a regression to explain how they differ across households. Granger et al. (1979) 

applies a two-stage method to analyze time-of-day electricity demand for 400 Connecticut 

residents. In the first stage, a matrix of hour dummy variables and a number of other variables 

to explain day-to-day variation in the load shape for a given customer are regressed on hourly 

electricity use levels. The second stage entails regressing demographic characteristics of the 400 

households on these first-stage coefficients. 

Another widely used two-stage model, which is the basis for the model developed here, 

uses the concept of a cubic spline (Hendricks et al., 1979). Leaving details to later, the first 

stage consists of parameterizing each customer's load curve as a select number of coefficients 

that serve as the ordinate values to be fitted with a cubic spline. The second stage uses these 

estimated coefficients as dependent variables in a regression to explain how they vary across 

households. The independent variables in this second stage are household appliance stock, 

demographic characteristics, and other relevant factors that determine the level of electricity 

demand at a particular moment. The advantage of this type of two stage model, in contrast to 

the type employed by Granger, is the considerably smaller number of second-stage regressions 

and hence relevant parameters involved. 

The 1979 model of Hendricks et al. serves as an example. This analysis uses residential 

time-of-day consumption data for 400 Connecticut households to study the effectiveness of time

of-day rates in inducing customers to shift peak loads to off-peak periods. Although the model 

did not work very well in achieving its primary goal (i.e. determining the effectiveness of TOU 

pricing), the empirical results suggest that the cubic spline regression model is useful for 

estimating the impact of demographic characteristics on the shape of the load curve for residential 

customers. 

-

90ther articles may be found in the EPRI report EA-1304 entitled Modeling and Analysis oj 

Electricity Demand by Time-oj-Day and the 1984 Journal oj Econometrics Annals issue entitled 
The Welfare Econometrics oj Peak-load Pricing jor Electricity. 
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Another example is the earlier model by Hendricks et al. (1977). This model differs from 

Hendricks' and Koenker's (1980) later work in that the first- and second-stage regressions are 

incorporated into a single regression. The purpose of the analysis was to illustrate a model to 

determine the consumption pattern exhibited by a household. No price variables were 

incorporated since the customers were not subjected to time-of-day rates. The purpose of the 

analysis was to explain the consumption pattern for different households. 

Cubic Spline Regression Model lo 

This type of regression model hinges on the concept of a cubic spline. A cubic spline can 

be defined as a series of polynomial functions (of at most degree three) joining one another at 

points known as knots. There are also two knots corresponding to the extremes. Together these 

polynomial functions represent one continuous piecewise function. In the case of electricity 

modelling, this function represents the load curve. 

Evaluating any two adjacent polynomials at their common knot yields the same ordinate 

value, as well as equal first and second derivatives. The third derivative is a step function with 

discontinuities occurring at the knots. A cubic spline is said to be periodic if the ordinate value, 

first derivative, and second derivative evaluated at the two extreme knots are equal, respectively. 

The periodic cubic spline is employed since electricity consumption on a dairy farm does exhibit 

a daily periodic nature. 

Mathematically, the periodic cubic spline, S(x) for XOS;X::;Xk' with knot locations at {xo, 

Xl' xz,·· .. ,xk} and associated ordinate values {Yo' Yl' yZ' .... 'yk}, where Yo = Yk, can be defined as 

a series of k polynomials with degree at most three satisfying the following requirements: 

SI(X) xo~ x ~Xl 

Slx) Xl~ x ~xz 

S(x) = 

Sk(X) Xk-l~ x ~Xk 

S/Xj)=Yj=Sj+I(Xj) for j=I,2..k-l 
Sk(Xk)=yk=Sl (xo) -

IOMuch of the notation is taken from Poirier (1976). 
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S;(Xj )=S;t1(X) for j=1,2..k-l
 , ,
Sk(Xk)=S\(xo) 

These requirements imply the following continuity conditionsll 
: 

for j = 2,.... ,k-l and 

where: 

-

This results in a system of k equations in k unknowns, the unknowns being the M\, M2••••Mk• 

To determine the values of these unknowns, define the two (k x k) matrices: 

liThe derivation of these continuity conditions may be found in appendix I. 
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2 A,1 0 ". 0 0 I-A,1 

I-A,2 2 A,2 '" 0 0 0 

0 I-A,3 2 n. 0 0 0 

A= .. 
0 0 0 ... 2 A..c 0 

0 0 0 ... 1-A,k_1 2 A,k-1 

A,k 0 0 ... 0 I-A,k 2 

and 

6 6 
0 0 0 

h1~ ~(h1+~) 

6 6 6 
0 0 

~(~+h3) ~h3 h3~+h3) 

0 6 6 
0 0 

h/h3+h4) h3h4 

8= '. 
0 0 0 6 

hk_2hk_1 

6 

hk_1(hk_2hk_1) 

0 0 0 
6 6 

hk_1(hk-1 +hk) hk_1hk 

6 
0 0 0 6 

h)(hk+h) hk(hk +h) 

and the vectors 

M = [M1,M2,... ,MK]'; and y = [Yl'y2,···,yS· 

The continuity conditions can be written in matrix notation as: 

AM = 8y. 

Since it is a system of k equations in k unknowns, it can be solved: 

6
 

h1(h1+~) 

0 

0 

0 

6 

hk(hk-1 +hk) 

6 

hkh) 

-
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A method for obtaining the coefficients for the individual polynomials is derived in 

appendix II. Alternatively, through the use of matrices, it is possible to construct any n 

dimensional vector 11 = S(~) of cubic spline interpolants for a given vector ~ = [~I '~2);3, ... ,SnJ 

of abscissa values, where ~12Xo and ~n::;Xk' (In the case of electricity demand modelling, the 

vector ~ corresponds to the hours of the day: ~ = [1,2,3...24]). To do this, define the two n x k 

matrices P and Q such that for Xj_I::;~i::;Xj' (i = 1,2,3...n) (j=2,3,.... ,k): 

(Xj-~)[(Xj-~y-hjl/6hj, for m=j-l 

Pim = (Si-Xj_I)[(Si-Xj_l-hjl/6hj' for m=j 

0, otherwise 

for m=j 

qim = 
for m=l 

otherwise 

(Xj-S) 

h. 
J 

(Si -Xj-I) 

h. 
J 

0, 

and for j=l: 

(XI-S)[ (XI -sy-h:l/6h l , 
for m=k 

Pim = (~i-XO)[ (~i -XO)2-h:J/6h l , for m=l 

0, otherwise 

for m=j 

(~i-Xj-l) 
I_~_, for m=l 

h. 
J 

0, otherwise 

Using the representation of Sex) in terms of M derived in appendix III: 

SeX) = 
-
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and it is clear that the vector of ordinate values can be written: 

,
 
S(~)=PM+Qy I 

=(PA-18+Q)y. Since M=A-18y {,
=Wy j 

where the n x k matrix W is defined as: 12 

At this point we can already get an appreciation for how cubic splines can be used to 

model electricity demand. The first step is to compose a vector of knot locations and for each 

knot. regress the farm characteristics on the observed ordinate values from the billing data. This 

yields the vector y estimates that relate how farm characteristics determine the level of electrical 

demand at the knots. Then, the cubic spline interpolants are found by multiplying y by the 

appropriate W matrix and a load curve is formed. 

An additional step, the first regression, that leads to better results, incorporates all 24 

hours of the data by using estimated ordinate values at the knots which minimize the squared 

deviations between the cubic spline and the true load curve. In other words, we use ordinate 

values that give the best fitting cubic spline rather than the actual values. This procedure works 

because a cubic spline always goes through the ordinate values corresponding to the knots. 

To develop this first-stage regression, we define ~ = [1,2, .. ,24]' as the vector of abscissa 

values corresponding to the hours of the day. Associated with ~ are the observed ordinate values 

from the billing data denoted by: 

where E=[EI' E2,... ,E24]' is a vector of independent normally distributed error terms such that E(E) 

= 0 and E(EE') = (j2I24 , where (j2 is the variance of 11. If we assume that S(~) can be represented 

by a cubic spline, then: 

11 = Wy+E 

since S(~) = Wy. 

By replacing the vector y with the parameter vector ~, we have: 

12A SAS program to construct the W matrix is found in Schenkel, 1993. 

i 
I 

i 

r 

f 
) 

,, ~ 

I
 

I
 
/ 

-




37 

11 = W~+e 

where e is a vector of observed disturbance tenns. ~ may now be estimated by ordinary least 

squares: 

This first-stage regression estimates the ordinate values at the knots which minimize the 

sum of squared error between the cubic spline and the actual observed values from the billing 

data. Therefore, the use of the vector b instead of y leads to a more precise load curve. Figure 

4.1 illustrates the improvement of using the least squares cubic spline, denoted CSRM, as 

opposed to the cubic spline for a 55 cow dairy farm with knot vector x = [5,8,11,12,17,24].13 

At the knot values the cubic spline and actual values are equal as indicated by the markers. 

Kwh
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Figure 4.1 Actual, cubic spline, and cubic spline regression model load curves. 

13This is the vector associated with knots located at 5am, 8am, 11 am, 2pm, 5pm, 8pm and 
12am. 
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This first-stage regression must be carried out for each load curve. Instead of doing them all {

individually, the model can be stacked and the estimates obtained in a single step. To do this, 

construct the matrix ATx24 of observed data, where T is the number of load curves for which the 

first-stage regression must be done. Then BkxT, the matrix of estimators is: I 

I:
! 
1 

,
f

, . 

I

• 
Data Used for Estimating Time-of-Day Electricity Demand 

Ideally, a study of this kind should be based on hourly load data for the same sample of 

farms used to separate farm household electricity consumption from that used on the farm. 

Unfortunately, these load data do not exist. As an alternative, data on hourly electricity demand 

for 26 dairy farms located throughout the state of Wisconsin and parts of Minnesota are used. 

Furnished by Dairyland Power Corporation of Wisconsin, electricity consumption figures 

(averaged monthly) for each hour of the day from January 1983 to April 1985 were available 

from three separate meters: one measuring total farm electricity consumption, a second measuring 

electricity for milk cooling, and a third measuring electricity for water heating. Due to meter 

equipment failures and other complications, not all data were collected for each farm. 

Other survey data were also available to help explain electrical consumption for each 

farm. This information included horse power and wattage ratings for large machinery, annual 

milk production, and the type of technology the farmer used in milking. The engagement times 

of electrically intensive activities, such as milking and feeding were also reported, and they help 

explain the relative location of the load curve, which peaks at milking time. 

The data contain no information on the price paid for electricity or the price received per 

hundred weight of milk. Prices should playa major role in any demand study, and given the 

wide distribution of these farms throughout Wisconsin and parts of Minnesota, it is highly likely 
J 

that the prices the farmers faced were considerably different. Unfortunately, there is no way to J...
 

know how the lack of price information affects the estimated load shapes in what follows.
 

Although the differential price data would have improved the regression results for the 26 farms,
 

little would be gained in applying the results to New York farm data where prices were not
 J 

t 
I 

~
 
The second stage of the model is to estimate parameters that determine p, the matrix of 

I
II~first-stage cubic spline estimates. Assuming these are linear functions of the farm characteristics, 

OLS can be applied. 
i
! 
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available either. Because none of the prices would have varied by time of day, one might expect 

prices to have only shifted the load curve up or down, with little effect on its relative shape. 

To gain a better understanding of the data and the shapes of the load curves, a graph for 

a representative farm milking 55 cows corresponding to its September consumption is illustrated 

in figure 4.2. Electricity consumption has a bimodal distribution throughout the day because 

farmers generally milk twice a day. 
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Figure 4.2 Total, water heating and milk cooling September load curves for 55 cow farm. 

Empirical Analysis 

In this analysis, the cubic spline regression model is applied to estimate the parameters 

needed to derive load curves corresponding to total electricity consumption and the two end uses 
for each season. Consumption by end use is of interest to utility personnel as utilities have 

increasingly placed more emphasis on end-use consumption in forecasting future loads. For this 
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analysis specifically, knowledge of end-use consumption for milk cooling and water heating 

allows for a more detailed analysis of the effects of adopting conservation measures. 

The model is applied directly for total and milk cooling electricity consumption. 

However, examination of the water heating load curves revealed that its shape could not be 
rexplained well by the survey data. Consequently, an alternative method was used in which the 

water heating load curve was derived indirectly by first constructing a residual load curve (e.g. 

subtracting electricity used for milk cooling and water heating from the total electricity 

consumption). The shape of this residual load curve is dictated mainly by the use of vacuum 

pumps, feeding and cleaning equipment, and lighting. In general, this load shape is more 

I, " 

r. 

,, 

explainable by the survey data than the water heater and leads to better second-stage results. So J 

J

instead of estimating the model for the three measured meters, it was estimated for total, milk 

cooling and residual electricity consumption. The water heating load curve could then be 

j
 

constructed by subtracting the residual and milk cooling from the total. 

Knot Location 

Before the first-stage regressions could be performed, the knot locations had to be chosen. 

The theory of knot locations is concerned more with numerical analysis than with statistics. 

However, a simple rule of thumb states that there should be no more than one critical point and 

one inflexion point between two knots since a cubic polynomial is capable of, at most, two turns 

(Poirier, 1976, p.l52). In the ensuing analysis, even this simple rule is difficult to follow since 

farmers milk at different times, thus shifting the location of these relative critical points and 

inflexion points. Therefore, we somewhat arbitrarily chose the knots at 5:00am, 8:00am, 

11:00am, 2:00pm, 5:00pm, 8:00pm and 12:00pm.14 The two-knot locations at 5:00am and 
.;5:00pm occur prior to the start of most milking. This minimizes some of the potential difficulties 

from having the load curve shift through the knot locations. 

First-Stage Regressions 

The model presented here differs from an earlier model of Hendricks, Koenker, and 

Poirier (1979). In their model, the first-stage regression was performed only once for each 

residential customer. This was accomplished by stacking all of the data for each particular 

household and performing one first-stage regression. To account for seasonal effects and other 

factors that would alter the load shape from day to day, appropriate dummy variables were 

14The W matrix for knots located at these hours can be found in appendix IV. 

-
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augmented to the W matrix. As with the other estimated coefficients, the coefficients for these 

dummy variables were then used as dependent variables in separate second-stage regressions to 

determine how they differed across households. 

This strategy was not possible for our analysis because data are available for only 26 

dairy farms. Furthermore, some of these farms lack so much data that it was not possible to 

construct seasonal dummy variables, thus leading to a singular augmented W matrix. 

Consequently each load curve is treated as an individual observation and seasonal adjustments 

are accounted for by using dummy seasonal variables in the second-stage regression. The 

implication with this approach is that the seasonal effects are assumed to be the same for all 

farms regardless of size. 

Mter removing missing observations (load curves in effect) and fabricating the residual 

load curve, 563 first-stage regressions were estimated for total electricity consumption, 399 for 

milk cooling and 361 for residual. The regressions for total consumption performed the best, 

with R-square measures consistently in the 90's or high 80's. The milk cooling curves and 

residual curves also resulted in R-square measures falling mostly in the high 80's. To illustrate, 

table 4.1 contains the first-stage regression results for five representative farms, all of which 

correspond to total electricity consumption during the month of June; they illustrate how the 

estimates correspond to the farm's electricity use at the knot. 

Table 4.1 First-stage regression results for total electricity load curve. 

Number of Cows 

Knots 34 50 70 84 99 

5:00am 0.800 1.467 1.474 5.247 7.876 
(1.4) (1.9) (0.8) (2.5) (5.5) 

8:00am 4.925 6.446 8.659 21.252 17.770 
(7.6) (7.3) (4.4) (9.2) (11.1) 

11:00am 5.697 3.089 10.694 8.396 5.038 
(8.6) (3.4) (5.3) (3.5) (3.1) 

2:00pm 0.163 2.869 -1.909 6.116 -0.243 
(0.2) (3.2) (-0.9) (2.6) (-0.1) 

5:00pm 1.464 4.700 7.683 9.820 13.699 
(2.2) (5.3) (3.9) (4.2) (8.5) 

8:00pm 6.154 4.399 8.300 20.760 13.894 
(10.2) (5.3) (4.5) (9.6) (9.3) -


12:00pm 1.714 3.107 0.682 1.724 -0.159 
(3.0) (3.9) (0.4) (0.8) (-0.1) 

R2 0.94 0.91 0.84 0.93 0.95 
(t-ratios) 
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Figure 4.3 plots the estimated load curves for the farms milking 34, 70, and 99 cows 

respectively. These load curves were formed by multiplying the estimates by the W matrix found 

in appendix IV. At the knots: 5:00am, 8:00am, 11:00am, 2:00pm, 5:00pm, 8:00pm, and 

12:00pm, the load curves pass through the estimates.15 
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Figure 4.3 First stage load curves for farms milking 34, 70, and 99 cows. 

Second-Stage Regression 

Once the first-stage regressions are obtained for total, milk cooling, and residual electricity 

use, the next step is to carry out the second-stage regressions. Assuming that the first-stage 

estimates are linear functions of the farm characteristics reported in the survey, OLS can be 

applied. 

15Since these first-stage regressions essentially involve time-series analysis, there is always 
concern over autocorrelation in the error structure. This issue was investigated, but in the final 
analysis, the OLS regressions were selected. The basis for this selection is given in appendix V. 

! 



43
 

The second stage entails 21 individual regressions, one corresponding to each of seven 

knots for each of three end uses: total, milk cooling and residual electricity use. The basis for 

the functional form and choice of variables is the same as that used to derive the conditional 

demands in the previous chapter: the level of demand at the knots is determined primarily by the 

stock of machinery and characteristics of the farm. At some hours these factors may have a 

major role, while at other hours they may not. Variables are restricted to zero when it is 

hypothesized that their effects on electricity consumption for that particular knot are negligible. 

Farmers use one of three types of milking systems: parlor, pipeline, or bucket. Dummy 

variables are used for the parlor and bucket systems. Farmers also often milk with two devices 

available that conserve electricity and chill milk more quickly. A heat transfer uses heat from 

the compressor motors used in the milk cooling process to help in the heating of water. These 

devices save electricity since the element in the water heater no longer has to run as much. An 

icebank builds up ice prior to milking and acts as a pre-coolant before the milk enters the bulk 

tank cooler. Many farmers use ice banks since they can improve milk quality by chilling it 

quicker. Dummy variables for these devices are used in the analysis as well (Ice Bank and HT). 

Since the effectiveness and intensiveness of use for these two devices is a function of farm size 

(i.e. a large farm operates its milk cooler longer, giving off more heat for which the heat transfer 

can utilize), cross product terms with the production of milk in thousands of pounds for these two 

devices are also used. The horsepower of the bulk milk cooler and vacuum pump are included 

in the regression to isolate the effects of different-sized motors across farms. The number of 

ventilation fans on the farm is also included as a regressor. 

To account for any unexplained variation resulting from unspecified equipment, the milk 

production in thousands of pounds is included. Dairy farms use electricity to light their barns 

in the winter and for cleaning and feeding purposes. Although data for these end uses were 

reported in the survey, there is good reason to believe that electricity used for these end-use 

purposes is correlated with milk production. For example, farms producing more milk generally 

have larger bams, require more lighting, use larger feed equipment motors, and are required to 

transport feed farther distances. To account for economies of size or scale, the square of milk 

production is also included. 

To pick up variation in the level of electricity caused by farmers milking at different 

times, the milking times and the square of the milking times are included (AM, PM, Square AM, -
Square PM). Finally, seasonal dummies attempt to reflect seasonal variation (Spring, Summer 

and Fall). 
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Table 4.2 gives results for the second-stage regression corresponding to total electricity.16 

At the 12:00am knot most of the variables are restricted to zero, reflecting the fact that activity 

is minimal in the middle of night. In addition the time shift variables, as well as the machinery 

variables, are restricted to zero where appropriate. As indicated by the squared milk production 

term, there does not seem to be significant economies of scale. For some knots, there appears 

to be diseconomies of scale are present. As farms get larger with respect to milk production, 

they use increasingly more electricity. The second-stage regressions for milk cooling and residual 

are similar to that for total (tables 4.3 and 4.4). However, variables that it is thought will not 

affect electricity consumption for these two end uses (i.e. horsepower of vacuum pump) are not 

included. 

When these regression equations are applied to data with farm characteristics, the load 

curves for total, milk cooling and residual electricity consumption may be formed for a given 

farm and season. The water heater load curve can then be formed by subtracting from the total 

the consumption due to milk cooling and residual at each hour of the day. 

5. ANALYSIS OF RATES 

This section uses the econometric results from both the previous two sections to estimate 

how time-of-use rates are expected to affect farmers' electricity costs throughout New York 

State. To begin, we describe the different time-of-use rates either currently in use or proposed 

by the major upstate New York utilities. Next, we describe a data set containing a representative 

sample of New York dairy farms used in the analysis. A methodology for combining the 

estimated aggregate demand and load shapes to analyze the effects of switching to time-of-use 

rates is then discussed. The different rates are applied to the sample representative farms and 

statistics are presented to illustrate how the electricity bills are expected to change. Finally, we 

discuss how farms differentiated by size, milking technology and other relevant factors are 

affected within each utility. 

Selected New York State Time-of-Use Rate Schedules 

The financial effects of time-of-use rates are analyzed for four New York State electric 

utilities: Niagara Mohawk Power Corporation (NMPC), Rochester Gas and Electric (RG&E), 

Central Hudson Gas and Electric (CHG&E), and New York State Electric and Gas (NYSEG). -

16N =469 (the number of observations in the second-stage regression) does not correspond 
to the 563 first-stage regressions due to missing observations on the independent variables. 
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Table 4.2 Second-stage regression coefficients for total electricity. 

Node 
12:00am 5:00am 8:00am 11:00am 2:00pm 5:00pm 8:00pm 

Intercept 197.152 -34.103 65.755 -3.853 67.485 -428.777 -375.723 
(3.1) (-2.2) (4.1) (-0.4) (4.4) (-3.0) (-4.8) 

Milk 4.25&03 1.05&03 1.99&03 -2.16E-04 3.85E-03 -9.29&04 -2.75E-03 
(7.4) (0.7) (1.3) (-0.2) (3.0) (-0.9) (-4.8) 

Square Milk -8.55&07 2.45&06 1.76&07 6.89&10 1.02&06 3.19E-06 2.12&06 
(-3.2) (3.8) (0.3) (0.0) (1.9) (5.6) (7.5) 

Parlor ** -2.735 0.352 -1.712 0.984 -0.533 -0.229 
(-8.8) (1.1) (-10.9) (4.4) (-1.7) (-1.5) 

Bucket ** -2.088 1.692 -0.945 -0.827 -3.134 -1.346 
(-4.3) (3.5) (-3.2) (-1.9) (-9.0) (-7.3) 

Milk Cooler HP ** ** 0.Q15 0.061 -0.048 0.239 0.032 
(0.2) (1.2) (-0.7) (3.8) (0.9) 

Ice Bank -0.336 0.905 1.617 -1.059 -1.278 2.506 -8.05E-03 
(-0.9) (1.4) (2.8) (-3.1) (-2.3) (4.7) (-0.0) 

Ice Bank*Milk -5.13&04 -2.23&03 4.03&04 3.94E-03 3.88&03 -2.96&03 4.03&03 
(-0.8) (-1.8) (0.4) (5.8) (3.7) (-2.8) (6.9) 

HT -1.01&10 -2.042 1.133 -2.223 *.. -2.549 -0.045 
(-0.0) (-3.8) (2.1) (-6.6) (-4.3) (-0.1) 

HT"Milk .... 1.12&03 -2.04&03 2.56E-03 .... 1.33E-03 1.34E-04 
(2.2) (-3.9) (7.8) (2.3) (0.4) 

Vacuum Pump HP .... 0.534 0.726 .... .... 0.314 -0.048 
(8.2) (12.1) (4.5) (-1.3) 

Number of Fans .... .... 0.150 -0.037 -0.278 0.227 .. .. 

(2.1) (-0.8) (-4.3) (3.4) 

AM .... 13.020 -24.202 2.138 -20.222 .... ..* 
(2.5) (-4.5) (0.6) (-3.9) 

Square AM ** -1.118 2.152 -0.206 1.538 ** ** 
(-2.6) (4.7) (-0.7) (3.5) 

PM -21.499 ** ** ** ** 47.463 42.229 
(-2.9) (2.9) (4.8) 

Square PM 0.586 ** ** ** ** -1.304 -1.179 
(2.8) (-2.8) (-4.7) 

Spring -0.015 -0.042 -0.883 -0.022 -0.364 -0.100 -0.171 
(-0.1) (-0.2) (-4.3) (-0.2) (-1.8) (-0.5) (-1.7) 

Summer -0.640 -0.399 -1.536 .-0.203 -0.512 -0.335 -0.787 
(-4.3) (-1.6) (-6.9) (-1.5) (-2.4) (-1.7) (-7.4) 

Fall -0.446 -0.624 -1.277 -0.404 -1.049 -0.508 -0.475 
(-2.9) (-2.5) (-5.6) (-2.9) (-4.7) (-2.5) (-4.3) 

N 469 469 469 469 469 469 469 
R' .66 .85 .69 .46 .71 .89 .63 

(t-ratios) 

-
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Table 4.3 Second stage regression coefficients for milk cooling. 
Node 

12:00arn 5:00am 8:00am 11:00am 2:00pm 5:00pm 8:00pm 

Intercept 158.015 -12.485 -2.426 0.998 -1.182 286.227 2.868 ,
(6.5) (-1.8) (-0.4) (0.3) (-0.3) (5.6) (0.1) , 

r 
Milk 1.41E-03 1.89E-03 -3.28E-04 7.23E-04 4.26E-04 2.92E-03 -2.60E-04 

(6.4) (3.2) (-0.6) (2.6) (1.1) (6.3) (-1.3) 

Square Milk -5.31E-07 5.26E-08 5.13E-07 -4.18E-07 5.52E-08 -4.57E-07 2.45E-07
 
(-5.3) (0.2) (2.2) (-3.4) (0.3) (-2.2) (2.6)
 !. ~ 

Milk Cooler HP 0.039 0.094 0.116 0.024 0.092 0.025 -0.034 )
(2.5) (2.4) (3.3) (1.3) (3.7) (0.8) (-2.3) 

fIce Bank 0.296 0.354 0.218 -0.303 -0.208 1.293 -1.87E-03 
I(2.0) (1.0) (0.7) (-1.8) (-0.9) (4.2) (-0.0) 

I
Ice Bank*Milk -1.04E-03 -1.76E-03 1.09E-03 1.80E-03 4.32E-04 -3.40E-03 1.40E-03 j 

(-3.7) (-2.6) (1.8) (5.7) (1.0) (-5.7) (5.3) 

! 
IAM ** 4.139 0.293 -0.634 0.826 ** ** 

(1.7) (0.1) (-0.6) (0.5) 

i 
Square AM ** -0.344 0.021 0.069 -0.106 ** ** t 

(-1.7) (0.1) (0.7) (-0.8) 

PM -17.821 ** ** ** ** -33.040 -0.632
 
(-6.5) (-5.7) (-0.2)
 

Square PM 0.501 ** ** ** ** 0.951 0.027 
(6.4) (5.8) (0.4) 

Spring 0.060 0.305 -0.158 -0.062 0.Q25 0.242 -0.027 
(1.3) (2.5) (-1.4) (-1.1 ) (0.3) (2.4) (-0.6) 

Summer 0.124 0.561 0.113 0.107 0.152 0.676 0.095 
(2.2) (4.0) (0.9) (1.6) (1.7) (5.8) (1.9) 

Fall 0.075 0.253 -0.090 0.022 0.036 0.203 -6.07E-03 
(1.3) (1.8) (-0.7) (0.3) (0.4) (1.7) (-0.1 )
 

N 388 388 388 388 388 388 388
 

R1 .45 .59 .28 .35 .36 .66 .47 
(t-ratios) / 

, 

Central Hudson Gas and Electric allows its customers to choose among three different rates. The 

NYSEG rates are only preliminary, subject to approval by the New York State Public Service 
J 

Commission when this study began. The other three utilities were all in the process of phasing I 

in time-of-use rates for their larger customers, with smaller customers exempt because of the .... 
expense of installing sophisticated meters (table 5.1). 
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Table 4.4 Second stage regression coefficients for residual electricity. 

12:00am 5:00am 8:00am 
Node 

11:00am 2:00pm 5:00pm 8:00pm 

Intercept -143.267 
(-2.5) 

-66.000 
(-4.1 ) 

-12.641 
(-1.1) 

-14.696 
(-1.8) 

-128.902 
(-1.4) 

-1141.053 
(-9.0) 

-191.276 
(-3.6) 

Milk 2.79E-03 
(6.0) 

-5.74E-03 
(-4.2) 

1.85E-04 
(0.2) 

7.1OE-05 
(0.1) 

4.54E-03 
(5.7) 

-4.07E-03 
(-4.1 ) 

-8.68E-04 
(-2.1) 

Square Milk -2.05E-07 
(-0.9) 

3.64E-06 
(6.0) 

-7.74E-07 
(-1.8) 

1.06E-07 
(0.4) 

-4.03E-07 
(-1.0) 

4.02E-06 
(8.0) 

6.47E-07 
(3.0) 

Parlor ** -0.684 
(-2.6) 

0.234 
(1.3) 

-0.443 
(-3.6) 

0.094 
(0.5) 

-0.409 
(-1.9) 

0.033 
(0.4) 

Bucket ** -1.934 
(-3.3) 

0.538 
(1.3) 

-0.267 
(-1.0) 

-0.144 
(-0.4) 

-1.717 
(-3.7) 

-0.624 
(-3.2) 

Vacuum Pump HP ** 0.352 
(5.9) 

0.373 
(8.8) 

** ** 0.143 
(2.5) 

-0.022 
(-0.9) 

Number of Fans ** 0.513 
(6.6) 

0.479 
(8.7) 

0.196 
(5.3) 

-0.040 
(-0.8) 

0.190 
(2.6) 

0.112 
(3.7) 

AM ** 23.986 
(4.3) 

3.665 
(0.9) 

4.942 
(1.8) 

** ** ** 

Square AM ** -2.064 
(-4.4) 

-0.274 
(-0.8) 

-0.404 
(-1.8) 

** ** ** 

PM 16.884 
(2.6) 

** ** ** 15.978 
(1.5) 

129.453 
(9.0) 

21.515 
(3.5) 

Square PM -0.496 
(-2.6) 

** ** ** -0.490 
(-1.7) 

-3.660 
(-9.0) 

-0.601 
(-3.5) 

Spring -0.062 
(-0.5) 

-0.173 
(-0.7) 

-0.490 
(-2.6) 

-0.026 
(-0.2) 

-0.365 
(-2.0) 

-0.219 
(-1.0) 

-0.213 
(-2.3) 

Summer -0.741 
(-5.1) 

-1.055 
(-3.5) 

-1.256 
(-5.9) 

-0.374 
(-2.5) 

-0.954 
(-4.6) 

-0.944 
(-3.7) 

-0.843 
(-7.8) 

Fall 

N 

R2 

(t-ratios) 

-0.585 
(-3.9) 

350 
.60 

-0.916 
(-2.9) 
350 
.71 

-1.012 
(-4.6) 

350 
.52 

-0.455 
(-2.9) 

350 
.34 

-1.083 
(-5.1) 

350 
.65 

-0.750 
(-2.8) 

350 
.73 

-0.590 
(-5.3) 

350 
.43 

The TOU rate schedules for these four utilities are given in figures 5.1 through 5.4; the 

rates reflect differences in peak demands by season and by time of day. For example, three of 

the utilities have peak, shoulder and off-peak rates. Niagara Mohawk also has an off-season rate, 

while Rochester Gas and Electric distinguishes between rates for its summer and winter peaks. 

The fourth utility, Central Hudson, has only peak and off-peak periods. The various peak, 

shoulder, and off-peak charges reflect in part the differences in marginal costs of producing 
energy. 



48
 j

r 

, 
f
I
 

Table 5.1 Eligibility thresholds for time-of-use rates. r r
Minimum Annual 

Kwh Usage for 

Utility Mandatory TOU Rates 

Central Hudson 15-20,000 Kwh' 

Niagara Mohawk { 
Power Corporation 30,000 Kwh 

f
New York State
 

Electric & Gas 42,000 Kwh
 -r 
I,
Rochester Gas & Electric 24,750 Kwh 

'Actual Kwh threshold is based upon a summer monthly usage of at least 1,700 Kwh per month. This range
 

provides an approximation.
 

Source: Middagh, et. al., 1991.
 

An important consideration in examining the effects of TOU rates is the proportion of the 

day and season to which the various rates apply. For example, one might expect the implications 

of the rate for the Central Hudson region to be significant because 36 percent of each day of the 

year, excluding weekends, is on peak. For Niagara Mohawk, 50 percent of the hours in a year 

are off-season, while 7 percent, 10 percent, and 33 percent of the hours are on-peak, on-shoulder, 

and off-peak, respectively. Given that the off-peak and off-season rates are much lower than the 

flat rate, this seems to indicate that customers located in the Niagara Mohawk service territory 

might be better off in terms of the charge for energy under time-of-use pricing. The total effect, 

however, depends on the distribution of consumption by time of day and the relative size of the 

two customer charges; these same considerations determine the total effect for the other utilities 

as welL 

Data Used to Analyze Effects of Time-of-Use Rates 

To analyze how these different TOU rates are expected to affect farmers' utility bills, the 

rates are applied to a sample of dairy farms included in the 1987 Farm Management and Energy 

Survey conducted by the Department of Agricultural Economics, Cornell University, with the 

assistance of the New York State Statistical Reporting Service. This was an enumerative survey 

in which 1,068 farmers located throughout upstate New York were interviewed to compile 

statistics on the characteristics of their farm affecting energy utilization. These data are much 

more detailed than either the data from the small sample of Wisconsin farms, or the 1988 Rural 

Household and Farm Energy Survey data set described earlier. In particular, the 1987 survey 

r c 

) c 
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Weekdays Weekends 

Summer 
(June-Aug.) _I D--------!.. •. 

8am 11 am 5pm 8pm 

Fall 
(Sept.-Nov.) II 
Winter 
(Dec.-Feb.) D 
Spring 
(Mar.-May) II 

Time-ot-Use Rate Flat Rate 

• Peak: 16.25 cents/Kwh Energy Charge: 7.196 cents/Kwh 

II Customer Charge $5.85/month Shoulder: 8.4 cents/Kwh 

I:iii:liliililliliiliilil Off-Season: 4.75 cents/Kwh 

DOff-peak: 4.75 cents/Kwh 

Customer Charge: $32.20/month -
Figure 5.1 Niagara Mohawk Power Corporation time-of-use rate. 
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I 

Weekdays Weekends r 
I 
j 
J 

Summer 
(June-Sept.) ~~ D 

lam 11am 5pm 9pm 

i 

) 

r 

Fall 
(Oct.-Nov.) D•lam 9pm 

Winter 
(Dec.-Feb.) ~~ D 

lam 5pm 9pm 

Spring 
(Mar.-May) -~ D 

lam 9pm 

Time-ot-Use Rate Flat Rate 

Peak: 22.0 cents/Kwh (Summer) Energy Charge: 8.439 cents/Kwh 

14.0 cents/Kwh (Winter) 
Customer Charge: $6.00/month 

Shoulder: 9.4 cents/Kwh 

•
lim
 
DOff-peak: 4.6 cents/Kwh 

Customer Charge: $24.80/month 

Figure 5.2 Rochester Gas and Electric time-of-use rate. 

.
 
J 

-
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Weekdays Weekends 

Option 1 '---------!~ D 
Bam Bpm 

Option 2 D~
 
9am 9pm 

Option 3 D~ 
10am 10pm 

Time-of-Use Rate Flat Rate 

• Peak: 15.525 cents/Kwh Energy Charge: 9.004 cents/Kwh 

DOff-peak: 5.175 cents/Kwh Customer Charge: $6.20/month 

Customer Charge: $1 O.OO/month 

-

Figure 5.3 Central Hudson Gas and Electric time-of-use rate. 
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Weekdays 

Summer 
(June-Sept.) ------:

lam 1Dam 6pm 11 :3Dpm 

Winter 
(Dec.-Feb.) 

lam 1Dam 5pm 11 :3Dpm 

Spring/Fall 
(Mar.-May)
 
(Sept.-Nov.)
 -~~ 

lam 11:3Dpm 

Weekends
 

All Seasons
 

lam 11:3Dpm 

Time-of-Use Rate Flat Rate 

• Peak: 16.21 cents/Kwh Energy Charge: 9.58 cents/Kwh 

~ Shoulder: 8.21 cents/Kwh Customer Charge: $5.45/month 

DOff-peak: 4.23 cents/Kwh 

Customer Charge: $24.DD/month 

! 
r 

r 
I,,
 
I 
j 

J, 

I 
J 

1 • 

I
 
I
 

'

Figure 5.4 Preliminary New York State Electric and Gas time-of-use rate. 

'I 

-. 

I 
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includes data on important electrical machinery and the timing of critical farm operations such 

as milking and feeding, but as stated above, it does not include information on the total 

consumption of electricity, nor on the daily electricity load shapes as do the Wisconsin data. 

Furthermore, it includes no separate observations on rural non-farm households as does the 1988 

survey data. Thus, these latter two data sets were needed to estimate the relationships discussed 

in sections 3 and 4. 

Once the Wisconsin data and the 1988 survey data have been used to estimate 

mathematical relationships for daily load shapes and separate estimates for the farm and farm 

household electricity consumption, these relationships can be applied to the data for the farms 

in the 1987 survey to estimate the effects of the various TaU rates. The 1987 data set has the 

added advantage of being drawn from the entire upstate New York region. Thus, it is more 

representative than the 1988 data which include farms only from Niagara Mohawk's service 

territory. The only disadvantages is that it was a "blind" survey and the locations of the farms 

are not known. With the exception of the Central Hudson territory, the farms are probably 

representative of those found in each of the other service territories. 

Of the 1,068 farms surveyed, 758 can be classified as dairy farms. As in the analysis of 

the 1988 data, screening criteria from table 3.2 were used to eliminate outliers. In addition, it 

was also necessary to limit attention to the farms milking twice a day, producing between 4,000 

and 35,000 hundred-weight of milk per year and having a difference between its evening and 

morning milking time of at least nine hours. These additional requirements were imposed to 

keep the analysis within the range of the data from which the daily load curves were estimated. 

Not surprisingly, when the analysis was extended to farms well beyond these ranges, the 

estimated load curves made little sense. 

After removing the farms that did not meet all of the criteria, we were left with 435 farms 

for the analysis. Table 5.2 provides descriptive statistics for these farms. The numbers in this 

table can be compared with the numbers of table 3.3 to provide some perspective on the 

similarity between farms in this data set and farms in the data set used to estimate the conditional 

demands in section 3. 

Milking efficiency for farms in both data sets is about 14,500 pounds per cow, regardless 

of farm size. The proportions of farms with electric water heaters, heat transfer devices and ice 
banks/precoolers are within acceptable ranges in each of the herd-size groups. 
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Table 5.2 Characteristics of dairy farms from 1987 survey. 

Herd Size 

50 and under 51 - 75 76-100 Over 100 

N 99 153 72 111 

Avg. herd size 43 63 88 147 

Annual CWT production 6,346 9,265 12,805 21,033 

Avg. poundslcow 14,675 14,581 14,504 14,488 · · ,. 
Milking Technology 

Bucket 32 32 5 4 

(32.3%) (20.9%) (6.9%) (3.6%) 
~ r 

Pipeline 59 104 40 32 • 
(59.6%) (67.9%) (55.6%) (28.8)%
 

Parlor 8 17 27 75
 

(8.1%) (11.2%) (37.5%) (67.6%)
 

Percent with electric water 

heater 92% 84% 81% 77% 

Percent with heat transfer 

system 19% 37% 47% 65% 

Percent with ice 

bank/precooler 3% 8% 21% 31% 

Avg. number of milking units 4 5 6 9 

Source: 1987 Farm Management and Energy Survey. 

There are some differences worth noting, and are most likely the result of the 1987 survey 

being targeted at larger farms. First, there appears to be a larger number of farms using parlor 

technology. In all four herd-size groups, the proportion of parlor farms in table 5.2 are larger 

than the corresponding proportions in table 3.3. In contrast, the conditional demand data set has 

a larger proportion of farms using the pipeline technology. Second, there is a higher proportion 

of large farms, as measured by number of cows, in the sample data set as compared with the 

conditional demand data set. Despite these minor differences, it is probably reasonable to use -equations estimated from the conditional demand data to predict energy use on this sample of 
" -. 

representative farms. 
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Table 5.3 Summary statistics for effects of TOU rates. 

Utility 

Central Hudson 

Niagara Mohawk Rochester Gas and Electric New York State 

Power Corporation Gas and Electric (Opt. 2) Electric and Gas 

Average Kwh 51,161 51,161 51,161 51,161 

Flat Rate Bill $3,752 $4,389 $4,681 $4,967 

Energy 98.1% 98.3% 98.4% 98.7% 

(¢/Kwh) (7.196) (8.439) (9.004) (9.58) 

Fixed 1.9% 1.7% 1.6% 1.3% 

(Cust. Charge) ($70) ($72) ($74) ($65) 

TOU Bill $3,452 $4,260 $4,907 $4,597 

Energy 88.8% 93% 97.5% 93.7% 

(Avg. ¢/Kwh)" (5.992) (7.744) (9.357) (8.422) 

Fixed 11.2% 7% 2.5% 6.3% 

(Cust. Charge) ($386) ($298) ($120) ($288) 

Average TOU 

Rate (¢/Kwh)"· 5.900 7.491 8.869 8.148 

Average Change -$300 -$129 $226 -$369 

Number of 

Increases 23 77 417 12 

Number of 

Decreases 412 358 18 423 

Average Percentage 

Change -6.78% -2.189% 4.66% -6.69% 

(Range) (-14.1% to 22.2%) (-9.34% to 16.85%) (-2.55 to 25.3%) (-16.6% to 7.6%) 

{S.D.} {4.1 %} {3.15%} {3.6% } {3.3% } 

Average Increase 4.18% 2.84% 4.90% 2.69% -Average Decrease -7.39% -3.27% -0.82% -6.96% 

• - Average ¢/Kwh is the (TOU Bill - Customer Charge)/Average Kwh 

•• - Average TOU Rate is the utility's weighted average rate for each hour; its the rate a customer would pay if 

electricity was distributed uniformly by day and season. 
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Methodology 

One easy way to analyze the effects of time-of-use rates would be to apply the different 

rates to simulated load curves using the spline estimates from section 4. In doing this, we would 

be assuming that the total electricity consumption for a farm located in New York is the same 

as a similar farm located in Wisconsin or Minnesota. This may not be the best assumption, so 

in this section we devise a method which combines the conditional demand equations estimated 

in section 3 to predict the aggregate annual farm electricity consumption for the 435 sample 

farms, using the estimated cubic spline functions from section 4 to distribute this predicted 

demand by season and by time of day. After considerable experimentation with the data, this 

seemed to present few problems. That is, the major problem was in predicting the level of the 

load curve and not predicting its shape. 

The model incorporating these two estimated relationships that is used to estimate the 

electric bills under time-of-use electric service requires extensive data manipulation, most of 

which is done through a program written in the C language. The code is long and detailed and 

is not reported here. To gain some appreciation for how the analysis was accomplished, a brief 

description of the program follows. The program deals with each of the 435 farms separately. 

The first step is to predict the annual electricity consumption. This is accomplished by 

multiplying the daily electricity consumption predicted from the estimated equation in table 3.8 

by the number of days in the year (365). Values for energy consumption corresponding to the 

ordinate values at the seven spline knots for each season of the year are also predicted. Defining 

AWin as a seven-element column vector corresponding to the knot ordinate values for winter, each 

of its elements can be found using the regression results of table 4.2. The seven element column 

vectors for the three remaining seasons, A,prg, Asum and ~an, can be found by adjusting ~in for 

the appropriate dummy variable17
• 

Once this is accomplished, four 24-element column vectors, one corresponding to the load 

curve for each season, are formed by pre-multiplying these vectors by the W matrix in appendix 

IV. That is: 

L Win =WAWin
 

L sprg =WA,prg
 
L sum =WAsum
 
L fan = WAfan.
 

17The seasonal dummy variables correspond to Niagara Mohawk's TOU seasons (figure 5.1). 
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For some farms, predicting the load curve was actually accomplished in two steps. This 

procedure was needed because many of the farms drawn from the sample data set report that they 

either milk at relatively early hours, such as 3:00am and 3:00pm, or at late hours, such as 

1O:00am and 1O:00pm. These extreme times go well beyond the range of milking times used to 

estimate the regressions in table 4.2, and experimentation with the data suggested that using these 

milking times would generate load curves that make little sense. One option would have been 

to discard these observations and do the analysis for only those farms with milking times within 

a couple hours of 6:00am and 6:00pm. Instead, for these farms, a simple transformation was 

made as a first step. Both the morning and evening milking times for the sample are shifted the 

same number of hours so that the evening milking is 6:00pm, the approximate average for the 

Wisconsin farms. By assuming that the shape of load curve does not change significantly with 

respect to milking time, this simple transformation led to reasonable predicted loadshapes. After 

estimation, these load shapes were shifted back the appropriate number of hours to reflect the 

actual milking times and reposition the load curve accordingly. 

Once the load curves are formed, the next step is to distribute consumption seasonally. 

To do this, it is assumed that total demand for electricity is distributed in the same proportion 

as the total consumption estimated from the cubic spline regressions. As stated above, this step 

adjusts for problems in predicting total load using the Wisconsin data. Mathematically, one can 

multiply the predicted annual electricity consumption by the proportion of electricity consumed 

in each season based on the Wisconsin load curves: 

NUM.*Daily. 
1 1 *Annual Kwh 

4 

~ NUM.*Daily.L J J 
j-I 

where: 
i,j = win, sprg, sum, fall. 

Kwhi =Kwh consumption during season i. 

NUMi =The number of days during season i. 

24 

DailYi = L LJhour] 
hour=1 -


Annual Kwh = Annual electricity consumption based on the conditional demand 
estimates. 
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The next step is to determine how much electricity is consumed during each hour of the 

day for the four load curves. To do this, we make use of the following formula which 

proportions consumption for each hour: 

L.[hour] Kwh. 
Lt[hour] = 1 * 1 

DailYi NUM j 

With these four load curves that represent for each farm the predicted electricity 

consumption corresponding to the seasons of the year, it is a simple task to calculate utility bills .
based on the time-of-use rates for the different utilities. !., 

J 

Empirical Results 

This section contains a discussion of how the four different TOU rates would affect farms 

across the state. For much of the analysis, we consider only option two of Central Hudson Gas 

and Electric since the other two options are quite similar. Emphasis is placed on the 

characteristics of each utility's rate that differentiate it from the others. 

Table 5.3 contains a number of statistics that help summarize how the different rates can 

be expected to affect farmers' electricity bills. The information in each column of this table 

should be interpreted as if all the sample farms were located in the respective utility's service 

territory. Percentage change is given as: 

TOU Bill - Flat Rate Bill J100Percen age t Change = * ,
( Flat Rate Bill 

and thus, negative numbers indicate savings. The average predicted annual electricity 

consumption per farm is just over 51 ,000 Kwh. Because the data did not allow for estimating 

the consumption response to rate differentials, the average consumption does not vary across 

utility. Given these consumption estimates, Niagara Mohawk has the lowest average bill under 

flat rate billing, $3,752, while NYSEG has the highest, $4,967. This is expected since the total 

bill under flat rate, especially when only a small percentage of it is fixed in the customer charge, 

is highly correlated with the utility's constant Kwh charge. For all utilities, the fixed customer 

charge is less than two percent of the electricity bill. 

'
Under time-of-use billing, farms located throughout the NMPC, RG&E and NYSEG 

service territories would, on average, realize reductions in their electricity bills when compared 

to the flat rate. The average farm, if located in the NYSEG service territory, can expect to save 
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approximately $369 per year, the largest savings among all the utilities, while if within the 

RG&E and NMPC territories, these farms can expect to save approximately $129 and $300, 

respectively. Niagara Mohawk customers would continue to pay considerably less for electricity, 

$3,452 per year, as compared to NYSEG customers, $4,597 per year, and RG&E customers, 

$4,260 per year. 

These changes represent modest percentage savings on the cost of electricity. For the 

three utilities, the average savings is just over five percent of the total electricity bill. Further, 

most of the farms can expect at least some savings. This model estimates that only 23 of the 435 

sample farms would realize increases in their electricity bills if they were located within the 

Niagara Mohawk service territory. Of the 435, only 77 and 12 farms would see their utility bills 

rise under the TaU rates for RG&E and NYSEG, respectively. In sections below, there is a 

closer examination of each individual utility and the farms realizing different levels of savings. 

Since these are the three utilities that serve much of the dairy producing regions of the 

State, much of the concern expressed by the farm community and the State Legislature when the 

TOU rates were announced about four years ago was unfounded. However, at the time the rates 

were announced, the fixed customer charge for Niagara Mohawk was to have been higher than 

the one used here. This would have changed the situation somewhat. The importance of the 

energy charge is discussed in greater detail below. 18 

The situation would not be as favorable for the dairy fanns located within the Central 

Hudson Gas and Electric service territory. If this sample of farms is representative of dairy 

farms in this service territory, they could expect, on average, about a $226 increase in their 

electricity bills under Option 2. These increases place them at the top of the four utilities with 

regards to the cost of electricity, averaging $4,907 per farm. Approximately 96 percent of the 

fanns would see some increase in their bills if they were located in this service territory. Yet, 

the average increase would be less than five percent, ranging from -2.55 to 25.3 percent. 

18The fixed customer charge comprises a larger share of the total bill under time-of-use 
pricing, averaging just under seven percent across the four rates, as compared with flat-rate 
pricing, of which the customer charge accounts for about 1.5 percent. Under marginal-cost pricing, which is essentially what time-of-use rates are, these electric utilities would be collecting 
less in revenue than under flat rate or average-cost pricing. Thus, in an attempt to maintain the 
revenue neutrality of the rate, electric utilities have been allowed substantial increases in their 
customer charges. This increased customer charge appears as if it could be regressive against 
the smaller farms. 
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Table 5.4 helps explain why fanns, if located in the CHG&E territory, would experience 

significant cost increases while fanns, if located in the other service territories, would experience 

windfall savings. First, about 36 percent of all hours in the year are billed at peak rates for 

CHG&E, while only 7, 9 and 12 percent are billed at the peak rates for NMPC, RG&E and 

NYSEG, respectively. The high proportion of peak hours in the CHG&E rate is most likely due 

to demand by commercial businesses located just north of New York City, a demand which is 

somewhat invariant with respect to season, but is relatively constant throughout business hours. 

The situation is amplified when one considers that approximately 40 percent of the electricity 

used on a farm located in this service territory is billed at peak rates. Although the proportion 

of electricity billed at peak rates for the other utilities is equal to or slightly larger than the 

portion of time in peak rate periods, the percentages range only from 7 percent to 14 percent. 

These are substantially lower than the 40 percent for CHG&E. 

,. 

In contrast, about 83 percent of the hours in a year are billed at the low cost of 4.75¢ per 

Kwh for NMPC customers; the same percentage of the electricity consumed by a typical fann 

occurs during these low cost periods. Fanns located in the Rochester Gas and Electric territory 

also have a large proportion of their energy consumption during off-peak periods, about 50 

percent. Where NMPC fanns consume only 13 percent of their electricity during the relatively 

. more costly shoulder periods, RG&E customers consume closer to 42 percent on shoulder. This 

helps explain why RG&E fann customers save considerably less in moving to the TOU rate 

compared with NMPC customers. 

When one considers that 64 percent of the electricity consumed on a NYSEG farm will 

occur during the shoulder period, it is hard to imagine that savings will be realized when farms 

move to the new rate. However, unlike Niagara Mohawk and Rochester Gas, which both exhibit 

higher shoulder period prices than their flat rate prices, the price for NYSEG shoulder period 

electricity is actually lower than the existing flat rate. This helps to explain the considerable 

savings that NYSEG customers would realize. 

The Effects of Milk Production Level 

Table 5.5 illustrates how fanns of different herd size would be affected by switching to 

TOU rates for each of the four utilities. For the NMPC rate, all customers experience some 

savings by moving to TOU pricing; larger farms receive greater absolute savings. The smallest 

fanns save on average about $97 (2.9 percent), while the largest fanns save about $577 (10.3 

percent). 
.. 



Table 5.4 Distribution of hours, Kwh and cost for utilities' time-of-use rates. 

UTILITY 

Niagara Mohawk 
Power Corporation 

Rochester 
Gas and Electric 

Central Hudson Gas and 
Electric - Option Two 

New York State 
Electric and Gas 

Rate Period Hours Kwh Cost Hours Kwh Cost Hours Kwh Cost Hours Kwh Cost 

Off Season 50.1% 49.4% 34.3% N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Off Peak 32.8% 31.0% 21.5% 58.3% 49.4% 27.1% 64.3% 59.9% 32.4% 33.3% 22.1% 10.3% 

Shoulder 

Peak 

10.4% 

6.7% 

13.0% 

6.6% 

16.0% 

15.7% 

32.8% 

8.9% 

42.2% 

8.4% 

47.1% 

17.9% 

N/A 

35.7% 

N/A 

40.1% 

N/A 

64.8% 

54.8% 

11.9% 

64.0% 

13.9% 

58.0% 

24.6% 

0\ ...... 

Winter N/A N/A N/A 2.9% 4.5% 7.5% N/A N/A N/A N/A N/A N/A 

Summer N/A N/A N/A 6% 3.9% 10.4% N/A N/A N/A N/A N/A N/A 

Customer Charge 

-
N/A - Not Applicable. 

N/A N/A 12.5% N/A N/A 7.9% N/A N/A 2.8% N/A N/A 7.1% 

I 
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Table 5.5 Average bill change for different size farms. 
Herd Size 

50 and 
Utility Under 51 - 75 76 - 100 Over 100 

NMPC 
Average Change -97 -206 -351 -577 
Avg. Percentage Change -2.9 -5.9 -8.3 -10.3 
Distribution of Costs/(Kwh) 

Off-season 32% 34% 35% 36% 
(49%) (49%) (50%) (50%) 

Off-peak 21% 21% 22% 22% 
(32%) (31%) (31%) (30%) 

Shoulder 15% 16% 16% 17% 
(13%) (13%) (13%) (13%) 

Peak	 14% 15% 16% 17% 
(6%) (7%) (7%) (7%) 

Cust. Chg.	 17% 14% 11% 8% 

RG&E 
Average Change -14 -77 -154 -288 
Avg. Percentage Change 0.1 -1.7 -3.0 -4.3 
Distribution of Costs/(Kwh) 

Off-peak 26% 27% 27% 28% 
(49%) (49%) (49%) (49%) 

Shoulder 47% 47% 47% 48% 
(43%) (42%) (42%) (41%)

Peak - Win. 7% 8% 8% 7% 
(5%) (5%) (4%) (4%) 

Peak - Sum. 9% 10% 11% 12% 
(4%) (4%) (4%) (4%) 

Cust. Chg.	 11% 9% 7% 5% 

NYSEG 
Average Change -145 -272 -416 -673 
Avg. Percentage Change -4.0 -6.3 -7.5 -9.1 
Distribution of Costs/(Kwh) 

Off-peak 10% 11% 10% 10% 
(22%) (23%) (22%) (21%)

Shoulder 55% 57% 59% 62% 
(63%) (63%) (64%) (66%) 

Peak 25% 25% 25% 24%
(15%) (14%) (14%) (13%)

I
!

i 

-
Cust. Chg.	 10% 8% 6% 4%

,	 
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Table 5.5 continued. 

Herd Size 

50 and 
Utility Under 51 - 75 76 - 100 Over 100 

CHG&E - Option 2 

Average Change 130 171 263 362 

Avg. Percentage Change 4.1 4.3 5.2 5.3 

Distribution of Costs/(Kwh) 

Off-peak 33% 33% 32% 32% 
(61%) (60%) (59%) (59%) 

Peak 63% 64% 66% 66% 
(39%) (40%) (41%) (41%) 

Cust. Chg. 4% 3% 2% 2% 

For most of the cases analyzed, electricity consumed in each of the defined rate periods 

varies a little with respect to farm size. Under the NMPC rate, farms with 50 or fewer cows 

consume about 32 percent of their electricity during off-peak hours, while farms with greater than 

100 cows consume two percentage points less, around 30 percent during off-peak hours. Also, 

regardless of size, approximately 13 percent of electricity is consumed during shoulder periods. 

The same situation exists for RG&E and NYSEG. For RG&E, approximately 49, 42, 5, and 

4 percent of the electricity is consumed during the off-peak, shoulder, winter-peak and summer

peak periods, respectively, regardless of farm size. While small farms just about break even, 

large farms realize a saving of 4.3 percent, mostly due to the fact that the fixed customer change 

on larger farms is spread over a large volume. 

In cases where the proportion of electricity consumed in each of the rate periods is constant 

across different sized farms, variation in the average percentage change due to energy charges 

is negligible. For NYSEG, the smallest customers can expect about a 4 percent reduction in their 

electricity bill, while the largest, a 9 percent reduction. Part of the relatively larger savings for 

NYSEG is the fact that rates in shoulder periods are lower than flat rates. 

Based on the CHG&E rate, farms milking 50 cows or less can expect an increase of $130, 
just over four percent. For farms with more than 100 cows, however, there is about a 5 percent 

increase in the annual electricity bill. 
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Factors Related to Percentage Cost Reductions 

In this section, further analysis is conducted to determine if there is any systematic 

relationship between other characteristics of the farm and the relative change in the electricity 

bill when farms move to the TOU rate. Many of the characteristics of interest are the same as 

those used to estimate conditional demand for electricity and distribute it by time of day. These 

relate to farm size, scheduling of critical operations, milking technology, and the use of energy 

conservation devices. 

Understanding how the characteristics of the farm are related to the relative changes in the 

customer's electricity bill when moving to TOU rates is a first step toward identifying 

organizational or other changes that could lead to further savings. These relationships may be 

of interest to utility personnel in developing DSM programs designed to cut down electricity 

consumption during peak periods. 

This systematic relationship can be determined by regressing the farm characteristics on the 

percentage change in the electricity bill. Table 5.6 contains definitions for variables initially 

considered in the analysis. 

There are good reasons why each of these variables is believed to playa systematic part in 

determining the percentage change a farm can expect in switching to TOU rates. For example, 

a heat transfer system and icebank/precooler both alter the shape of the load curve, thus 

potentially changing the proportion of electricity consumed during the peak, shoulder or off-peak 

periods. Heat transfers reduce water heating electricity consumption, and icebanks produce ice 

prior to milking which is used, in tum, to cool milk before it enters the bulk tank cooler. 

Because of their different energy intensities, the types of milking system used, whether a parlor, 

a pipeline or a bucket system, also affect the general daily load shape and are included as 

regressors. 

The times that morning and evening milkings begin are also important. They determine the 

relative location of the peaks in the daily load curves. In general, energy consumption during 

peak and shoulder periods will be reduced the later a farmer milks in the evening and the earlier 

he/she milks in the morning. For most New York utilities the shoulder and peak periods tend 

to be concentrated towards the middle hours of the day, late afternoon and early evening, while 

the off-peak periods are found later in the evening and early in the morning. 

)' 
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1 

r 

-




65
 

Table 5.6 Variable definitions used in regression of farm characteristics on percentage 

change in electric bill and energy charge. 

Variable Definition 

Intercept 

HT 

Icebank 

AM 

Pounds 

Sqr. Pounds 

Bucket 

Parlor 

Pipeline' 

PM 

Elec. H20 

EfC Lights 

Units 

Intercept Value 

Dummy for presence of heat transfer system 

Dummy for presence of icebank/precooler 

Morning milking time 

Annual milk production in pounds 

Annual milk production in pounds squared 

Dummy for bucket milking system 

Dummy for parlor milking system 

Dummy for pipeline milking system 

Evening milking time 

Dummy for electric water heater 

Dummy for presence of high efficiency lighting 

Number of units 

• - indicates variables is included in intercept. 

As was discussed above, the size of the farm is a major factor in the percentage change a 

farmer can expect to experience. For this reason, the annual milk production in pounds and the 

square of annual milk production in pounds are included as regressors. These variables are 

highly correlated with the number of cows because milk production per cow varies little across 

the farm size groups. By including a measure of size and size squared, the model should be able 

to isolate the influence of size on bill savings, much of which occurs due to the fixed charge, and 

test the extent to which this relationship is increasing with size. 

To begin the analysis, the variables of table 5.6 were regressed on the percentage change in 

the electricity bill for each of the utilities.19 The estimated results are particularly encouraging, 

-

19Because of the relatively large sample size, and the fact that the effect of each utility's rate 

was calculated for each farm, it was not necessary to pool the data and account for differences 
in utility rates by using dummy variables. 
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given the cross-sectional nature of the data. For the relationships involving the total utility bills 

(Table 5.7), the R2's range from a high of 0.73 for NMPC to a low of 0.26 for CHG&E, option 

2. Most of the t-ratios are above two, and the signs on the coefficients are as expected. 

To interpret the results of the regressions, it must be emphasized that actual savings in 

moving to TOU rates are reflected as negative values of the dependent variables. That is, a five 

percent savings is -5.0. Therefore, if an independent variable in any of the regressions has a 

negative coefficient attached to it, an increase in that variable leads to a decrease in the algebraic 

size of the dependent variable, indicating either a smaller cost increase (e.g. 5.0 to 3.0) or a larger 

cost savings (e.g. -3.0 to -5.0). For example, farmers located in the Central Hudson region and 

that choose option (1) on average experience about a 1.86 percentage point decrease in their 

electricity bill by milking one hour later in the evening. 

By controlling for other factors, these results suggest that for NMPC, RG&E and NYSEG 

cost savings rise up to a certain production level and then begin to decrease (table 5.7). For 

example, cost savings increase in percentage terms for milk production up to 2.48 million pounds 

per year for NMPC rates.20 Beyond this point (approximately 170 cows assuming an average 

of 14,500 pounds of milk per cow), cost savings begin to decrease in percentage terms. A 

similar pattern is evident for RG&E and NYSEG, with maximum percentage savings occurring 

at milk production levels reflecting farm sizes of about 200 cows and 177 cows, respectively. 

These relationships are consistent with being able to spread the fixed costs over a larger base. 

The fact that percentage cost savings begin to fall at some point suggests that the effect of fixed 

costs has been dissipated. 

Since one of the reasons TOU rates are introduced is to shift demand to off-peak periods, 

one obvious strategy for potentially increasing savings under TOU pricing is to shift the 

schedules of electrically intensive activities. The effects of altering milking times on farm 

There was little reason to retain variables in the initial model specification if the t-ratios were 
very low. Thus, a second set of models was estimated which restricted the coefficients on the 
variables with initial t-ratios less than one to be zero. The one exception was that if the t-ratio 
for either pounds or pounds squared was above one in the initial model, both were retained in 
the second set of estimates. This strategy verified that the results of the final specifications were 
extremely insensitive to these restrictions. None of the signs on the coefficients changed, and 
the magnitudes of the coefficients changed little as well. Table 5.7 contain the regression results 
for the final model specifications. 

20These production levels representing the maximum percentage cost savings are calculated 
by taking the partial derivative of the regression equation with respect to pounds, setting the 
derivative equal to zero and solving for pounds. 
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Table 5.7 Estimated relationship between the percentage change in the farmers' utility bills 

and selected farm characteristics. 

Utility 

Variable NMPC RG&E CHG&E 

(2) 

NYSEG 

Intercept 9.77 

(4.23) 

11.59 

(4.89) 

22.58 

(7.45) 

-0.22 

(-0.10) 

HT 0.82 

(3.58) 

0.55 

(2.34) 

** ** 

Icebank 0.79 

(2.49) 

1.57 

(4.91) 

0.55 

(1.27) 

** 

AM 0.46 

(2.73) 

1.03 

(5.98) 

2.38 

(9.77) 

1.67 

(10.28) 

Pounds -0.12E-4 

(-16.76) 

-0.68E-5 

(-8.94) 

** -7.34E-6 

(10.40) 

Sqr. Pounds 2.42E-12 

(11.32) 

1.16E-12 

(5.35) 

** 1.43E-12 

(7.01) 

Bucket 3.25 

(10.70) 

2.49 

(7.99) 

** 0.60 

(2.06) 

Parlor ** -0.42 

(-1.53) 

1.61 

(4.12) 

-0.45 

(-1.73) 

PM -0.43 

(-2.61) 

-0.78 

(-4.57) 

-1.86 

(-7.96) 

-0.54 

(-3.34) 

Elec. H2O -2.95 

(-10.39) 

-1.93 

(-6.67) 

-0.59 

(-1.46) 

-1.38 

(-5.10) 

Eff. Lights ** ** 0.26 

(0.76) 

** 

Units ** 0.08 

(1.47) 

** 0.12 

(2.14) 

N 

R2 

(t-ratios) 

435 

0.73 

435 

0.54 

435 

0.26 

435 

0.61 -
** - Restricted to zero. 

Note: The dependent variable is the percentage change in a fanner's utility bill in moving from the flat rate 

to the TOU rate. The variable names are given in table 5.6. 
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savings can be determined through inspection of the coefficients for AM and PM in the various 

regressions. 

For each utility, the AM coefficient is positive, while the PM coefficient is negative (Table 

5.7). For example, farms located within the NYSEG region can on average reduce their 

electricity bill approximately 1.67 percentage points by milking one hour earlier in the morning. 

These same farms can also save approximately 0.54 percentage points by milking one hour later 

in the evening. The savings that farmers could realize by changing their milking times are 

marginal; a three percent savings on a $5,000 electricity bill corresponds to $150. This savings 
J 

must be compared with the disadvantages of altering the farmers life style and any possible yield 1
/. 

losses due to increasing the interval between milking times. Since most farmers seem to set this F 

interval at approximately 12 hours, it appears that there is limited potential for savings by j 
I 

adjusting milking schedules. Any savings in the morning are offset by increases in the evening, , 
and vice versa if the whole milking schedule is shifted to maintain the 12 hour interval between ..I

I 

milkings. I 

'I 
~ 

The effects of heat transfer systems and icebanks on the savings when switching to TOU )
I . 

pricing can also be analyzed. Initially, heat transfer systems were developed to conserve 

electricity and icebanks to increase the quality of milk by chilling it quicker. Examination of the 

coefficients for these two devices from the farm conditional demand estimates (table 3.7), 

indicates that a heat transfer system saves approximately 2,313 Kwh per year while an ice bank 
I. 

increases electricity consumption about 1,310 Kwh. 

While a heat transfer system may be justified as a conservation measure to reduce overall 

consumption, it is unclear whether they would be an effective demand side management tool 

designed to shift load and reduce peak period demand, thus leading to customer savings in 

switching to TOU rates. Inspection of table 5.7 indicates that farms with heat transfers 

experience smaller percentage savings than those without them. For NMPC and RG&E, farms 

without heat transfer systems realize on average 0.82 and 0.55 percentage points more savings 

as compared to those farms with them, respectively. A probable explanation could be that 

because of milking schedules, heat transfers reduce electricity consumption that occurs mainly 

during the off-peak and shoulder hours, with little consumption savings during the peak hours. 

Icebanks lead to a more even distribution of electricity for milk cooling purposes. Ice is -made prior to milking and is used to pre-cool milk entering the bulk tank, and subsequently, 

lowering the electricity use by the milk cooler. Despite the fact that they lead to overall 

increases in electricity consumption, this spreading of the load could result in increased savings 



69
 

in moving to TOU rates if a large portion of electricity that would have been consumed by the 

cooler falls under the utility's peak period. This appears not to be the case for the New York 

utilities because the signs on the coefficients of the icebank variable are positive, indicating 

decreased percentage savings (table 5.7). 

Finally, to understand the effects of the milking system on moving to TOU rates, one must 

consider the sign and magnitudes for the parlor and bucket coefficients relative to a pipeline 

system, which serves as a reference point in the intercept. Although the t-ratios indicate that the 

coefficients are significant, there seems to be no clear explanation for some of the signs. For 

NMPC, RG&E, and NYSEG, the positive coefficients indicate that bucket p,ilking systems 

realize the smallest relative savings, followed by pipeline systems, and the negative coefficients 

suggest that parlors realize greater savings. 

6. SUMMARY AND CONCLUSIONS 

In recent years, New York dairy farmers have been concerned about potential increases in 

energy costs as upstate utilities, under mandate from the New York Public Service Commission, 

move to TOU rates. This concern stems from a desire on the part of farms to keep milkings at 

fixed intervals, thus, making it difficult to shift peak load electricity to off-peak hours. For this 

reason, dairy farmers have raised equity issues and have challenged mandatory time-of-use 

pricing. Since dairying is a significant component of most upstate New York rural communities, 

these effects warrant further attention. 

The objective of this study is to quantify the effects of TOU electricity rates on dairy farms 

for a number of upstate utilities, and to determine how they are affected by the characteristics 

of the farms. This latter objective is of interest since it helps to explain how, if possible, farmers 

can alter their farm configuration to save on electricity costs under TOU rates. 

To accomplish these objectives, it was necessary to estimate electricity consumption by 

major end use, season and time of day. This was done by combining data from two large data 

sets containing information on energy use by farms and rural households in New York with a 

small midwestern data set reporting electricity use on dairy farms by time of day and major end 

use. First, conditional demand models (models in which the customer's stock of appliances and 
characteristics of farm and dwellings play a significant part in determining demand) were 

estimated from a sample of rural houses. These equations were used to estimate farm household 

demand. Once this was done, household demand was subtracted from the total to get demand 
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on the farm. These estimates were used as the dependent variable in the farm conditional 

demand equations. These estimates of farm electricity demand were distributed with the help of 

a cubic spline regression model estimated for total demand and demand by two end uses, water 

heating and milk cooling, from a small sample of farms for which load curves were available. 

Once this estimation was completed, the equations were combined in a complex program 

written in C, to analyze how time-of-use rates will affect farms in New York. The methodology 

uses the time-of-day estimates to proportion the predicted electricity consumption based on the 

conditional demand estimates by season and time of day. Then, load curves are constructed and 

the electricity bills under TOU pricing and flat rate pricing are calculated assuming that the , 

i

J 

sample of farms is located in the service territories for each of four upstate utilities. 

Contrary to initial concern in the farm community, the findings suggest that, with the 

exception of the case where farms are assumed to be located within the Central Hudson Gas and 

Electric service territory, electricity charges would actually decrease on average under TOU 

pricing as compared to flat rate pricing. For example, if this sample of farms were located in 

the NYSEG service territory, they could on average expect to save approximately $369 (6.5 

percent) per year, the largest savings among all the utilities. If the farms were within the RG&E 

and NMPC territories, they could expect to save approximately $129 (2.2 percent) and $300 (6.8 

percent), respectively. On the other hand, farms located within the Central Hudson region could 

expect, on average, to experience about a $226 (4.7 percent) increase in their electricity bills 

under one of its TOU options. Further, for the three utilities where average savings are positive, 

there is some variation around the mean, but, in the two service territories with the lion's share 

of New York's farm customers (NMPC and NYSEG), fewer than five percent of the farms in the 

sample realized cost increases. Costs would rise for fewer than 20 percent of the farms in the 

RG&E service territory. 

Although these results are reasonable, there are a couple of reasons why they should be 

interpreted with some care. First, the data used in the estimation procedures exhibited no price 

variation and could potentially leave some savings (due to shifting load off peak) unaccounted 

for. Second, the data were drawn from a survey targeted toward larger customers, and may not 

be completely representative of smaller customers. Despite these limitations, the analysis does 

contribute importantly to isolating the differential changes in farm electrical costs across service 

territories where rates are set to reflect different peak loads. It also identifies a "fixed cost" 

effect that benefits larger farms more than smaller farms. Under time-of-use pricing, utilities 

increase their customer charge to accommodate higher administrative costs and maintain revenue 

r
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neutrality for the class. This fixed charge is a smaller percent of the total bill for the larger 

farms, and hence, allows them to more easily spread it out over total costs. 

A simple equation, in which farm characteristics are regressed on the percentage savings in 

electricity bill for each utility, was estimated to determine how they are related. Because of the 

"fixed cost" effect, it is not surprising that in these regressions, milk production and milk 

production squared turn out to be the most significant variables. As these variables increase, so 

do the percentage savings, except in the case of Central Hudson Gas and Electric rates. 

Including them in the regression allows the other variables to account for remaining variation in 

electricity bill changes. Of particular interest is that the signs on the coefficients for morning 

milking and evening milking are opposite from one another for each utility. This suggests that, 

given farmers are likely to keep the interval between milkings the same, there are limited 

opportunities for farmers to shift electricity consumption from peak hours to offpeak hours by 

changing the timing of milking. The results also suggest that heat transfer systems do not lead 

to substantive savings under TOU pricing, but, depending on the cost, they might still be 

recommended as a sound conservation measure because they do reduce yearly electricity use. 

As is the case at the conclusion of any single piece of research, one can always point to 

ways in which the study could be improved and avenues for additional work. Because of the 

type of detailed energy use data required for a study of this kind, it is not surprising that 

substantial improvements in the analysis could be made if data could have been collected 

specifically for this study. Having to rely on three data sets placed some important constraints 

on the specifications of conditional demand equations and cubic spline regressions. Essentially, 

independent variables used in the models had to be those common to all data sets. The extent 

to which the results would have been improved had this not been a constraint is an empirical 

question that could be resolved only through additional data collection. 

Any additional data collection to improve the analysis would also have to include sufficient 

data on use by time of day to allow for seasonality in the second-stage regressions for the cubic 

spline models. Thus, load curves for more months and days of the year would be needed. From 

an economic point of view, however, the major missing link in the analysis was the lack of price 

variation in the data to accommodate measuring the effects of different prices on electricity 

demand and the willingness to shift load off peak in response to high prices on peak. 

-
As farms across New York and elsewhere in the country gain experience being on TOU , 

rates, it will become possible to collect the detailed data required to conduct a more 

comprehensive study of the effects of TOU rates on agriculture. Given the fact that current TOU 
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rate structures seem to imply cost savings to farms ignoring any price response, however, it 

seems unlikely that the additional cost savings that might accrue to farmers by altering behavior 

would be large enough to justify major changes in production scheduling. The major interest in 

more detailed analysis of the effects of TOU rates is likely to be at the request of utilities 

interested in knowing more about customer response and its implications for rate design to 

effectively recover costs of operation. 

1 

r 
J 
j 
I· 
) 
~ 

1 

) 

J 

i
•
j 
I



73 

Appendix I
 

Derivation of Cubic Spline Continuity Conditions
 

We begin by noting that the second derivative of a third degree polynomial is linear and 

by defining the second derivatives at the knots as: 

M.=S"(X.).
J J 

By applying the two point equation of a straight line, the second derivative of a cubic spline for 

any Xj_I~X~j (j=1,2,... ,k) can be expressed as follow: 

x-x} . j-I } .S"(X)- _J_'_ +[X-X
h. J-I h. J 

J J1
where hj = XrXj_l' Integrating this expression for the second derivative gives: 

S/(X)=_[(Xj-X?}. +[(X-Xj_I)2}.+C.
2h. J-I 2h. J I 

J J 

Integrating again to obtain an expression for the function itself gives: 

S(X)=[(Xj-X)3}. +[(X-xj-I?}.+C x+C . 
6h. J-I 6h. J I 2 

J J 

Imposing the interpolation requirements S(xj)=Yj and S(xj-l)=Yj.1 results in: 

-

--_---.::._--------------"""------------- ~~ 
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; 
J 

Subtracting (1.2) from (1.1) gives: 

h~ h~ 
J M - J M +C h - ""6 j ""6 j~1 I j-Yj Yj~1 , -

implying: 

J-

Substituting this value of CI into the expression for S'(x) gives: 

S/(X) 

Rewriting: 

I [h. (X.-X)2} [(X-X'~1)2 h.} Y'-Y'~IS (x) = ---:!. - J . + J J. + J J • 
6 2h. J~ I 2h. 6 J h. 

J J J 

Noting that: 

I I
lim S/(X) = lim Sj(X) = lim Sjtl(X) = lim S/(X). .X4X

j
- x......x

j
- x---+xj x......xj 

for j = 1,2,3...,k-1 and 

I I
lim S/(X) = lim Sk(X) =lim SI(X) = lim S/(X), 
x--+x~ x--+x~ x-+X; x-+x; 

and evaluating these one sided limits gives: ...
 

-, 

..
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[h. (Xj-X?}. +[(X-~_/lim Sjf (x) =lim. ~ 1 
x--;x - 6 2h. r 2h. 

J J J 

h. h. y.-y. 
= ~M. +~M.+ J J-I 

6 J-1 3 J h. 
J 

[hjt1
( ) 1"lim S·jft 1 X = 1m 

x--;x· 6 
J 

h. 1 h. I} h. y·1-Y·= _Jt Jt_ ~M. + Jt J 
[ t6 2 6 J 1 h. 

Jt1 

h. 1 h. y. -yo
=-......:!.:...M.-~M. + Jtl J 

J 6 Jt 1 h3 
j t 1 

Setting them equal to each other: 

6Y'_1 6y. 6y, 6Y't1
h M +2(h +h )M +h M - J - J - J + J . , 1 . 't1 ' 't1 't1--- - -- ---,J J- J J J J J h. h, h. h.

J J Jt1 Jt1 

dividing both sides by hj + hj+, and defining 

-
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h'J+
I 

} = I-A. M 
h.+h. j-I ( ) j-I 

J J+ I 

and 
-6Yj 

h/hj+hj+I 

6Yj 

h/hj+hj+)) 

= -6Yjhj~) -6Yjhj = -6Yj 

hj=)hj(hj+hj+I hj+)hj 

implies: 
J 

I 

By similar analysis the continuity conditions: 

(l-\)Mk-I+2Mk+A.kM) = 

6Yk_) 6Yk 6y)
-------+---
hk(hk+hI) hkhI h)(hk+hI) 

and 

(l-A.I)Mk+2MI+A.)MZ= 

6Yk 6y) 6yz 
-------+--,--- 
h)(h l +hZ) hIhZ hZ(h) +hZ) 

can be derived. 

-

..
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Appendix II 

Derivation of Polynomial Coefficients 

Define for xj-1 ::; x ::; Xj 

Then 

S '(x) = b + 2c/x-x ) + 3d/x-x _lj j j 

S"(X) = 2cj + 6d
j 
(x-xj-l)' 

But from the definition of Mj in appendix II: 

(11.1) S"(X.) = 2c.+6d.h.= M.J J J J J 
_ M _

j 1(11.2) S"(Xj _1) = 2cj = M j _1 ~ cj - -2-' 

Substituting cj into the first equation above: 

= Mj.,-Mj _1 

6h. 
J 

and evaluating Sex) at 'S-l: 

Evaluating Sex) at xj ' substituting the values for ~, cj , bj and setting equal to Yj gives: 

2 3M._ hj (M.-M..)hj -
S(xJ.) = YJ'- l + bJ.h

J
. + J 1 + J J = y.. 

2 6h. J 
J 

Solving for bj : 

-




J 
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So for JS-l:::;;X~, j = 1,2....k 
) 

~ 
I 
r· 

-
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Appendix III
 

Representation of Sex) in terms of M
 

The representation of Sex) in terms of M, the vector of second derivatives evaluated at 

the knots, is required to construct the matrix W. This can be accomplished by solving for Sex) 

from the previous appendix: 

S(X)=[(Xj -X)3}._ +[(X-Xj _I )3}.+C x+C . 
6h. J I 6h. J I 2 

J J 

Substituting the value of C I into equation II.2 of appendix II: 

2 

hj [Y'-Y' I h.M. I h.M.}M + J r + J J- _ J J +C = Y6" j-I h. 6 -6- j-I 2 j-I 
J 

and solving for C2 : 

Substituting CI and C2 into Sex): 

-




I 

J 
80 J 

J
t 

and multiplying and dividing the single Yj_1 term by hj and substituting hj=xrxj_l in the numerator 

f
gives: 

j 
I 

i
I 
J
 

-I

JMaking hj a common denominator for all terms: 

J-

j 

J 
I
J 

I

I, 
.J 

and expanding the cubed terms: '.I, 
i 

6h
j 

(x, -x)(x, _X)2 
J J=

[
 

So S(x) 

I..
 



81 

Appendix IV 

W Matrix 

0.2466 -0.105 0.0321 -0.0236 0.0623 -0.1689 0.9565 

0.5617 -0.218 0.0633 -0.0352 0.0775 -0.2059 0.7566 

0.8534 -0.2786 0.0784 -0.035 0.0615 -0.1584 0.4786 

1.0301 -0.2261 0.0623 -0.0232 0.0304 -0.0739 0.2004 

1 0 0 0 0 0 0 

0.7177 0.4111 -0.1009 0.0293 -0.0164 0.0275 -0.0684 

0.3225 0.8225 -0.1414 0.0394 -0.0163 0.0199 -0.0466 

0 1 0 0 0 0 0 

-0.1132 0.7916 0.3808 -0.0927 0.0269 -0.0128 0.0193 

-0.0769 0.3726 0.8019 -0.1358 0.0376 -0.0133 0.0139 

0 0 1 0 0 0 0 

0.0313 -0.1332 0.7998 0.3784 -0.0912 0.0237 -0.00881 

0.022 -0.0905 0.3782 0.8001 -0.1341 0.0334 -0.0091 

0 0 0 1 0 0 0 

-0.012 0.0373 -0.1356 0.8013 0.3748 -0.0818 0.0159 

-0.Q112 0.0267 -0.0924 0.3799 0.795 -0.1204 0.0225 

0 0 0 0 1 0 0 

0.0166 -0.016 0.0388 -0.1391 0.814 0.3407 -0.055 

0.0228 -0.0161 . 0.0284 -0.0975 0.3987 0.7446 -0.0809 

0 0 0 0 0 1 0 

-0.0585 0.0287 -0.0204 0.0527 -0.1905 0.953 0.235 

-0.1126 0.0524 -0.0273 0.0568 -0.1997 0.6807 0.5498 

-0.1104 0.0499 -0.0206 0.0324 -0.1091 0.318 0.8397 

0 0 0 0 0 0 1 

-
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Additional Econometric Topics 

The first stage regression is essentially a time series routine to parameterize the load curve 

into a fixed number of coefficients. As is usually the case, time series regressions often lead to 

autocorrelated errors when estimated with the ordinary least squares estimator (Judge, et aI., 

1988). Although the estimates are unbiased, they no longer have the minimum variance among I·
linear unbiased estimators, and hence, are not BLUE (Best Linear Unbiased Estimator). To I 

1 
correct for this problem, Poirier (1977) has investigated the use of a generalized least squares 

estimator as opposed to the ordinary least squares estimator in the first stage. 

In his empirical work, which used 15 minute interval data for weekday residential 

consumption data, Poirier assumed that the length of the autoregressive process was eight periods 

(i.e., two hours). By regressing the ordinary least squares residuals on their lagged values, 

estimates of the autoregressive parameters were found for each residential customer and a 

transformation matrix constructed. The system was then transformed by multiplying the 

dependent and independent variables by this transformation matrix and the system re-estimated 

with ordinary least squares. If the assumption of eighth order autocorrelation is correct, this 

generalized least squares estimator will yield the best linear unbiased estimates. 

In this analysis some experimentation with a generalized least squares estimator was 

performed. Following the conventions of Poirier, the first stage regressions were estimated under 

the assumption that the error term followed a second order autoregressive process (the order here 

is two since we are working with hourly data). This was done using the Statistical Analysis 

System (SAS) AUTOREG procedure, in which the autoregressive parameters are estimated using 

the Yule-Walker algorithm. Table Y.l presents results for the same farms in table 4.1, except 

that generalized least squares estimator is used as opposed to ordinary least squares estimator. 

As can be seen, the estimates change little while some t-ratios increased and other t-ratios 

decreased. This is nothing out of the ordinary: generalized least squares essentially give unbiased 

estimates as does the ordinary least squares estimator, but with greater efficiency. Based on these 
results, there seems little to be gained by using a generalized least squares approach since little 

emphasis is placed on the significance of the first stage estimates; the fact that the estimates are 

unbiased is the most important factor. Furthermore, it is not clear that the auto-regressive 
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Table V.I First stage regression results using generalized least squares. 

Knots 

5:00am 

34 

0.776 

( 1.4) 

50 

1.611 

( 2.5) 

Number of Cows 

70 

1.603 

( 1.2) 

84 

5.429 

( 2.5) 

99 

8.106 

( 7.2) 

8:00am 4.825 

( 7.2) 

6.121 

( 8.1) 

7.812 

( 4.9) 

20.136 

( 7.6) 

17.306 

(12.7) 

11:00am 5.861 

( 8.2) 

3.443 

( 4.3) 

11.936 

( 7.0) 

9.807 

( 3.4) 

5.577 

( 3.8) 

2:00pm -0.036 

(-0.1 ) 

2.559 

( 3.1) 

-3.225 

(-1.9) 

4.679 

( 1.6) 

-0.748 

(-0.5) 

5:00pm 1.675 

( 2.4) 

4.918 

( 6.3) 

8.739 

( 5.3) 

11.169 

( 4.1) 

14.041 

(10.0) 

8:00pm 6.003 

( 9.8) 

4.376 

( 6.3) 

7.919 

( 5.5) 

19.931 

( 8.5) 

13.895 

(11.3) 

12:0Opm 

R2 

(t-ratios) 

1.850 

( 2.9) 

0.96 

2.901 

( 3.8) 

0.94 

0.551 

( 0.3) 

0.92 

2.195 

( 0.9) 

0.97 

-0.610 

(-0.4) 

0.98 

structure is the same or even significant across all 25 sample farms. The implementation of 

combining results based on different auto-regressive structures in the same second stage 

regression are unclear. Finally, the second stage results for total electricity consumption, when 

the first stage is estimated using generalized least squares, are not terrible differnt from those 

based on first stage OLS results. Thus, the OLS estimates are used in the subsequent analysis. The second stage results when the first stage is estimated with GLS are reported in table V.2. 



I 
J 

84

I
I
I 
I 
;,, 

Table V.2 Second-stage regression coefficients for total electricity first stage estimated 

with GLS. 

Node 
12:00am 5:00am 8:00am 11:00am 2:00pm 5:00pm 8:00pm 

Intercept 175.029 -24.536 52.499 6.950 58.764 -447.546 -273.253 
(2.7) (-1.7) (3.1) (0.6) (3.8) (-3.2) (-3.3) 

Milk 4.55E-03 1.06E-03 1.76E-03 -1.55E-04 4.29E-03 -4.72E-04 -4. 17E-03 
(7.8) (0.7) (Ll) (-0.2) (3.3) (-0.5) (-6.9) 

Square Milk -9.66E-07 2.52E-06 1.35E-07 3.54E-08 8.33E-07 3.04E-06 2.58E-06 
(-3.6) (4.2) (0.2) (0.1) (1.5) (5.6) (8.6) :

** -2.732 0.400 -2.054 1.350Parlor -0.593 -0.339 
(-9.3) (1.2) (-11.8) (6.0) (-1.9) (-2.1) 

Bucket ** -2.057 1.671 -0.808 -0.790 -3.036 -1.515 
(-4.5) (3.3) (-2.5) (-1.8) (-9.1) (-7.8) 

Milk Cooler HP ** ** 0.019 0.037 -0.040 0.252 0.014 
(0.2) (0.7) (-0.6) (4.1) (0.4) 

Ice Bank -0.440 0.989 1.518 -0.776 -1.440 2.366 0.342 
(-1.2) (1.7) (2.5) (-2.0) (-2.6) (4.6) (Ll ) 

Ice Bank*Milk -4.23E-04 -2.06E-03 1.66E-04 3.89E-03 3.7IE-03 -2.74E-03 3.65E-03 
(-0.6) (-1.8) (0.1) (5.2) (3.5) (-2.6) (6.0) 

HT ** -1.795 0.854 -1.958 ** -2.314 -0.360 
(-3.6) (1.5) (-5.3) (-4.1) (-Ll) 

HT*Milk ** 7.73E-04 -1.65E-03 2. 12E-03 ** 1.04E-03 6.56E-04 
(1.6) (-2.9) (5.9) (1.9) (2.0) 

Vacuum Pump HP ** 0.476 0.814 ** ** 0.273 3.99E-03 
(7.8) (12.7) (4.1) (0.1) 

Number of Fans ** ** 0.166 -0.064 -0.228 0.208 ** 
(2.2) (-1.3) (-3.4) (3.3) 

AM ** 9.802 -19.789 -1.454 -17.550 ** ** 
(2.0) (-3.4) (-0.4) (-3.3) 

Square AM ** -0.852 1.791 0.082 1.336 ** ** 
(-2.1) (3.7) (0.3) (3.0) 

PM -18.958 ** ** ** ** 49.772 30.490 
(-2.5) (3.1) (3.3) 

Square PM 0.513 ** ** ** ** -1.375 -0.843 
(2.4) (-3.1) (-3.2) 

Spring -2.13E-03 -0.066 -0.858 -0.043 -0.351 -0.103 -0.185 
(-0.0) (-0.3) (-3.9) (-0.3 ) (-1.7) (-0.6) (-1.8) 

Summer -0.625 -0.498 -1.399 -0.345 -0.398 -0.394 -0.772 
(-4.2) (-2.1) (-5.9) (-2.3) (-1.8) (-2.1) (-6.9) 

Fall -0.442 -0.678 -1.196 -0.494 -0.975 -0.539 -0.458 
(-2.9) (-2.8) (-4.9) (-3.2) (-4.3) (-2.8) (-4.0) 

N 469 469 469 469 469 469 469 
R' .67 .86 .70 .44 .73 .89 .65 

(t-ratios) 

-
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