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ABSTRACT

Since the advent of linear programming, a body of literature has
been developed focusing on techniques to incorporate uncertainty in the
model parameters into the programming formulations. Many of the important
applications in the early years were related to agricultural decision
problems involving risk (Freund, 1956; Heady and Candler, 1958; Stovall,
1966; and Tintner, 1955). Since these early efforts, numerous studies
have been completed, yielding a rich literature on risk in prices, produc-
tion, costs, resource usage and resource availability. The purpose of
this bulletin is to provide a survey of the literature on the variety of
modeling techniques, theory and applications in a risky enviromment. It
was written to be useful to researchers using mathematical programming
methods in the study of risk, as well as in graduate courses in mathemati-
cal programming or risk analysis. '

The bulletin is organized into four sections. The first briefly
characterizes the risky nature of agricultural decisions, while the second
reviews theoretical foundations for risk analysis. This second section is
rather long and is included for completeness. It will be of most interest
to students or researchers unfamiliar with the foundations underlying ex-
pected utility theory. Those familiar with the theory can move rapidly to
the third section which provides some discussion of when risk and uncer-
tainty should be incorporated explicitly into programming analyses and how
it should be accomplished. Then, a number of programming techniques are
discussed, as is thelr consistency with theoretical risk decision erite-
ria. Emphasis is placed on models in which the objective function coeffi-
cients are not known with certainty, but considerable attention is also
given to models in which the right-hand side values or the technical coef-
ficients or some combination of all three types of parameters are uncer-
tain. The fourth section contains a brief set of concluding comments.

The manuscript also contains two appendices. The first appendix
should be most useful to students. It illustrates most of the programming
models discussed in the text, using small empirical examples. In the mod-
els reflecting risk in the objective function, a portfolic problem, with
only one financial constraint, is used. This model helps isolate the ef-~
fect of the risk decision criteria on the optimal solution. More compli-’
cated examples are needed (and used) to illustrate the other risk models.

The second appendix provides a bibliography of recent applications
of risk programming models in agricultural economics. Other less recent
articles which, in our judgement, have made important contributions to the
field have alsoc been included, as have some other reviews of the litera-
ture. In this appendix we have made no attempt to provide a complete an-
notation for the papers listed. We have, however, placed them in a number
of categories, depending on the type of risk being analyzed (e.g. whether
the uncertainty is in the objective function, the technical coefficients,
the right-hand side or some combination of the three). The citations are
listed by technique, year and author, with the earlier works appearing
first. The particular subject matter area or subarea of the application
is listed as well.

e



INTRODUCTION

Since the advent of linear programming, a body of literature has been
developed focusing on techniques to incorporate uncertainty in the model
parameters into the programming formulations. Many of the important appli-
cations in the early years were related to agricultural decision problems
involving risk (Freund, 1956; ; Heady and Candler, 1958; Stovall, 1966; and
Tintner, 1953). Since_these early efforts, numerous studies have been
completed, yielding a rich literature on risk in prices, production, costs,
resource usage and resource availability. The purpose of this bulletin is
to provide a survey of the literature on the variety of modeling techniques,
theory and applications in a risky environment.

The bulletin is organized into four sections. The first briefly charac-
terizes the risky nature of agricultural decisions, while the second deals
with theoretical foundations for risk analysis. The third section outlines
a number of programming techniques and discusses their consistency with
theoretical risk decision eriteria.l The fourth presents a brief set of
concluding comments.

THE RISKY ENVIRONMENT AND THE ROLE OF PROGRAMMING MODELS

Agricultural production occurs in a risky environment. The biolo-
gical nature of crop and livestock production, interacting with variable
weather and environmental conditions, and changing demand, as well as un-
predictable government policies, affects agricultural prices and can lead
to wide year-to-year and seasonal swings in agricultural incomes and the
well being of farm decision makers, The severity of these "risks" varies
from farming situvation to situation, as do decision makers' responses.
Unless these "risk" responses are adequately reflected in planning models,
the results generated in empirical analysis may bear little resemblance to
actual decisions and may be of little use either in direct decision making
or in policy analysis, '

The typical representation of a farm decision process as a linear pro-
gramming (LP) model is:

n
maximize .Z ¢j Xj
s.t.
n
_E ajj ¥j < by (i=l...m)
i=1

where:
Xy is the jth decision variable employed by the farmer;

ITwo appendices are also included. The first contains numerical ex-
amples of many of the programming models described. The second contains a
list of risk programming applications found in the agricultural economics
literature, categorized by the type of risk and subject matter being examined.
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cj is the per unit profit contribution of Xji
ajq is the per unit use of the 1th resource by xj; and
bij is the fixed endowment of the ith resource.

Ordinarily in LP models, the parameters cj, aji and bj are assumed to be
known with certainty. In risk models, thi5 assumption is relaxed and sub-
sets of cj's, ajj’s and bj's are treated probabilistically.2 Under these
conditions, the outcome from any choice of the decision variables depends
on the values of the parameters actually realized and is itself a random
variable. Thus, assuming the set of xi's constitutes a farm plan, then the
decision involves choosing the action k associated with the most desirable
probability distribution of farm profits, net return or other appropriate
measure of income or well-being. ' o '

The times at which the various aspects of uncertainty are resolved
are also important in the risky agricultural enviromment. This is perhaps
{1lustrated best through a simple example. Consider corn production in
the Midwest. At the time preceding planting, one has information about
weather to date, futures prices, and most of the input costs, but one is
uncertain about weather conditions from the post-planting period to . the
harvest season (including the planting season weather). After the planting
season, one has gained additional information about planting season weath-
er but remains uncertain about yields, harvest conditions, and prices. At
the end of the summer, the forecasts of yields and prices become more
accurate, but farmers still do not know them with certainty. Generally,
as additional information becomes available over the growing season, the un-
certainty surrounding the decision situation is gradually resolved. This
suggests an adaptive process, farmers may alter or update their production
and marketing plans as new information is received. For example, if the
crop fails to produce an adequate stand after planting, it may be possible
to reseed with the same or an alternative crop. Marketing plans can also
- be changed at harvest. Thus, in developing models which adequately repre-
sent the decision process in a risky agricultural environmment, it is meces-
sary to isolate the most important sources of uncertainty. It can also be
important to account for the time at which information becomes available.-

2Throughout, the terms risk and uncertainty are used somewhat inter-
changeably both for convenience and variety of presentation. We make no
attempt to distinguish between the two concepts on the basis of the degree
of knowledge about the probability distributions (e.g. Knight, 1921), nor
do we explicitly comsider risk as that subset of uncertain events whose
outcomes alter the decision maker’s well-being (Robison and Barry, 1987).
To conduct empirical risk analysis, one must have some estimates of char-
acteristics of these distributions and the way in which this information
is formulated, either subjectively or based on analysis of historical data.
While this is an important issue, it is not the actual focus of the bulletin.

31n theoretical development as well as applications in risk models,
the discussions have often referred to distribution of income, farm profits,
net returns or gross margins. The appropriate measure of income depends
on the application; these terms are also used somewhat interchangeably,
cometimes for consistency with the original literature and other times
merely for variety in presentation. e ' -
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Given this characterization of risk, a framework for risk programming
analysis contains a number of common elements (Boisvert, 1985). First,
one must identify the set of alternative actions. Second, the set of re-
source constraints which may restrict these actions or decisions must be
enumerated. Third, one must estimate distributions of possible parameter
values (i.e. distribution of values for cj, 2ij, and by), as well as describe
both the time at which these wvarious parameters become known and inter-
relationships among them. Fourth, one must identify the criteria by which
decisions are made. Finally, this information must be combined to develop
"optimal” or "best" decisions, recognizing that such decisions may not be
"best" for any particular state of nature, but rather may be "robust" (e.g.
exhibit good performance) across a wider range of uncertain parameters.

For many applications, this framework is implemented through mathe-
matical programming models. In these models the x's describe the decision
set, while the constraints delineate limits on resource supplies or other
factors that restriet decision criteria. Criteria for choice of decision
variables are reflected normally through the objective function. In many
cases where there is incomplete knowledge of the decision makers attitudes
toward risk or where it is important to generate results applicable to a
diverse set of decision makers, one may solve the model a number of times
to generate a set of possible plans for further analysis by the decision
makers.

THEORETICAL FOUNDATIONS

Risk programming (RP) models are based on a number of different deci-
sion criteria. Some RP models are direct applications of expected utility
theory and attempt to identify a single optimal decision given the utilitcy
function. Other models are consistent with expected utility maximization
but only identify "efficient" portfolios of decision alternatives., Yet a
third group is based on more ad hoc decision criteria,

Beview of Expected Utility Theory

The principal theory of choice underlying risky decision making is
expected utility theory which is based on the existence of an ordinal utility
function by which alternatives can be ranked. The foundations of this
theory, as developed by von Neumann and Morgenstern (1947), and somewhat
more recently by Luce and Raiffa (1957), are found in a set of postulates
or axioms, the most important of which include: ordering, transitivity,
continuity and independence. The ordering axiom requires that for any two
choices Ay and Ay, the decision maker either prefers Ay to Ap, Ap to Ay or
is indifferent between them. Transitivity implies that if A is preferred
to Ay, and Ay is preferred to A3, then A) is preferred to A3. Continuity
implies that if Ay is preferred to Ay and Ay to A3, then there 1s a mixture
of A{ and A3 that is preferred to Ay and a mixture of A; and A3 over which
Ay is preferred. The independence assumption requires that if A; is pre-
ferred to Ao and A3y is any other prospect, then the individual will prefer

a mixture of A] and A3 to the same mixture of Ay and Aj.

Given the existence of an ordinal utility function, the expected util-
ity maxim can be illustrated by a simple case situation. Suppose a deci-
sion maker is faced with the problem of choosing among alternative courses
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of action, the outcomes from which are determined by the state of an un-
certain environment where:

A; = the jt act or alternative course of action;
sy = the ith possible risky outcome;

pi = P(sj) = the probability that sy ocecurs; and
yij = the outcome of Aj given that sj occurs,

Then, for the utility function U(y), we know:

a) if any risky action, Aj, is preferred to another Ao, then
"U(A1) > UAp), and
b) U(Aj) - E1U(Y13) = Z P1U(Yij)

Following expected utility theory, the optimal act, is - the one which
maximizes expected utility (Anderson, Dillon and Harda er, 1977)

(1) EU(A;*) = Max U(Aj) = Max [T psU(yij)].
s 3 1

This theory, therefore, ranks alternatives according to the proba-
bility of states of nature occurring, and relative preferences regarding
outcomes as represented in the utility function. The utility function
U(y) is assumed to be a single valued function of some measure of wealth,
y. Several assumptions characterize U(y).

First, it is assumed that the decision maker prefers moré wealth to
less; this implies a monotonically increasing utlllty function with mar-
ginal utility of wealth strictly positive, U’'(y) > 0.4 Second, it is gen-
erally assumed that the utility function exhibits decreasing marginal util-
ity of wealth implying a concave functlon w1th U (y) < 0 thls is equlv—
alent to assuming rlsk aversity.

Because of the shape of the utility function, a risk averse individ-:

ual prefers a sure amount to taking a risk, i.e., U[E(y)] > E[U(y)]. This
is demonstrated, for a simple lottery, in Figure 1. Suppose an individual
is given the choice of playing a lottery that pays y] units of y with prob-
ability P1 and yy units of y with probability pp = 1 - p;. The expected
outcome is E(y) = X Piyi- As can be seen from Figure 1, when the utility

function is concave, the expected utility of the lottery, E[U(;)], is less
than the utility of the expected outcome: .

(2) E[U(N] = I p1U¢ys) < VEG] = VLT piysl.
1 1

4Thr.‘oughout U' will denote the first derlvatlve of a functlon U"
the second derivative, and so on.

SRisk neutrality and risk preference are represented by linear and
convex utility functions, respectively. It is possible for an individual
to be risk averse over some range of y, and risk preferring over another
range of y (Friedman and Savage, 1948).



u(Y)
u(y,) _
UE(Y)
EU(Y) /
U(Y1)
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| ]
Y, CE E) Y, Y
=E(Y)-11

Figure 1. lllustration of the concepts of risk aversity, certainty
' equivalence, and the risk premium, II

The certainty equivalent, CE, is the amount, in units of y, that will give
the same utility as the lottery (i.e., U(CE) = E[U(y)]; it is the certain
amount. Risk averse individuals are willing to pay an insurance premium
to avold the uncertainty involved in the lottery. Pratt’'s (1964) risk pre-
mium, «(y), is the difference between the certainty equlvalent and the ex-
pected outcome of the lottery such that:

(3) U(CE) = U[E(y) - =(y)] = E[U(y)].
If U(y) is monotonlcally 1ncreaslng (U'(y) > 0) then U~ 1 exists and
(4)  m(y) = () - UEU ).

The risk premium is the amount {(of y) that will make an indiwvidual indif-
ferent between receiving the certain amount, CE, and taking a gamble on
the lottery. For individuals who are risk averse, the risk premium is
positive, (n(y) > 0) (Anderson, Pillon and Hardaker, 1977; Cochran, Lodwick
and Robison, 1982). Risk averse individuals prefer certain outcomes above

the certainty equivalent to the lottery and prefer the lottery to any cer-
tain outcome below CE.
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The single valued utility function U(y) is not a unique representa-
tion of preferences; any positive monotonic transformation of a utility
function leaves the ranking of certain outcomes unchanged.e- However, ex-
pected utility rankings are invariant under any positive linear transfor-
mation of the form: V(y) = a + bU(y), b > 0 (Henderson and Quandt, 1980).
While the sign of the second derivative, U”(y), provides an indication of
an individual'’s attitudes toward risk, its magnitude is no indicator of
the degree of risk aversity because U”(y) is not invariant to such linear
transformations. The degree of risk aversity is uniquely measured by the
Arrow-Pratt absolute risk aversion function:

(5) 1aA(y) = - U(V)/U' ().

Values of rp(y) are local measures of the degree of concavity or convexity
of 'a utility function and are unique measures of risk preference. The

value of rp(y) is unchanged by any positive linear transformation of Gy
as follows:

if V(y) = a + bU(y), b > 0,
Vi(y) = bU'(y), V”(y) = bU”(y), and
TA(Y) = V(N (y) = -BU”(y)/BU’(y) = -U”(¥) /U’ (y).
Relative risk aversion is defined as:
(6) rr(y) = -yU"(¥)/U'(y) = yraly).

Arrow (1965) suggests that utility functions for risk averse indi-
viduals should display: a) decreasing absolute risk aversion (DARA), (i.e.,
the willingness to engage in small bets of fixed size increases as income
rises) but b) increasing relative risk aversion, (i.e., as income and the
size of the bet increase in the same proportion, the willingness to accept

the bet falls). DARA requires the first derivative of the absolute risk
aversion function to be negative:

(N ') = w2 - v mHE N m? < o.
Given the-conditions for risk avefsity: U'(y) > 0 and U”(y) < 0, this
implies a further condition on the utility function: a positive_third de-

rivative is a necessary (but not sufficient) condition for DARA.

Direct Application of Expected Urility

Although -the expected utility maxim is based on a set. of appealing
axioms,  its long-term acceptance as a theory of risky choice is based on
considerations other than the fact it is consistent with the economists’
concept of rationmality. As early as 1948, Friedman and Savage, for example,
demonstrated that an individual may have aversion -to some risks and no
aversion to others and still be behaving according to the expected utility

6a positive monotonic transformation, F(U), is defined such that F(Uy)
> F(Up) whenever U; > Ug. - : N TS S

N necessary and sufficient condition for DARA isg U’(y)U*T'(y) > U"(y)z.
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maxim. They were also able to reconcile gambling by a person who has a
general predominance for risk aversion -- a condition which must hold if
the utility function is to be bounded from above and below. The maxim,
. combined with the risk aversion hypothesis, also serves as a qualitative
explanation of observed aversions toward risk such as the purchase of in-
surance or investment in a diversified portfolio (Tobin, 1958). Despite
these attractive features of the expected utility maxim, its direct appli-
cation in economic analysis using mathematical programming is limited by
the need to know something about the decision maker'’'s utility function.

_ In the direct application of the expected utility maxim, assumptions
regarding the utility functions have been for the most part limited to
those which would allow the decision problem to be formulated as a qua-
dratic programming problem (e.g. maximizing a quadratic function subject
to linear constraints). By assuming that utility can be written as:

(8) U(y) = 1-e78Y

where a > 0 is a measure of the decision maker's attitude toward risk,
Freund (1956) demonstrated that if y is normally distributed with mean
and variance ¢* then maximizing expected utility is equivalent to maximiz-
ing: ‘

(9) u- a2 (6%).

As an alternative, one can assume that a decision maker’s utility function
is quadratic in y:

(10) U(y) = (1+b)y + by?,

where b > -1 and (1+b) + 2by > 0 so that U’'(y) > 0. Under these condi-
tions, Tobin (1958) showed that maximizing expected utility is equivalent
to maximizing:

(11)  (1+b)p + b(o2+ p?y.

Farrar (1962) obtained a similar result by assuming that utility could be
approximated adequately by a second-order Taylor series expansion. .

When preferences are known and can be precisely formulated, the decision
theoretic approach to maximizing expected utility gives a unique and complete
ordering of actions, but in applied problems preferences are rarely known,
are difficult to measure, and are unique to decision makers.? In many cases,
however, individual decision makers’ preferences may not be required. For
instance, when dealing with policy questions, one is more interested in

8This can be shown by completing the square on the exponent for the
expression for E(U(y)) which produces a normal integral multiplied by
-exp[a202/2 - au].

9Using methods originally put forward by von Neumann and Morgenstern
(1947) efforts to measure risk preferences of farmers have been made by
Officer and Halter, 1968; Halter and Dean, 1971; Lin et al. 1974; Dillon
and Scandizzo, 1978; Binswanger, 1980; Halter and Mason, 1978 and Knowles,
1980.
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specifying how a group of individuals with similar preferences might re-
spond. Under these circumstances other ordering criteria can be specified.
Such criteria, in the absence of complete information on preferences, provide
a partial ordering of alternatives by identifying two subsets: those that
are 'risk efficient’, for which no clear preference can be determined with-
out further information on preferences, and those that clearly would not be
preferred by any individual in the group (Boisvert, 1983).

Risk Efficiency Analysis

Another approach to decision making under risk ‘attempts to develop
sets of efficient solutions. This approach, often called Risk Efficiency
Analysis (REA), is based on the expected utility maximization framework
but “does not require full specification of the utility function. REA as-
sumes all individuals’ preferences can be represented by a utility function:
groups of decision makers are then described in terms of properties of the
utility function. An efficlency criterion is a decision rule that provides
a partial ordering of choices for the decision makers whose preferences
conform to a specified set of conditions placed on the utility function
(King and Robison, 1981). :

Generally, risk efficiency analysis involves imposing a set of condi-
tions, or restrictions, on utility functions and/or the probability distri-
butions of the choice set. Then for prospect A to be preferred to prospect
B according to the risk efficiency condition, the expected utility of A
must be greater than the expected utility of B, for every utility function
satisfying the restrictions. Such REA criteria are sufficient conditions
for expected utility maximization for that set of functions. The efficiency
criterion is an optimal criterion if it is both a necessary and a sufficient
condition for expected utility maximization. An optimal efficiency eriterion
minimizes the eéfficient set of choices by discarding those that are inef-
ficient;lo any further reductions in the efficient set require further
restrictions on the admissible set of utility functions.

E-V Analysis

Perhaps the simplest and most widely used REA criterion includes the
mean-variance (E-V) analysis. The E-V criterion is based on the proposition
that, given any two distributions with equal means, a risk averter will
prefer the distribution with the smallest variance. In effect, the E-V
approach entails a trade-off between expected returns and risk, as measured
by the variance (or the standard deviation) of returns. The E-V criterion
can be stated as: if A and B are two uncertain actions, and pp = pp while
UZA =< aZB, with at least one strict inequality, then A is preferred to B,
By plotting each action in mean-variance space, the efficient set of actions
can be identified as all those that maximize u for a given ¢4, or minimize
02 for a given u. :

It is not surprising that under certain conditions, the E-V criterion
is completely consistent with the expected utility maxim. It suggests
that decisions can be ranked solely in terms of the first and second mo-

10Prospects are inefficient in the sense that they would never be
preferred by an expected utility maximizer in the group of decision makers
defined by the restrictions on the utility function. ) ' '
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ments of the distribution (i.e., p and 02); this is exactly the case in
the objective functions in equations (9) and (11) above. By taking the total
derivatives of these functions with respect to ¢“ and u, it is evident
that the iso-expected utility curves are positively sloped in i,0 space.
Thus, for a specific value of the risk aversion parameter, an optimal action
can be identified from the E-V efficiency locus by finding the efficient
peint lying on the highest feasible iso-utility curve. o

In addition to its applications in agricultural economic problems,
the E-V approach has been widely used in the financial literature as a
means of choosing among portfolios of assets (Markowitz, 1952; 1959; Levy
and Markowitz, 1979). Its development in a quadratic programming framework
has allowed the incorporation of risk considerations into mathematical
programming models. The conditions under which E-V is an acceptable REA
criteria have been controversial. Proofs exist indicating it is exactly
consistent with expected utility when a) returns are normal, and/or b) all
the distributions differ only by location and scale (Meyer, 1987). In
addition, Levy and Markowitz (1979) and Tsiang (1972,1974) argue that this
criterion is acceptable where risks are small relative to total wealth.

Stochastic Dominance

Over time, a number of other risk efficiency criteria have appeared
in the literature. Perhaps the most common is stochastic dominance analy-
sis, which provide a means of selecting alternatives that are optimal,
dccording to expected utility maximization, for a specified set of utility
functions. Initially, two such criteria were developed (Quirk and Saposnik,
1962; Hadar and Russell, 1969, 1971; Hanoch and Levy, 1969). For first
degree stochastic dominance (FSD), preferences are restricted to the set
of utility functions, Uy, that are monotonically increasing: Up = (u{y):u'(y)
> 0); it follows that -« < r(y) = = where r(y) is the absolute risk aver-
sion function. The FSD ordering rule for two risky prospects F and G hav-
ing cumulative frequency distributions (CDF) of F(y) and G(y), respectively,
is: F dominates ¢ by FSD if, and only if, F(y) = G(y) for all y with a
strict inequality for at least one value of y. Second degree stochastie
dominance (SSD} assumes a further restriction, that of risk aversion. Uy
= (u@y): u'(y) > 0, u(y) < 0) represents all risk averse individuals by
restricting 0 < r(y) < @, The ordering rule for SSD is: F dominates G by
SSD if, and only if Fy(y) =< Go(y) with a striect inequality for at least
one value

X

of x, where Fo(x) = J F(t)dt. Graphically, SSD is interpreted as F is
0

preferred to G, by risk averse decision makers if, and only if, the area
under F(y) is less than that under G(y) for all y. When the CDF's cross,

Mrhese problems would actually have to be solved in two steps. The
mean-variance efficiency locus (see the mnext section for details) would
have to be generated first. Then, it would be necessary to find the peint
of tangency (for a given b) between the efficiency locus and equation (9).
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the area between F(y) and G(y) when F(y)'liesfébdve‘G(y) must be less than
the area between them when F(y) lies below-G(Y}.lz‘f*' o ' S

Because stochastic dominance places few restrictions on the utility
function and none on the probability distribution, it has some theoretical
advantages over criteria such as E-V analysis. - Unfortunately, stochastic
dominance can not be applied directly in programming models. Two other
criteria, however, the Mean-Gini and the Target MOTAD criteria, have been
applied in programming applications and have been shown to be consistent
with second degree stochastic dominance under certain conditions. '

Mean-Gini Analysis

This approach to efficiency analysis, developed by Yitzhaki (1982},
is based on mean income and Gini's mean absolute difference as a measure
of income dispersion. The approach has the convenience of E-V analysis
and can be applied using linear programming. 1t differs from E-V analysis
in that risk is not equated with variance, and the decision rules are shown
to be necessary conditions for SS5D. ' ' '

Gini’s mean absolute difference is the expected value of the absclute
differences between all pairs of values of a random variable with distri-
bution F(y): : ' :

o o

am-n-Euyﬂ}-Ithmﬂﬁﬁmy

-0 -0

This coefficient is dependent on the spread of the values among themselves
and not on deviations from some constant value such as the mean.™

:.-Yitzhaki {1982) proposes.that a necéssary condition for a distribu-
tion Fy to dominate another, Fs, by FSD and 5SD is: :

(13) p1 = po and py - F1 = py - Fg,.

with .at least one strict inequality, where I'j is defined as one half Gini's

. mean difference for the ith-distrihution:

a0

(14) Ty = 1/2 I I|y~x|dFi(y)dFi(x),

- =00

which can be written as:

-]

(15) Ty = J Fi(x)[1-Fi(x)]ax.

-®

12Anderson, Dillon and Hardaker (1977) demonstrate how discrete dis-
tributions can be accommodated in applying stochastic dominance. ..

‘ 1305 with stochastic dominancé, this analysis could be accommédéted
for discrete probability functions as well (see Bailey and Boisvert, 1989).
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I' = A/2 = uG, where G is Gini’'s coefficient of concentration. Proof of = -

this proposition (termed M-G efficiency) is given in Yitzhaki (1982).

The construction of the M-G efficient set requires the calculation of
means () and Gini's mean differences (I'). Further the M-G criterion is a
necessary condition for second degree stochastic dominance (8SD). But,
while all M-G efficient distributions are SSD efficient (by necessity),
some SSD efficient distributions may be M-G inefficient. In other words
the M-G criterion exhibits greater discriminatory power. '

In contrast to E-V analysis, the M-G criterion allows prospects with
a larger mean and variances to be preferred. This supports Hanoch and
Levy's (1969) assertion that an increase in variability is not necessarily
undesirable if it is accompanied by a shift to the right in the location
of the distribution. The implications of this greater discriminatory pow-
er are not known. Since the M-G criterion reduces the SSD efficient set,
some rejected choices may be preferred by some risk averse individuals,
The implication is that the M-G criterion defines some subset of Uj.

Buccola and Subaei (1984) acknowledge that one shortcoming of the M-G
approach is that one can not determine the absolute risk aversion interval
being represented. Thus, the approach can not be used to derive efficient
strategies for a precisely known class of utility functions or absolute
risk aversion interval.

Buccola and Subaei (1984) and Bailey and Boisvert (1989), however,
argue that the M-G criterion represents the preferences of relatively weakly
risk averse decision makers. They showed the M-G efficient set is identical
to the generalized SSD efficient set when 0 < rp < 0.0015. However, as ry
increased to 0.0045, they found the generalized SSD efficient sets increas-
ingly diverge from the M-G efficient set,

Bey and Howe (1984) comparing M-G, E-V, mean-semivariance (ES), and
stochastic dominance sets found the M-G efficient set to be the smallest.
Namely, the average M-G efficient set consisted of only 19% of the average
SSD efficient set with all SSD efficient members. There was a strong ten-
dency for the M-G efficient set to contain mostly those portfolios with
high returns and high variances. Bey and Howe conclude that the M-G cri-
terion is potentially useful if the admissible set of decision makers could
be more accurately defined. '

Another feature of the M-G approach is that, if the return from a
particular action is composed of returns from a number of different sources
(or individual items in a portfolio), the effect of a particular prospect

on the risk of a portfolio can be presented in a similar fashion to the E-
V model.

Following Shalit and Yitzhaki (1984), I'p can be estimated as:
(16) T'p =~ 2cov[y} F(v)].

Letting yx be the return from prospect k in the portfolio, distributed F,
then return from the entire portfolio is:

(17) y =3 sy yg for ¥ s; = 1,
k k
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then we obtain:

(18) Tp = 2} s; coviyk, F(¥) 1
k

that is, "the risk of the portfolio can be decomposed into the weighted
sum of the covariance between variables {yy] and the cumulative distri-
bution of the portfolio [F}" (Shalit and Yitzhaki, 1984, p. 1456). . The
variance of the portfolio can be decomposed by replacing F(y) in equation
(18) by the returns (y). The difference in the two decompositions is that
in equation (18) the portfolio is represented by the cumulative distribu-
tion of returns. ' '

Target MOTAD

Another recent development in terms of REA decision rules is the one
implied in the target MOTAD formulation by Tauer (1983). This is easily
accommodated in a programming framework and is a two-attribute risk and
return model. It is a member of the mean-target models by Pishburn (1877).
In this model, p is maximized subject to some level of risk where "...
risk is measured as the expected sum of the negative deviations of the
solution results from a target-return level, [T]" (Tauer, 1983, p. 607).
An appropriate expected utility function based on expected returns and
expected losses is given by EU = a + by + ¢ min(p-T,0); for b,c > 0, the
function is increasing and concave in p (Tauer, 1983). The most interest-
ing feature of this model is that target MOTAD solutions (except for those
with equal means and deviations) are second-degree stochastic dominant
($SD). However, while most target MOTAD solutions are 85D, there is no
guarantee that the target MOTAD model can be used to generate all SSD solu-
tions. S ' ' '

Other Decision Criteria

The previous two sections have focused on the expected utility theory
and decision criteria consistent with this theory. The discussion is mot
exhaustive; it focuses on those criteria which can be incorporated into
risk programming models. There are, however, other ceriteria which have
been incorporated inte risk programming models. Some of these criteria
reflect an attempt to overcome some of the objections to expected utility
theory. These objections may be as much the result of the simplifying
assumptions needed to_apply expected utility theory as they are objections
to the theory itself. : '

Criticisms of the expected utility maxim have taken many forms.. At
one extreme, one can argue that utility functions involving only one at-
tribute are a gross simplification of reality. Recent crities argue that

Lipn example is the objection leveled at E-V analysis for treating
positive as well as negative derivations about the mean as undesirable.
However, this is not a limitation in the theory. To claim that E-V analy-
sis is consistent with expected utility theory, one must assume utility is
quadratic or returns are normally distributed. In the latter case, higher-
order moments of the distribution vanish, but for more general classes of
utility functions, the problem would be avoided because expected utility
would involve higher-order moments.
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while expected utility theory generalizes notions about economic behavior
by relaxing the assumption of linearity in the payoffs, it retains the
notion of linearity in probabilities, thus leading some to conclude that
expected utility may be only a prescription of what is believed to be ra-
tional behavior rather than a description of observed behavior (Machina,
1987).  Experimental investigations by psychologists have also uncovered
instances where decision makers violate the postulates of expected utility
theory (Weber, 198%). Modification or relaxation of the assumptions have
led to a class of models (e.g. regret and disappointment theory) designed
to describe observed behavior and accommodate psychological variables such
as perceived riskiness and ambiguity. These models are mnot unlike the
theories of "bounded rationality" of the behavioral theorists such as Cyert
and March (1963), Machlup (1967) and Simon (1979). To date, little has
been done to accommodate these theories into programming models and they
are thus beyond the major focus of this report.

At a more practical level, alternative decision criteria have been
suggested which, for computational reasons, are approximations to more
theoretically acceptable alternatives. Due to recent. advances in comput-
ing technology, these criteria are less important from a computational
perspective. They are still widely used and their applicability is now
judged best on their performance relative to other criteria. In addition,
it is often argued that decision makers are concerned about income falling
below some minimum level. Many of the models that embody this notion have
been labeled "safety-first" but fall into a general class of mean-risk
dominance models in which risk is measured by a probability weighted func-
tion of deviations below a specific target return (Fishburn, 1977).

Among the linear approximations, the most widely used criterion is
MOTAD in which Hazell (1971) proposed that mean absolute deviations (MAD)
be used as a measure of income variability in place of the sample variance.
As is seen in subsequent sections of this report, this leads to a linear,
rather than quadratic programming formulation. Even though MAD is a less
efficient estimator of the population variance, the two risk formulations
generate surprisingly similar results (Hazell and Nortomn, 1986). Thus, it
appears that MAD does equally well or may even outperform sample variances
(if incomes are skewed) in ranking alternatives (Thomson and Hazell, 1972).

Another decision rule closely related to E-V analysis is the expected
gain-confidence limit (E,L) criterion proposed by Baumol in 1963. He argued
that not all efficient plans on the E-V frontier are reasonable in that
plans with lower p or ¢ may not always be the most secure if one accounts
for the probability of a large shortfall in income. Thus, decision makers
are required to choose the alternative which maximizes p for a given level
of L = pu -fo, where § > 0 is a risk aversion parameter. In some cases where
the probability distributions are known, § may also reflect directly the
probability of income falling below some particular level. 1In this sense,
this (E-L) criterion is similar to the more general class of "safety-first"
criteria and if one lets fo = I, it is equivalent to the M-G criterion
discussed above.

Safety-first rules focus attention on some critical (and generally
arbitrary) ‘'disaster’ level in the lower tails of the probability distri-
butions, and in some sense minimize the probability of falling below this
level. As such, any choice is critically dependent on the target level
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selected. Such apﬁroaches have been reviewed by Boisvert (1972) and Anderson
(1979), among others.

One of the earliest safety-first principles was developed by Roy (1952)
and involves minimizing the probability that the outcome of an action or
prospect falls below some specified disaster level, y*, i.e,, Min. Ply <
y*] or, alternatively, Min. Fj(y*), where Fj(y) is the CDF of the ith pros-

pect. It is difficult to incorporate this criterion into a mathematical

programming model, but Hazell and Norton (1986) show that this safety-first
alternative can be generated ex post from the E-V set if returns are normal-
ly distributed. Low (1974) proposed an alternative in which the decision
is one which maximizes u subject to income larger than some minimum level
for all states of nature. While this is relatively eagsy to incorporate
into a programming model, it could lead to an infeasible result if the
target is set too high. ' '

Katoaka (1963) is responsible for a criterion which suggests that an
entrepreneur wishes to be assured of some non-negative income with some
specified high probability (1-a). Each alternative can guarantee some
income at this specified high probability level. Accordingly, he selects
the portfolio which maximizes the income which can be assured [(1-2)100]
percent of the time [i.e., max. R¥ subject to P(R < R¥) < e]. Appealing
To Chebyshev’s inequality, this criterion can be restated (for a given a =
1/k2) as max. g - ko. The probability statement can be made more precise
if one can assume normal returns, but in either case, the alternative that
maximizes this function can be derived from the E-V efficient set.

A _Summary

This section of the report has reviewed expected utility theory and
outlined the important decision rules and risk efficiency criteria that
are consistent with the theory and which can also be incorporated into
mathematical programming models, Some additiomal decision rules, which
have a slightly different or more pragmatic underpinning have also been
discussed and compared briefly with those developed directly from expected
utility. Again this was not an exhaustive list, but rather it focuses on
those criteria that have been adapted to mathematical programming analysis.
Perhaps the two most notable omissions are the game theory rules such as
maximin and minimax (Hazell and Norton, 1986) and the focus loss model
developed by Boussard and Petit (1967). These criteria have not been widely
used and there are some major objections to their use.  Nonetheless, the
programning models consistent with these criteria are described briefly in
the next section. : ' ' ' '

After reviewing these various decision rules and efficiency criteria,
we examine the mathematical programming models which accommedate these
various decision rules. To some extent, the model structures depend on
the nature of the risk being examined. ' o

TECHNIQUES FOR RISK PROGRAMMING

In most applications of risk programming techniques, the analyst chooses
the key elements of risk to be studied and this in turn determines which
parameters of the model (e.g. objective function coefficients, technical
coefficients or right-hand sides) are to be considered uncertain. The
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next step is to develop probability distributions (or estimate moments of
the distributions) for selected parameters and determine how these distri-
butions as well as the behavioral response to risk can be adequately repre-
sented in the model. Although these distributions may be based on sample
data or on subjective information, mathematical programming models usually
treat these probability distributions as if they were known with certainty
(i.e., as population distributions).

Most risk programming models focus on uncertain objective function
parameters. These applications are often the easiest to formulate math-
ematically and to accommodate one or more of the decision criteria out-
lined above. Much of the discussion in this section will concentrate on
this type of model. Other applications have dealt with risk as reflected
by uncertain technical coefficients and right-hand side values separately,
while others accommodate uncertainty in all three types of parameters,
These applications are, however, more difficult both to formulate concept-
ually and to relate to well-known decision criteria. For these reasons, a
logical place to begin is with a discussion of models in which the risk is
reflected in the objective function.

Obfective Function Risk

Several models have been proposed which deal with objective function
coefficient uncertainty. Much of the initial work evolved around port-
folio analysis where the major source of risk was in the variability of
returns from individual stocks in a portfolio. 1In the agricultural liter-
ature, farm prices and ylelds have been major sources of risk that are
manifest in the objective function as wvariability in gross margins for
individual crop and livestock enterprises. This section reviews these
various models and compares them, both analytically and empirically.

Mean-Variance (E-V) Programming

The general linear programming problem can be written as find Xy 2 0
(j=1,...,n) which:

n :
(19) max. ‘Z cy x5 =2
j=1

s.T.
n .
(20) Z ajj xj < b; (i=1,...,m)
j=1

where the Xj’s are decision variables and the Cj's are now uncertain

parameters. If the c;i's are assumed to have means cj and covariances

713 (i1 = aiz) then the mean and variance of the objective function (Z)
are given by: '

— n ——
(21) .Z - .X' cj x3; and
j=1
. n n

(22) azz =y 3 oij XiXj-
i=1 j=1
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Using these relationships, the general formulation of the E-V problem
due to Freund (1956) is: ' : :

- n _ n n -
(23) max. Z - ¢ oz2 = Zlcj Xj - ¢ )L L oij XiXj

i iml j=1
s.t. :
4] .
(24) Y aij Xj <bj (i=1,...,m)
Si=1 :

X5 z 0 all j.

Here the objective function maximizes expected total profits less a "risk
aversion coefficient" (4) times the variance of total profits. In the
original application of this model to a problem in farm planning, Freund
(1956) assumed that gross margins on the farm activities were normally
distributed. Thus, 24 is equivalent to the risk aversion parameter in
equation (8). : .

Markowitz (1952) presented a formulation of the E-V problem predating
Freund, but this formulation minimized variance subject to a given level
of expected income, A. Algebraically, the model was:

: n
(25) minimize } o1 XiXj

j=1
(26) : _Z cy Xj 2 A

i=1

n
(27) z ajj Xj = by (i=1,...,m)

j=1

Xy z 0.

The major difference between these two formulations is that for any single
solution, one model requires the specifications of ¢, while the other re-
quires a specification of A. In theory it is possible to estimate a decision
maker's value for ¢, which is largely a function of the decision maker's
preference between income and risk, but in practice this can be quite dif-
ficult.ld However, the value for X to be adopted is a function of both

15In the empirical literature, several strategies for estimating risk
parameters have been used. First, one may subjectively elicit a risk aver-
sion parameter (see Anderson, Dillon and Hardaker (1977) for details) or
transform risk aversion coefficients from another study of decision makers
thought to have similar risk preferences. Second, one may derive the ef-
ficiency frontier, have the decision maker select an acceptable point on
the frontier, and use the implied risk aversion parameter in further anal-
ysis. Third, following Weins (1976) and assuming that the E-V rule was
used by decision makers in generating their past choices, one -can set the
risk aversion coefficient equal to the difference between marginal revenue
and marginal cost of resources which occurred in the past divided by the
appropriate marginal variance. Fourth, one may estimate a risk aversion
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‘ the risk-income tradeoff and the values of all parameters in the model and
" these change from application’ to application as well as during a model
based analysis (i.e., when changing parameters to test semsitivity). . The
. madjor advantage of using Freund's formulation is that it determines directly
" the risk aversion parameter associated with points on the frontier.

As mentioned above, this E-V formulation leads to more diversified
production plans or investment portfolios than would occur if expected
income or revenue were maximized. This is illustrated in the empirical
example in Appendix A, but other important characteristics of the optimal
solutions may be examined through the Kuhn-Tucker conditions. Writing the
problem first in matrix notation,the Lagrangian and the Kuhn-Tucker condi-
tions are:

(28) L¥(X,U) = CX'- $XSX - U(AX-b)

(29) 3L*¥/3X = C - 2¢4X'S - UA < O

(30) BL¥/8X (X) = (C - 2¢X'S - UA) X = O

(31) X=20

(32) 8L*/3U = AX - b < 0

(33) (U) ' 3L*/8U = U(AX - b) = O

(34 U=0

where U is the vector of dual variables (Lagrangian multipliers) associated
with the primal constraints AX < b, § is the variance-covariance matrix and
C is the vector of expected returns.

A cursory examination of these conditions indicates two important
things. First, the solution permits more variables to be non-zero than
would a basic solution to constraints (32) alone; variables (X} may also
be in the basis if equation (29) holds as an equality. Thus, a diversified

solution involving more non-zero variables than the number of constraints
may be achieved. Second, equation (29), which relates resource cost (UA)

with marginal expected revenue (E) also contains a marginal cost of bearing
risk (2 ¢ X' 8). Conseguently, the optimal shadow prices are "risk-adjusted"
as are the optimal decision variable values.

E-V Models and Other Decision Criteria

‘Once the E-V efficiency locus has been generated, one can use the
information, particularly if returns are normally distributed, to apply
decision criteria other than the expected utility maxim. As I1llustrated
by Hazell and Norton (1986), these criteria are applied in an ex post fashion
and rely on a one-to-one mapping from the E-V locus to the E-o locus (where

parameter such that the difference between observed behavior and the model
solution is minimized (Brink and McCarl (1978) or Hazell et al., (1983)).
Fifth, one can make probabilistic assumptions and derive ome as in McCarl
and Bessler (1989). '
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o is standard deviation). For example, one can use.this information .to
calculate L = E = ¢o and make application of Baumcl’'s (1963) expected gain
confidence limit criterion for ranking alternatives by finding the subset
of the E-V efficient alternatives for which E is largest for a given L.
This E,L efficient set, of course, depends on the value of ¢. As another
example, it may be reasonable to argue that a good risk decision strategy
is to maximize the level below which income will fall o percent of the
time. If incomes are normally distributed, there is a one-to-one corre-
spondence between o and ¢ and for a given ¢ this decision criterion in-

volves finding the alternative that maximizes L. .

A Linear Approximation - MOTAD

Because quadratic programming (QF) problems historically were harder
to solve than linear programs there was considerable effort in the past to
develop linear programming approximations to the E-V model or alternative
risk models that could be solved using LP procedures., These computational
jssues are now less important (McCarl and Onal, 1989). Several LP approx-
imations have evolved (Hazell, 1971; Thomas et al. 1972; Chen and Baker,
1974; and others as reviewed in MecCarl and Tice, 1982). Only Hazell's
MOTAD is discussed here due to its extensive use and the apparent lack of
adoption of the others.

The acronym MOTAD stands for Minimization of Total Absolute Devia-
tions. .In the MOTAD model, risk is measured by absolute deviations from
mean returns rather than by the variance of total returns.® Thus, the
original Hazell model depicts tradeoffs between expected profits and the
absolute deviation of profits.

Since the absolute value operator is mot linear in the x;'s, the model
must be reformulated into an LP framework by recognizing that any number
(A) can be written as the difference of two non-negative variables (A = At
- A”). As long as we can be guaranteed that both these compoments can
never appear in the basic solution, then [A| = At + A", Hazell (1971)
used this formulation in developing the MOTAD model. (The approach was
suggested in Markowitz (1959, p. 187)). Formally, assuming that there are
K states of nature, then the total absolute deviation of profits from the
expected value under the kth state of nature (D) is: '

: n : n _
(35) D=1 L Ckj%j - X Cj%jl
j=1 j=1

where ij is the per unit met return to xj under the kD state of nature

and C: the mean net return to x;. The above equation gives the absolute
value of the difference between Income under the kth_state_of nature

16The MOTAD model has been rather widely used. Early uses were by
" Hazell, 1971; Hazell and Scandizzo, 1975; Hazell et al. 1983; Simmons and
Pomareda, 1975; and Nieuwoudt, et al., 1976. In the late 1970's the model
saw much use. Articles from 1979 to mid-1980 in the American Journal of
Agricultural Economics include Gebremskal and Shumway, 1979; Schurle and
Erven, 1979; Pomareda and Samayoa, 1979; Mapp, et al., 1979; Apland, McCarl
and Miller, 1980; and Jabara and Thompson, 1980. o Co :
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n n

(X Ckj xj) and mean income (J, Ej x4
3 3

Since both terms involve X4 and the sum is over the same index, this
can be rewritten as:

n _
(36) Dk = | X (Cky - C3) %5 |-
j=1 -

Total absolute deviation is the sum of the dy over k. Now introducing
variables to depict positive (dk+) and negative (dy”) deviations we obtain:

K K
(37) TAD = § D= ¥ (dt + d7),
k=1 k=1
n —
where dit + dp” = | ¥ (Cxj - Cj)le.
j=1

Substituting this expression for the variance in the objective function of
the E-V model (equation (23)) we obtain the MOTAD model’s cbjective function
~ which maximizes expected net returns less some risk aversion coefficient
(T) times the TAD:

It K pa

(38) maximize E - ¥ TAD = 3} Cj xi - ¥ ) | L (Cki - Ci)xg].
. 37 . ) 3773
j=1 : k=1 j=1-

To convert this into an objective function that is linear in the decision
variables, we can write: :

n K

(39) maximize J Ej xy - ¥} (4T + dg7)
j=1 k=1
n —
(40) (Crs - CIxy -dp .t + d;,- =0  for all k
2 ki AR k k
J=

(41) &, d” = 05 x5 2 0.

The total MOTAD model then is:

: n K
(42) maximize ) Cj xj - ¥ Yo(qt + aeT)
o j=1 k=1 .
s.t.
' n
(43) 321 ajj Xj | < b; for gll i

178ecause dk+ is the negative of dy~, at most only one will appear in
the basic solution. :
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n .
(44) ¥ exj xj - et +d -0 for all k
. i=1
(45) . X§, qt, dag” = 0,

where ekj’s are the deviations from the value expected for the jth variables

under the kth observation (eyj = Cgj - Ci); dit is the positive deviation
of the kP income occurrence” from mean {ncome and di.~ is the asscciated
negative deviation. Because the sum of positive deviations about the mean
is always equal to negative deviations, this model is most often written
just in terms of negative deviations’ from the mean:

n k
(46) max. 3} C xj - 270 ) dk _
j=1 k=1
s.t.
(47) E ajj xJ <b; for all i
j=1
n : .
(48) L exj xj +dg” 20  for all k
j=1
(49) xj, d” = 0.

Ignoring positive deviations in this case does not alter the solution,

In an attempt to make an analytical comparison between the measure of
risk in this model and that in the E-V model, Hazell (1971) relied on Fish-
er's work showing that an estimate of the standard error of a normally
distributed population can be formed from a sample of size n by multlplylng
Mean Absolute Devlatlon (MAD) by a constant: - .

0.5 '
In MAD.

(50) g = Ezgjiy

MAD iz the total absolute deviation divided by n, which is twice the
total negative deviation (TND) divided by n, if.e.,

(51) MaD - 12D _ 2.IND
n s

The total negative deviation is the sum of the negative deviations
under each state of nature: ‘

K -
(52) TND = ) dy .
k=1
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_ Thus, the approximation of the standard error, assuming normality,
can be written as follows:

0.5 0.5 0.5
In IIn

- In
;53) o= I D] MAD = CE) (2) dy )/n = TS 2TND/n.

Conversely, the inverse formulation relates the total negative devia-
tion to the standard error as follows:

(54) TND = (21I/(n(n-1)) )"Y/2 ¢ = A 0.

This transformation is commonly used in MOTAD formulations, e.g.,
suppose we introduce an identity relating dy~ and a new variable (o) which

is the approximate standard error of income. The problem is to find Xy 2
0 that: : '

n
(55) maximize Z Cj Xj -ao
j=1
s.t.
n _
(56) Y aij xj < bj for all i
j=1 :
n -
(57) L ekj Xj + dy >0 for all k
j=
: K .
(58) -Ao+ ) d =0,
' k=1

where A = (2II / (n (n-l)))'l/2 and X3 = 0 and dk- > 0.

(An application of the MOTAD formulation to the portfolio problem used to
illustrate E-V analysis is also given in Appendix A.)}

Comments on MOTAD

Because MOTAD is often thought of as a linear approximation to the E-
V model, many of the comments regarding the strengths and limitations of
E-V analysis are appropriate and are not repeated. ‘Additional comments
are also appropriate. First, a cursory examination of MOTAD might lead
one to conclude that the model ignores covariance. However, it must be
remembered that the deviations are totalled across all the activities,
allowing negative deviations from the mean for one activity to cancel with
the positive deviations for another. Thus, in minimizing total absolute
deviations, the model has an incentive to "diversify" in much the same way
as the E-V model which explicitly accounts for covariance. This similarity
is seen more readily by realizing that the E-V model can be formulated in
a fashion similar to MOTAD, only with the deviation variables dy~ and dk+
from equation (39) being squared and divided by n. '

Second, the equivalence of the formulations using total negative and
total absolute deviations depends critically on the symmetry of the devia-
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tions. This symmetry occurs whenever the differences are taken from the
mean. This, however, implies that the mean is the value expected in each
observation. This may not always be the case and when the value expected
is not the mean, moving averages or other expectation models should be
used instead of the mean (see Brink and McCarl (1978) or Young (1980)).
In such cases, the deviations are generally non-symmetric and consideration
must be given to an appropriate measure of risk (for example, Brink and
McCarl (1978) use the mean negative deviation formulation with a moving
average expectation.) '

A third set of comments on MOTAD (and E-V models) relates to the use
of standard error as a measure of risk. When using this measure, the risk
aversion parameters can be interpreted as the number of standard errors by
which one wishes to discount income. This, and an assumption of normality,
permits one to place confidence limits on income. For example, a risk
aversion coefficient, a, equal to one means that level of income which
occurs at one standard error below the mean is maximized. Assuming nor-
mality, this is a level of income that will occur 84% of the time. Thus,
the use of the normality assumption and the standard error approximation
allows a probabilistic interpretation of the risk aversion coefficient.

Fourth, to use this model one must have empirical values for the risk
aversion parameter. The approaches discussed in the E-V section above are
all applicable to its discovery. The most common approach with MOTAD mod-
els has been based on observed behavior. Assume the measure of risk is
standard deviation, then the procedure has been to: a) take a vector of
observed solution variables (i.e., acreages); b) parameterize the risk aver-
sion parameter (¥) in small steps (e.g., 0.25) from O to 2.5 at each peint
computing a measure of dispersion expressing the difference between the
model solution and observed behavior; and c¢) select as the risk aversion
parameter that which exhibits the smallest value for the measure of dis-
persion (for example see Hazell, et al., 1983; Brink and McCarl, 1978;
Simmons and Pomareda, 1975; or Nieuwoudt, et al., 1976).

Fifth, the MOTAD model as presented above does not, to the authors’
knowledge, have a direct relationship to a theoretical utility function.
Some authors have discovered special cases under which there is a link
(see the note by Johnson and Boehlje, 1981 and the subsequent exchange
with Buccola, 1982). Viewed in terms of an approximation to the E-V model,
Thomson and Hazell (1972) investigated the comparative efficiency of the
two formulations and showed MOTAD to be relatively more efficient with
small samples from non-normal distributioms. Given the interpretation
which can be placed on the risk aversion parameter outlined above, the
model does not necessarily have to be viewed as an approximation. " If it
is not, one may find it easier to use with decision makers. Furthermore,
. with the advances in non-linear programming algorithms which have been
realized with the release of codes such as MINOS (Murtaugh and Saunders,
1983), some would argue that the motivation for using MOTAD as an spproxi-
mation is largely gone (McCarl and Onal, 1989). MOTAD models, however,
are still being used frequently, : ‘

McCarl and Bessler (1989) derive a link between the MOTAD and the E-V
risk aversion parameters, under the assumption that the link between mean
absolute deviation and standard error holds. This may be developed as
follows. Consider the models; : -
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E - Stapdard Deviation . _ E-V
(as approximated by absolute deviations)
Max CX - a @ Max CX - ¢ o2
s.t. . s.t.
AX. = b and AX <D
X>0 ' ' X > 0.

The ¥uhn-Tucker conditions with respect to X of these two models are:

E - Standard Deviations E-V
C - o do - uvA < 0 C - 2¢0 do - vA =0
ax . 8%
(C - @ go - uA) X=20 (C - 2¢0 g - wA) X = 0
3X dax
Xz 0 Xz0

For these two solutions to be identical in terms of X and u, then

a =240 0or $ = ¢ .
20

Thus, the risk aversion coefficient in the QP will equal the MOTAD
standard error model risk aversion coefficient (a) divided by twice the
estimated standard error. This explains why QP risk aversion coefficients
are usually very small (i.e., a MOTAD risk aversion parameter range of O-
2 when the standard error of income is expected to be approximately $10,000
corresponds to a E-V range of 0 - 0.00002). Unfortunately, since ¢ is a
function of o, which is a function of X, this conditiom must hold ex post
and can not be imposed a priori. However, one can develop an approximate
a priori relationship between the risk aversion parameters given an estimate
of the standard error. '

The final comment on the MOTAD model relates to its sensitivity.
Schurle and Erven (1979) show that the several plans with very different
solutions can be feasible and close to the plans on the efficiency locus.
Both results place doubt on strict adherence to the efficient frontier as
a norm for decision making. (Actually the issue of near optimal solutions
is much broader than just its role in risk models).

The Focﬁs Loss Model

Boussard and Petit (1967) posed a different approach to handling un-
certainty in the objective function. This approach, the focus loss model,
assumes that decision makers are reluctant to accept levels of income be-
low a minimum level M: i.e. a level at which "ruin” occurs. - The formu-
lation can be described as follows: :

1BRoy (1952) and Low (1974) present similar models based on "ruin”
income levels.
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n
Assume the average income level ( ) Cj X4 = CX) less the minimum income
j=1

level (M) expenditures gives the maximum admissible loss (L = CX - M),
This loss may be spread across the risky activities. Assuming there are K
activities over which to spread this loss and that each activity can have
at most a 1/K share of the overall loss, then any activity is constrained
to exhibit no more than 1/Kth the admissible (focus) loss. This is done
by entering the constraints Fijx; < L/K, for all x; that are risky; F; is a
measure of the risk level incurred when producing one unit of activity j.
The programming problem becomes: '

n
(59) Maximize .E Cy xj
j=1
5.t.
n
(60) .X ajj Xj < by for all i
j=1
n —
(61) ' ‘2 ¢ xj - L - M
j=1
(62) Fj x5 - L/K <0 for all j ¢k
(63) : "L X =0 for all j,

where L is an endogenous variable giving the maximum admissible loss be-

tween expected return (ék) and the level of ruin (M) and Fj; K and M are
parameters. .

This formulation requires specification of the new parameters Fy, K
and M. Following Boussard and Petit: if the activity distributions” are
normal with zero covariance, the F; can be written as t &; where t is a
value from the standardized normal or t distributions and g; is the stan-
dard deviation of the net return of the jth activity. Under these condi-
tions the probability level leading to the selection of t is the probabil-
ity (one-tailed) that the loss will not be incurred (t=1 corresponds to an
84% chance under normality). Boussard and Petit also argue that K should
be greater than or equal to the square root of the number of basic risky
variables. The number of basic variables is never known a priori; Boussard
and Petit (1967) and later Boussard (1971) suggest and provide justification
of a value of K=3. M is not discussed here as its specification depends
on the problem. L ' o

The focus less model has not been extensively used in empirical re-
search., There are several possible explanations. First, as Wicks (1978)
suggests, MOTAD is easier to use., More importantly, the focus loss model
ignores covariance. This may be a dominant concern in some empirical set-
tings that lead to the choice of different techniques. - As mentioned in
Boussard and Petit (p. 873), however, when several activities are highly
interrelated it may be beneficial to include these activities into a single
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focus loss constraint. This method Iintroduces some consideratibn“oficovar-
fance, but the fact remains that a universally accepted method for estab-
lishing the focus loss for a variable (F;) has not been developed:¥ In‘an
empirical example, Wicks (1978) used several alternative methods baséd on
criteria other than the probabilistic discounting discussed .above. -'The
alternatives were to set F; to: a) the objective function value {(C),-B)
one half the objective function value, and ¢) the variable cost component
of the objective function value. - Wicks provides no basis for choosing
* among the methods. : ' : A '

Target MOTAD

As suggested above, a more promising programming formulation combin-
ing the target income and MOTAD concepts is the so-called Target MOTAD model
developed by Tauer (1983). The significance of this formulation is that
the solutions to Target MOTAD are efficient according to second degree
stochastic dominance. This has been shown for only one other risk formu-
lation. '

Target MOTAD is based on a target level of income and restrictions on
the level of negative deviation from that target. Given a target level of
T, the formulation becomes:

. : n :
(64) Maximize ) Cy x
B2 3

s.t.
n
(65) ) ajj Xj < b; for all i
j=1
) n L
(66) ) Ckj ®j + Yk =T for all k
j=1 '
K
(67) Y Peyk =2
: k=1
(68) ' Xy, Yk Y for all j and k.

All definitions are as above except P is the probability of the kth state
of nature. T is the target income level (analogous to M in Focus Loss).
The variable yy is the negative deviation of income under the kP state of
nature below the target income; and X is the maximum amount of the average
income shortfall permitted. This model maximizes expected income subject
to the normal resource constraints and two new constraints. Equation (66)
gives the relationship between income under the kth state of nature and a
target income level. The variable yi is non-zero if the k™ income state
falls below T. The second additional constraint (67) requires the average
shortfall to be no more than a parameter X; thus, the target MOTAD model
then has two parameters relating to risk (T and A) which must be speci-
fied. These, in turn, are parameterized to yield different risk solutions.
(An example is in Appendix A.) : : '
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-Because target MOTAD .is relatively new and has not been applied as
widely as other risk programming models, it is too early to evaluate its
long term contribution to the literature. Although, as stated above, target
MCTAD is consistent with expected utility theory. It is true that target
MOTAD requires specification of two parameters, T and A. McCamley and
Kliebenstein (1987) outline a strategy for generating all target -MOTAD
solutions, but it is still impossible to relate these solutions. to more

conventional measures of risk preferences.. Despite the fact that target

MOTAD solutions are SSD efficient, no attempt has been made to determine
which of the solutions are consistent with which ranges of Arrow-Pratt
measures of risk aversion. The only thing we know at this time is that
target MOTAD and original MOTAD models can be related. If one solves for
A endogenously with a weighted objective function value and sets the target
level to the endogenous level of mean income, this yields a model where )
equals total negative deviations. For these reasons, there are additional
difficulties communicating the results of target MOTAD to decision makers
in an attempt to identify the parameter values consistent with their own
risk preferences, '

The Mean-Gini Programming Problem

As with target MOTAD, the Mean-Gini programming model also generates
only a subset of SSD portfolios and before either model can be given its
rightful place in the risk literature, the relationship between these two
models, to SSD alternatives and to other risk models must be understood.
Previous work has suggested that the M-G efficient set corresponds to $SD
alternatives preferred by those with only mild aversion to risk, This
work, however, was not performed in a programming context. It remains to
be seen if the same conclusions will hold in wider applications. Since M-
G analysis has not been applied in a programming context to a significant
empirical problem, our purpose here is to outline the procedures for con-
structing the model. :

In a footnote to his 1982 paper, Yitzhaki first formulated a port-
folio problem using the M-G decision criterion, although at that time he
attempted no empirical application. More recently, Okunev and Dillon (1988)
have independently developed and applied the model to a small example farm
problem. ' ' '

The construction of the M-G efficient set is facilitated by first
finding the M-I efficient set by deleting from the M-T set all plans which
have the same value for #-T but a lower u. This is demonstrated in Figure
2. The M-G efficient set consists of BC of the u-T set ABG.1Y '

To generate the M-T set within a programming context, we must rec-
ognize that I' invelves the sum of absolute values of period differences in
returns (differences in returns between all pairs of periods). This sum
can be minimized in a fashion similar to that used in the MOTAD model., To

1945 stated by Okunev and Dillon (1988), "[b]y virtue of the geometry
implied by the 45%-degree line tangential to ABC at B, plans such as those
represented by points D and E lying the same horizontal distance {D'D=E'E)
from the 45°-degree line have the same #-T value" (p. 10); However, E has
a higher p value and by equation (13) dominates D by M-G efficiency. -The
M-G efficient set is then BC. Point B is where p-T' is & maximum,



Figure 2. The mean-gini efficient frontier

get started, suppose a farmer has information on gross margins cki for a
number of years k = 1,...,s, for each activity j = 1,...,n. Denoting the
jth activity as x4 then the total gross margin for any farm plan is (Ty).
_ n
(69) T = ) ckj *j.
= _
Assuming that the returns in any year are equally likely, -then:
.8 s '
(70) T= L I 1T - Tel/s?.
— k=1 r>k :

Thus, the M-T can be found by minimizing equation (70) subject to:

n

(7L) Z Ej Xy o= p (for all wvalues of u)
— 5 ’ ’
vhere 3 .=.k§:1 ij/s; = expected returns for -activity j, and a set of

resource constraints:
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n
{72) ) ajj xj = by (i-1,...,m),
j=1

%y = 0 all j.

To linearize equation (70), we must transform the problem by defin-
ing: : '

(73) Tk - Ty = Ykr' - Ykr s Ykr' and yer~ = 0,

for all k and r. Then we can write:

(78) 1Tk - Tel = Yir' + Ve

provided that at most one of these variables will be in any basic feasible

solution to the problem. The problem can now be written to minimize s2r
(since s? is a constant):

-8 5
(75) minimize } I (yre' + yie?)

k=1 r>k
5.t.
by
(76) . L (Cxy - Crj)xj - YkrT + Yer~ = 0 (for k=1,...,s; >k)
j=1 .
a .
(77) ) cj x5 = p (all values of u)
j=1 - '
(78) Z ajj Xy = by (i=1,...,m)
j=1 . S
(79) %52 0; yret 205 ypr” 2 0

Once this problem is solved parametrically for all relevant values of
#, then the solutions can be ranked further by the M-G criterion given in
equation (13).' (Reéemember equation (75) minimizes szr, and equation (13)
invelves T'.) 1In solving this programming model, it is clear that for large
values of s, equation (76) generates a large number of “programming con-
straints. - Okunev and Dillon (1988) develop and simplify the dual to this
problem for solution purposes. While this may lead to computational ef-
ficiencles, generating the data input for this model is a formidable task
if it is to be solved by standard commercial codes unless a matrix genera-
tor is written to construct the model. Jefferson and Boisvert (1989) have
demonstrated a simple way to construct the model within the "GAMS" pro-
gramming language. :

DEMP Model

Partly as a result of the increased availability of non-linear solvers
such as MINOS, Lambert (1984) and Lambert and McCarl (1985) introduced the
Direct Expected Maximizing Non-linear Programming (DEMP) formulation, which
maximizes the expected utility of wealth. Their original application was



29

~ to a problem in wheat sales. Kaylen, Preckel and Loehman (1987) empidy'
variation of DEMP where the probability distributions are of a known con-””
tinuous form; numerlcal integration is used in the solution.

DEMP was designed as an alternative to E-V analysis, relaxing some of
the restrictions regarding the underlying utility function. = The basic
DEMP formulation requires a utility of wealth function (U(W)) and a level
of initial wealth (W,) to which the income generated by the model is added.
The basic formulation is:

K
(80) Maximize ) Pp U(Wy)
. k=1 .

s.t.
n
{8L) z ajj Xj < bj for all 1
j=1
(82) W - Z ij Xy = Wo for all k
) j |
(83) Wi = 0; x5 = 0 for all k and j,

where P is the probability of the kth state of nature;
Wy is the wealth under the kth state of nature; and
Cxj 1is the return to one unit of the j th activity under the kth
state of nature.

While this model does allow one to relax some of the restrictive as-
sumptions embodied in the utility functions underlying the E-V models,
important data on the form of the utility and the risky parameters still
are necessary. (An example application is given in Appendix A.)

EUMGF Model

Yassour, Zilberman and Rausser {(198l) have also presented a direct
expected utility maximizing model. It has been called the EUMGF model
because it is based on the assumption of an exponential utility function
and the maximization of expected utility takes the form of a moment gener-
ating function for a probability distribution. The model also requires
that the probability distribution of outcomes be specified. Under these
conditions, the expected utility function becomes:

(84) EU = J -e"IVW f(&) dw,

where r is the risk aversion coefficient;
w is the level of wealth; and
f(w) is the probability distribution of wealth

These moment-generating functions implied by this model have been
developed analytically for a number of specific distributions, including
the Binomial, Chi Square, Gamma, Normal and Poisson distributions (Hogg
and Craig, 1970). 1If, for example, one assumes that f(w) is distributed
Gamma : : : .
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(85) £(w) = (P(a) g1 w@ e VP,

then the moment-generating function for a given risk aversion coefficient
r is:

(86) (1-pr) 7.

For the Gamma diétribution, the mean equals af and the wvariance aﬂz. Thus,
B - az/u and the expression for the moment generating function becomes:

(87) (1 - ra?/u)@.
Assuming that the decision model can be posed within a programming context
with linear resource constraints, the model can be solved as a non-linear

programming problem of the form:

(88) max (1 -_raz/u)'a

(89) u-cX=0

(90) 02 - (n-1)°l X ¥x =0
(91) AX < b ”

(92) u, o¢, X > 0.

assuming wealth (u) is positive and where Y, is the covariance matrix on
returns to X. Collender and Zilberman (1985) apply the model to a problen
of land allocation under stochastic yield.: Moffit et al. (1984) apply
this model to 'a problem in pest control on cotton, while Collender and
Chalfant (1986) have proposed a version of the model no longer requiring
that the form of the probability distribution be known. R

Other Appreoaches to Objective Function Uncertainty

A number of other methods have appeared at various times in the past
but none have been used extensively. In the 1960's and 1970's, a number
of applications of game theory appeared in the literature (Dillon, "1963;
Agrawal and Heady, 1968, 1972; Hazell, 1970; McInerney, 1967, 1969; and
Maruyama, 1972). These were by and large linear programming models solving
games. against nature. The methods, however, have not been widely adopted,

Right-hand Side Uncertainty

Up to this point, attention has been focused on models that accom-
modate risk in the objective function coefficients. This emphasis is un-
derstandable given the historical importance both of yield and price risk
in agriculture. This does not, however, mean that other sources of risk
are unimportant in certain decision situatioms. By defining the program-
ming model in particular ways, uncertainty in water supplies, field time or
other important resources appear as right-hand parameters.

A number of approaches have been suggested for dealing with right-
hand side (RHS) uncertainty but in several respects each is problematic.
Since the uncertainty in the problem is not in the objective function, it
is impossible to relate these risk decision models to the widely accepted
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expected utility or other risky decision criteria discussed abbvé .A ééc6ndj
- difficulty is that solutions to these types of models fail to recommend
~ how plans should be altered if resource supplies fall short of plannedf=

levels. This issue is discussed in greater detail below. However, these

programming models have been used effectively in some decision situations.
- The following discussion is for completeness and to help the reader assess
the applicability of these models.

Chance'Constrained Programming

The most common approach used to deal with RHS uncertainty is the
chance constrained programming formulation introduced by Charnes and Cooper
in 1959. In this approach, it is assumed that the distribution of a RHS
value (e.g. a b;) is known and that the decision maker is willing to state
a lower limit (a) on the probability (P) of a constraint being satisfied:

(93) P () ajj xj <bg) = a.

1f thé avefage value of the RHS (E ) is subﬁracted from both sides of the .
inequality and in turn both sides are divided by the standard error of the
RHS (ai) then (93) becomes:

X ajj X - by bi - Bi
(94) P j=1 - =< o1 -
If we let:
b, - b
95) z = ——3

oi

and assume knowledge of the probability distribution of b; one can find
the value Z, which is a critical value from the probability distribution
such that values less than this occur a percent of the time and manipulate
(94) to be: ; '

96y p |&= < 7| = a.

This can be rewritten to give a linear programming constraint:

)83
(97) L ajj xj < by - Zy 0y,
j=1

which states that resource use (2 a3 4 Xj) must be less than or equal
]
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to average resource availability (bi) 1ess the standard deviation of bj (al)
tlmes a crltical value (Z,) associated with the probablllty level o,

Values of Z may be determined in two ways. The first is by making
and testing hypotheses about the form of the probability distribution of
bj. Unfortunately, it is often difficult to identify these distributions
and normality rarely can be assumed because resource supplies cannot go
below zero. The second strategy is to rely on the conservative estimates
generated by using Chebyshev’s inequality, which states the probability of
an estimate falling greater than M standard deviations away from the mean
(two-tailed) is less than or equal to 1/M2 To use Chebyshev inequality
in its “one- talled" form one needs to solve for that value of M such that
2(1l-a) equals l/M Thug, given a probablllty a, “the Chebyshev value of
Zy is given by the equation Zy = (2(1- a))

This chance constrained formulation applies when only one element of
the right-hand side vector is random. To generalize the procedure to joint-
ly distributed RHS’s one must replace the probability restriction on a single
constraint with a single probability restriction across all random con-
straints. Following Wagner (1969, p. 668) the constraint becomes

. n b4}
(98) P j§1a5+1'j %5 < bg+1,...f jgl a . %X =b |28,

where 0 < 8 51
Letting Fj(b) = P[bj < b] and assuming the bi’s are independenﬁ, then
S m .
the joint distribution function is I Fj. Finally, letting Gj = 1-Fj,

j=g+1

the deterministic constraints become:

(99) -y1 + Y ajj xj =0 (1-g+1 ..,m); and
3::
n
(100) I Gi(yy) = 8,
i=g+l

_where yj is unconstrained in sign. The difficulty in applying this model
is that constraint (100) is non-linear and will rarely be concave. The
distributions of the bj are Normal, Gamma or uniform distributions then:

m
(101) Y 1n Gij(y{) = ln B,
i=p+1

is concave. These.problems are now solved routinely by'MiNOS.

Despite the fact that chance constrained prograﬁming'is a well-known
technique and has been applied to agriculture (e.g., Bolsvert, 1976; Boisvert
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and Jensen, 1973; and Danok, McCarl and White, 1980) and water management

" (e.g. Eisel, 1972; Loukes, 1975; and Maji and Heady, 1978) its use has

" been limited and controversial.

The model's major advantage is its simplicity;, it leads to an equiva-
lent linear or non-linear programming problem of about the same size and
the only additional data requirements are the fractiles on the uncondi-
tional or joint distributions on the RHS coefficients (Wagner 1969). How-
ever, as reported by Pfaffenberger and Walker (1976), its only decision
theoretic underpinnings is Simon'’s principle of satisficing.

A more fundamental problem is seen by comparing chance constrained
programming (CCP) to stochastic programming with recourse (SPR). Hogan et
al., (1981) "... emphasize that recourse problems characterize almost all
real decision problems involving risk" (p. 699). They describe the problem
in the follewing way:

Consider the decision problem where a decision x is made before
the random event T occurs. The observed outcome {(in suitable
units) is a function f£(x,r) of both the decision and the random
event, Once the random variable r is observed, a recourse action
is taken which affects the outcome of the decision-event combin-
ation through f£. An optimal decision solves the SPR problem:
max{E,u[f(r,x}]|x € K}, where r has values in R®, K ¢ R™ denotes
the set of feasible decisions, E, denotes mathematical expectation
with respect to r, and u is-a utility function (p. 699).

If this recourse model is complete (that is, it actually specifies
the implications for expected utility of recourse actions for all values
of the randem variable), then, at least In theory, it is possible to cal-
culate the expected value of perfect information. However, the normal
chance constrained problem ignores the recourse decisions; it does not
indicate what to do if the recommended solution is not feasible. In this
sense, it is a special case of an "incomplete"” SPR model where the expected
value of perfect information would not be bounded from below at zero as it
should be. From this perspective, Hogan et al., (1981), conclude that
"... there is little evidence that CCP is used with the care that is nec-
essary" (p. 698). Thus, for those considering a risk decision problem
where important resource supplies are considered random, careful attention
should be given to recourse actions and the potential for incorporating
them into the decision framework.20

A Quadratic Programming Approach

Paris propesed a quadratic programming meodel which permits RHS and
objective function uncertainty to be treated jointly or independently.
Uncertainty in the objective function is treated in the same fashion as an
E-V model. 1In contrast to chance constrained programming, the RHS part of
the formulation was an attempt to include specifications of inter-depend-
encies between the RHS's. Paris developed the RHS part of the model through
an application of non-linear duality theory. Paris' formulation is given
by:

20References in Hogan et al. (1981) provide a good review of the con-
ceptual and computational difficulties involved in SFR.
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(102) Maximize CX - ¢ X' J X - 6 Y’ )jb Y
[o]
(103) AX - 4 )jb Y<b
(104) - X, Y20,

where C is the expected returns; X is the vector of activities; ¢ and ¢
are the risk aversion coefficients with respect to variance in returns and
the RHS, respectively; Z and Eb are variance-covariance matrices of re-

turns and the RHS's, respectively; Y is the vector of dual variables, A is

the matrix of technical coefficients, and b is the vector of expected val-
ues of the RHS's.

This particular model explicitly introduces the variance-covariance
matrix of the RHS's, as well as the dual wvariables, into the primal formu-
lation. The solution then contains both primal and dual variables. The
problem may also be cast as a symmetric dual or self-dual complementary
program problem {(Cottle, 1963) as Paris explains., However, - the solutions
are not what one might expect (e.g., as risk aversion on the right-hand
side terms increases, the objective function also increases in terms of
expected income). The reason for this situation lies in the duality im-
plications of the model. Risk aversion affects the dual problem by making
its objective function worse, Since the dual problem always has an objective
function value greater than that of the primal problem, risk aversion in
the dual improves the primal objective function. The manifestation of
this occurs in the way the risk terms enter the constraints. Notice above
that, given a value of § and Zb positive, then the sum involving ¢ and Y on

the left-hand side augments the availability of the resources. Thus, as
the risk aversion parameter increases under certain selections of the dual
variables, so can the implicit supplies of resources. This offsets the
negative risk terms in the objective function in the example and can do so
in other applications. ' '

In a recent issue of the AJAE, Dubman et al. (1989) elaborate on these
problems. Paris (1989), in his reply, argues that there is "... no theorem
(under uncertain output prices and input supplies) that establishes the
necessity for a risk-adverse entrepreneur to procure inputs in quantities
smaller than their expected values" (p. 810). Therefore, he argues that
the problem in his original formulation must be due to the fact that the
objective function for the risk averse entrepreneur is higher than that
for the risk neutral one. He goes on to argue that this is a direct result
of not explicitly considering the covariance between output prices -and
input supplles

Paris reformulates the problem bj defining random'profit as:
(105) O =p'X - b'Y
with

(106) E(I) = E(p)'X - E(b)'Y
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and

(107) var(i) = X' Zp +Y Xb- 2x'2pbY.

He goes on to state that when p and b are assumed to be multivariate not -’
mal and there is negative exponential utility, the solution to the problem
is found by solving the primal and dual constraints:

(108) AX + ¢ szx - ¢ sz < E(b)
(109) A'Y - ¢ prY + ¢ pr ZIE(p).

Thus, as in the original formulation, the terms involving the variance of
b and p tend to enlarge the feasible regions of the primal and dual, re-
spectively. In this revised formulation, these effects are potentially
offset by the covariance terms, "... with the outcome determined by the
empirical information" (Paris, 1989, p. 812).

This interchange in the AJAE is a productive one, and is required
reading by anyone wishing to use this model or a variation on it. Both
the original commentors, and Paris, in his reply, make important points,
but until this new formulation is digested and applied, the jury remains
out on the model's ultimate value as a programming tool. To these authors,
the fact that an important special case (where Eb is zero) leads to
contradictory results, remains troublesome. P

Uncertain Technical Ceoefficients

The third type of uncertainty to be considered inveolves elements with-
in the matrix of technical coefficients. The literature contains three
approaches to this type of uncertainty. One approach is similar to the one
used in E-V analysis (Merrill, 1965), one is similar to MOTAD (Wicks and
Guise, 1978), while the third takes a sequential approach to decision prdb-
lems and is covered in the next section.

Merrill (1965) formulated a non-linear programming problem ineluding
the mean and variance of the uncertain aji's into the constraint matrix.
Given an equation containing uncertain ajj’s, one may write the mean of the

uncertain part as X alJ X3 and its variance as X Z Xj Xj Oikj» where aji

k j
is the mean value of al and ojyj are the covariance of ajj coefficients
for activities k and j (varlance Jhen k = j). Thus, a constraint containing
uncertain coefficients is rewritten as:

(110) F ajy xj - 6 L L x5 %k 0ikj S bi
J k j

or, using standard deviations:

bj.

1A

(111) T agy x5 - 0 (L I x5 %k oikj) ">
j kj
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The parameter § needs to be specified exogenously and could be done
using distributional assumptions (such as normality) or Chebyshev’'s in-
equality as suggested in McCarl and Bessler (1989).

Merrill's approach has remained virtually unused since its develop-
ment principally because of its incompatibility with available software.
However, today algorithms such as MINOS (Murtaugh and Saunders, 1979) do
provide capabilities for handling the non-linear constraints. Nevertheless,
the simpler approach by Wicks and Guise (1979) discussed below is more
likely to be used, particularly for larger problems. -

Wicks and Guise (1978) provided a 1P version of an uncertain'aij for-
mulation by measuring dispersion in terms of absolute deviation. :Specif-
“ically, given that the ith constraint contains uncertain aij’s, the following
constraints are formulated: . s

n _
(112). ) aij ¥j +¥D; =<bj
j=1 _ '
' n 4+ N
(113) 2 exij *j - dyij + 9ki =0 for all k
j=1 _
_ K i _
(114) Y (dri + dki) - Dy =20
_ k=l ,

Equation (112) relates the mean value of the uncertain resource usage
plus a term for risk (WDi)'to the_right-hand side. Equation (113)_takes

the deviation (eyxii ™ 3ijk - Eij-where ajjk is the kth.observation on aij)
incurred from the ith joint observation on all ajj's and accumulates the

combined deviations into a pair of "deviation® variables (dﬁi, dyg). These
variables are summed into a measure of total absolute deviation (Di) in
equation (114). The term ¥ Dj provides the risk adjustment to the mean
resource use in constraint i, where ¥ is a coefficient of risk aversion..

" Following Hazell (1971}, Wicks and Guise (1978) recognize that an

equivalent formulation can be constructed dropping dgi. They also convert
the total .absolute deviations into an estimate of standard deviation using
the constant relating the two which has already been discussed in the MOTAD
section. Using the constant discussed in the MOTAD section above, we add
one more constraint: ' '

(115) ARD - ¢ = O where A = (20/(n(n-1)))">

‘The complete problem becomes:

Tl
(116) Maximize } Cj Xj
j=1
s.t.

n _
(117) L aij Xj + ¢ 0p < by
j=1
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(118) T ekij %Xj - dig <0 for all
|
ko,
(119) 2 ¥ dgi - Dy =0 for alli
k=1
(120) | ARD; - o4 = 0 for all i
(121) FX <g
(122) xj, dgs, Dy, 0320

where A = (2H/(n(n—1)))'5

In examining this model, the reader should note that these "devia-
tion" variables do not work well unless the constraint including the risk
adjustment is binding. However, if it is not binding, then the uncertainty
does not matter. This formulation has not been widely used. Other than
the initial application by Wicks and Guise the only other appllcatlon we
know of is by Tice (1979)

Several other efforts have been made regarding solely uncertain ajq's.
The method used in Townsley (1968) and later by Chen (1973) involves bring-
ing a single uncertain constraint into the objective function. The method
used in Rahman and Bender (1971) involves developing an overestimate of
variance. None of these models has been widely used.

Multiple Sources and Timing of Risk

'Because of the biological nature of agricultural production, there is
always a significant amount of time between initial production decisions
and the realization of output. This means that in reality there is poten-
tially incomplete knowledge about all of the parameters of any programming
formulation of agriecultural decisions. The models discussed above deal
only with the single most important source of risk for a particular decision
situation. These models also reflect active decision problems  whereby
decisions are made prior to the resolution of the uncertainty. The models
also presuppose that production is instantaneous. Both these assumptions
are difficult to sustain if one wishes to treat multiple sources of risk
simultaneously. 1In this case, the resolution of various kinds of uncertainty
takes place at different peints during the production season. To accommo-
date this situation, one must specifically take account of the sequentiai
nature of the problem.

To illustrate the decision problem, suppose we reconsider the example
in the introduction whereby uncertainty about prices, yields and available
field working time changes over time within the context of crop farming.
Before planting, the decision maker is uncertain about planting and harvest
time, yields and prices. After planting, uncertainty in planting time is
resolved but harvesting time, prices and yields are still uncertain. Ad-
ditional information is mow available on prices based on futures markets,
and USDA planting reports among other sources. Under these circumstances,
decision makers can adjust their decisions and plans as more information
becomes available. Therefore, to accommodate these various sources of
risk this adaptive behavior must be captured in the model, along with fixity
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of earlier decisions (a decision maker can not always undo earlier decisions
or commonly incurs costs attempting to do so). '

The model discussed here for handling these sequential decisions was
originally developed as the "two-stage" LP formulation, independently by
Dantzig (1955) and Beale (1961). Later, Cocks (1968) devised a model with
N stages, calling it discrete stochastic programming (DSF). Interpreted
broadly, the models belong to the general class of stochastic programming
models under recourse (SPR) mentioned briefly above. Apland and Kaiser
(1984), and Hansotia (1980) review the literature in these areas. We will
refer to one area as SPR following the broader operations research litera-
ture.

A formal probability tree framework is embedded in this SPR . model.
The nodes of the tree represent decision points, while the branches of the
tree represent alternative possible states of nature.2! Let's use the
simple sequential problem described above to present the decision tree and
illustrate the model. :

Suppose we have two times at which risk arises - 1) planting season,
and 2) harvesting season. Assume that a farmer needs to select the mix of
crops grown. The items which are considered unknown at each time in this
example are: :

Pre-planting: - time required to plant an acre

- time available for planting

- yield

- time required to harvest an acre
Post-Planting: - yield '

- time required to harvest an acre
Pre-Harvesting: = - time required to harvest an acre
Post-harvesting: - all uncertainties resolved.

: Now suppose a probability distribution can be estimated for various
values of the uncertain parameters conditional on the events that have
occurred. Assuming that there are. two possible pre- to post-planting states
of nature and two pre- to post-harvest states of nature, a decision tree
may be constructed as in Figure 3. :

This tree begins with an initial certain pre-planting position A.
Then, the next section of the tree represents planting state By (the end
of the planting season) in which the amount of time required to plant or
available for planting is known. This state occurs with probabilicy Ppy.

zlAs discussed by Rae (1971), this type of model can accommodate al-
ternative information structures classified as: "At the beginning of stage
t of the decision process, the ocutcomes of stages t-i, t-i-1,..., are kniown
with certainty by the decision-maker but the outcomes of stages t-i+1, t-
i+2,..., are known only in the form of probability distributions of outcomes
conditional on the known outcomes of past time periods. . Hence, if i=0,
the decision-maker has complete knowledge of past and present; if -i=1, he
has complete knowledge of the past; and if i>1, he has incomplete knowledge
of the past"™ (p. 449). The information structure can also accommodate
forecast, but little has been dorme to use this framework to value information.
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Pre-Planting
Decisions

B1

Planting
B1 B?- Decisions

B1Ct B1C2 B2C1 B2C2

Harvesting
1 2 Decisions

Figure 3. Decision tree for sequential programming example

Planting state By occurs with probability Pgy and is associated with a
different set of ocutcomes. At states B the harvest time outcome of yield
and harvest weather are unknown, but information on their probabilities
can be formulated. Once Bj is reached, terminal events under Bs cannot be
reached and the probabilities of C; are conditional on having arrived at
Bj. Given that Bj is reached, then Ppjg] and Ppijgy represent the conditional
probabilities of reaching states Cy or C9 when crop yield and harvesting
time have been determined.

This decision tree represents the uncertainties and allows potential
adaptive behavior. Decision makers can make decisions or possibly change
previous decisions depending upon the way the uncertainty has been resolved;
i,e., different post-planting decisions may be made under the B and By

states of nature or a replanting decision can be made. An SPR model captures
such behavior,

A general formulation of an SPR problem with three stages is as follows:

(123) Max J Cj x5 + L Py (¥ dik Yik + L Qig L €igm Zifw)
. i i k £ . m
5.t.
(124} E.: arj Xj ' o = bI‘
J .

for all r
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(125) - Y LKABjip %5 + Y LKBAjpk Yik < 0
i k
for all i and p

(126) % fiks Yik . =< hjg

for all i and s

(127 - E LKBCj prq Yik + Y. LKCBj gmq Zidm < 0
m
for all i 2 and ¢
(128) Y gigmt Zifm = ThSigm
m

for all i1 2 and t

(129) X§, Yik: Zifm = 0

where Xj is the jth activity at (the certain) decision point A;
o is the objective function coefficient of X§3
Pj is the probability of teaching state Bji,;
yik is the kth activity at Stage B given that we are in state Bj;
di{y is the objective function coefficient of Yjj under state Bi:
Qiz is the probability of reaching state Cjg;
zigy is the ath activity at Stage C given that we are in state Cig;
eigm is the objective function coefficient of Zjjyy under state Cigs
arj is the per unit use of resource r by activity Xj;
figs is the per unit use of resource s by activity Yji under
' state By; SRR o S
gigmt is the per unit use of resource t by activity Zignm under
' state Cig; : '
by is the endowment of resource T; _ :
hig is the endowment of resource s under state Bjj
‘rhsygr is the endowment of resource t under state Cjg;
LRABjip are coefficients which link the jth activity in Stage A with
those which follow in Bj via the pth link;
LKBGC4 pxq are coefficients linking the kth activity in Stage Bj with
o " those which follow in Cjp via the gt link; =
LKBAjpk are coefficients linking the kth activity in Stage Bj with
. those which precede A via the gth link; and - '
LKCBj gmq are coefficients which link the mth activity in Stage Cig with
' those which precede Bj via the qth link. '

Several points should be noted about this formulation. First, let us
note what is risky. In each stage the coefficients expressing the resource
endowment or. activity’s resource usage and objective function coefficient
are dependent upon the state. - Thus, under stage 1 all the coefficients
dealing with the 2's (by, arys C;) are certain. However, in stage 2 the
coefficients (his, fiks: dik, LKABjip, LKBAipk) all depend upon the state
(i). In stage 3 the coefficients (gjgmt. rhSifr, €ilm; LKBC{ gk LKCBifmg)
depend upon the state of both stage 3 C(2) and stage 2 B(i). '%he impor-
tant point is that all types of coefficients (bj, ¢j and ajj) are potentially
unknown and their values depend upon the path through the decision tree.
Unlike the models above, such as the chance constrained model, this formu-
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lation reflects all possible states of nature and the dec1slon varlables
reflect the optimal adaptive behavior (e.g. the optimal: recourse) at: each”
stage and state given the potential future states of nature. and whatwhas{
happened up to that p01nt

This formulation also highlights a potentially "rxsky“ 11nk between
preceding and successive activities. (If the activities are mot linked in
this way, the problem is not a sequential decision problem.) If these links
exist, they may involve the weighted sum of a number of variables in the
various stages (i.e., acreage planted to corn via several methods is linked
with acreage harvested via several methods.) Multiple links may also be
present (i.e., there may be several crops), as reflected by the subscripts
p and q.

A third comment relates to the nature of uncertainty resolution. The
formulation reflects all uncertainty into the objective function, which
becomes maximization of expected income. Rearranging the objective function
yields the following:

(130) Maximize ) ¥ P; Qig Cj %3 + Yodip yik + L eign Zipm) -
ikt j k m

Here the term in parentheses is income under the ith state of nature and
the term outside the parentheses is the product of marginal probabllltles
which yields the probability of this state of nature.

An expected value may not be the appropriate optimization criterion
and one might wish to include risk aversion. Many of the approaches to
incorporating risk aversion discussed above can be built into this model.
Specifically, Cocks developed an E-V model with the variance derived based
on the theory of the multinomial distribution. Theoretically, the variance-
covariance matrix between income states is:

"P; (1 - P1) ‘- P1 Py - -P1 Py

-Py Pp Py (1 - P3) e -Py P
(131) § = ' ) .

-Pp P - P, Py s Pnp (1 - Py)

Formal incorporation of this into the above model is done by introducing
new constraints to the model wherein:

(132) yip =} Cyxy + Y, dig Yig + . eiﬂmziﬂm for all if.

m

Defining the relevant variance-covariance matrix elements as products of
the probability:

(133) Sigpig = PiQig (1-P4Qip) and
SizrM = -PiQif PjQik,

the objective function becomes:
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(134) maximize } ) PjQip¥ig - 2L 2 L L SigrM Yip YRM-
E ) i KM

Similarly O'Brien (1981) presented a MOTAD formulation of the problem.
Using the above notatlon this involves the new Y;y constraints and the
equations:

(135) Y - ZZPi Qijp ¥jp =0
iz

- +
Yig + djp - djy =0

(136) MAD - ¥ ¥ P; Qig(diy + dig) = 0,
ilt

where Y is mean income and d and d1£ are deviation variables for state of
nature if. In turn, the obJectlve function becomes:

{(137) maximize Y - ¥ MAD,

This model is perhaps the most comprehensive and realistic of the
risk models discussed because conceptually it incorporates all potential
sources of uncertainty and treats decisions in a sequential fashion. Some
applications of this model that we know of are those of Johnson, Tefertiller
and Moore (1967); Yaron and Horowitz (1972); Klemme (1980); Tice (1979):
Apland (1979); Apland, McCarl and Baker (1981); Lambert and McCarl (1985,
1989); O'Brien (1981); Leatham (1983); Leatham and Baker (1988): McCarl
and Parandvash (1988); Kaiser and Apland (1989), and the early papers by
Rae (197la,b). The paper by Shumway and Gebremskal (1978) is closely re-
lated. : Ce - '

As the example in Appendix A illustrates, however, the model has two
serious shortcomings. First, all uncertain parameters must be characterized
in terms of discrete distributions. Second, the model suffers from the
"curse of dimensionality". Each possible final state of nature leads to
many activities within the model and large models can result from relatively
simple problems. With only ten values of two right-hand sides, which were
independently distributed for example, there would be 100 terminal states
or sets of rows. Such models can be computationally intractable, although
the sparsity and repeated structure tend to make such problems easier to
solve than their size would imply (Kaiser and Apland, 1989). It is advis-
able to concentrate on the most important sources of uncertainty to be
modeled; random variables not ecritical to the problem or that add little
risk can be modeled deterministically or with few states of nature. Decision
variables that are likely to be non-optimal can be eliminated a priori.
Finally, since decisions at a particular stage are likely to be influenced
less by prospects in future stages, it may be useful to sacrifice detail
at later stages, derive approximate solutions for decisions at earlier
stages, and restore the detail at later stages, thus using an adaptive solu-
tion process. ' S '

Qther Methods

To this point, our discussion of risk programming models has been
limited to those that have been used frequently in the agricultural eco-
nomics literature. To a large extent, these models can be classified as
active (here and now) decision models where decisions must be made prior
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to the resolution of the uncertainty. This is in contrast to the passive
{(wait and see) models where decision makers know the values of the random
components prior to certain decisions. There have been few applications of
the passive approach, although Tintner's original stochastic programming
formulation is a passive model., The discrete stochastic programming model
combines elements of both the passive and active approaches, but the major
conceptual contributions in this general passive stochastic programming
literature have been by people like Bereanu, 1980; Ewbank et al., 1974;
and Dempster, 1980). At a conceptual level, Boisvert, 1985 and Luckyn-
Malone, 1984, have shown these models to be helpful in resolving some cap-
ital investment problems, but the computational difficulties for problems
of realistic size have yet toc be resolved.

Two of the more common methods for stochastic analysis have also been
used to examine agricultural risks. First, some programming models are
manipulated specifically to evaluate the consequences from specific sce-
narios and/or in some way describe the extremes of the probability distri-
butions (i.e. see Adams, Hamilton, and McCarl, 1986). This approach simply
entails solving the model with both optimistic and pessimistic estimates
of the uncertain parameters. This approach, although not commonly used,
has been extended whereby the models are run repeatedly under Monte Carlo
conditions. Two important applications in this regard are the risk efficient
Monte Carlo programming (REMP) model developed by Andersen (1975) and the
generalized risk efficient Monte Carlo programming (GREMP) model by King and
Oamek (1983). These types of strategies might well help resolve the com-
putational problems in more general classes of stochastic programming.

The second approach involves Markovian based stochastic dynamic pro-
gramming, as developed by Howard (1960) and used extensively by Burt and
others. These models are beyond the scope of this review because they
would inveolve a thorough discussion of dynamic programming. Stochastic
control theory is also related to these types of models, and for discus-
sions of these methods, the reader is referred to texts such as Howard,
(1960), Nemhauser (1966), Kennedy (1986) and Neck (1984).

-SUMMARY AND CONCLUSIONS

The purpose of this bulletin is to provide a survey of the literature
covering the variety of mathematical programming techniques used to study
agricultural problems involving risk and uncertainty. It begins with a
characterization of the risky nature of agricultural decisioms and the
theoretical foundations of risk decision criteria. The major programming
techmiques for dealing with risk in prices, production and resource use
and availability are described and evaluated. Their consistency with risk
decision criteria is discussed. Appendix A contains example illustrations
of many of the models and in Appendix B, the numerous applications of these
methods are categorized, both by type of model and risk under study and by
subject area,.

Throughout the bulletin, several aspects of modeling agricultural
risk are emphasized. The first relates to the question: should risk and
uncertainty be considered explicitly in programming analysis, and if so,
how sghould it be accomplished? Because agricultural production and mar-
keting occurs in a risky environment, ome might think the answer to the first
question is obviously "yes". However, throughout the discussion, it has
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been emphasized that in order to consider risk and uncertainty explicitly,
the models become more complex and the data requirements are more exten-
sive. The empirical results from the models are more diffjcult to inter-
pret and to explain to farmers and policy makers. Therefore, the extent
to which risk should be incorporated into programming models depends both
on the severity of the risk and the nature of decision makers’ adjustments
in response to the risky situation. If their responses are important, the
results generated in empirical analysis will not resemble actual decisions
unless the risk is explicitly reflected in the model. In any empirical
application, the decisions about which sources of risk are most important
and should be considered explicitly depend on the researchers’ experience
and subjective judgement. :

Once the decision is made to include a particular type of risk in an
analysis, a researcher must still select the particular model to be used
and convert the decision problem into its deterministic equivalent.  As
illustrated above, there are a number of different models designed to in-
corporate various types of uncertainty. This is particularly true for
incorporating price and yield risk into the objective function. 1In those
situations where different models are likely to yield similar results, the
choice of model might well be based on the model’s simplicity and the ease
with which the results of a particular model can be explained to decision
or policy makers. While a number of decision makers may not relate directly
to expected utility, they can certainly understand the notion of discount-
ing a farm plan based on its variability in returns as is reflected in E-V
and MOTAD models. Chance constrained models and safety-first models can be
discussed in terms of the probability with which certain levels of income
or resource supplies are available. The discrete stochastic programming
model can be described as a decision tree representing the sequential na-
ture of the decision process. Even if the decision problem is too complex
to incorporate into a DSP model, communication with decision makers can be
enhanced by viewing the problem within the context of a decision tree.

In addition, much work with what we have called risk efficiency anal-
ysis has been an attempt to provide useful information to decision makers
without requiring explicit elicitation of individual risk preferences.
This is a direct result of the difficulties encountered in measuring risk
preferences and a desire to provide information useful to decision makers
with a range of attitude toward risk. Thus, in some situations it may be
sufficient to categorize efficient alternatives as being applicable t
decision makers with low, moderate or high aversion to risk. -

Regardless of the type of model used, researchers must formulate es-
timates of the joint probability distributions of the uncertain parame-
ters. Although a discussion of how these distributions are to be estimated
is beyond the scope of this paper, it is important to emphasize that the de-
velopment of a satisfactory representation of these joint distributions is
difficult to obtain. In the past, these empirical distribution functions
have been developed through subjective elicitation and objective synthesis
of time series data. In other cases, some underlying distribution is as-
sumed and data are used to obtain maximum likelihood estimates of the pa-
rameters. - :

Since mathematical programming models are quite often "normative" or
prescriptive in nature, some would argue that probability distributions of
the important parameters should be elicited subjectively if the model 1is
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.'being developed for a particular decision maker. (The theory of subjective
-probability elicitation is summarized by Bessler (1984) and Perxry (1986)
~using a model in which all the distributions were subjectively estimated.)
While this strategy is appealing, it is not without substantial problems,
In particular, if there are a number of uncertain parameters, 1t may be
. quite difficult to elicit the marginal distributions and next to impossi-

ble to elicit the full nature of the joint distributions among all the
. ‘random variables, The problems would be very difficult in the DSP case
~ where joint distribution of several prices, crop yields by time period and
field time would have to be elicited.

As an alternative, most studies rely on the "cbjective" development
of probability distributions based on either a panel or time series. 1In
such cases, the joint distribution can be developed for a number of param-
. eter values providing that a series of observations on the parameter values
can be obtained. This method’'s major drawback is that it is necessary to
assume that each of the historical or cross sectional observations are
equally likely sample points from the true distribution. This may not be
the case. Also, the practitioner may need to devote considerable effort
to remove trend (as pointed out by Chen, 1971) and distill a pure set of
random elements (e.g. see Lambert and McCarl, 1985 or the review in Young,
1980). Appreoaches to resolving this problem have involved the use of moving
averages (Brink and McCarl, 1978), regression (Tice, 1979), and time series
analysis (Lambert and McCarl, 1988) and variance components models (Adams,
Menkhaus and Woolery, 1980). Regardless of the methods used, there is no
guarantee that the distributions will be relevant for the current time
period or for any reasonable time into the future.

The third alternative is to assume an underlying distribution and use
the data to estimate the parameters. Studies have adopted such disparate
distributions as the normal, log normal or gamma. Others have developed
the parameters of the distributions using data from simulation models (e.g.
Dillon, Mjelde and McCarl, 1989). :

Regardless of the methods used to generate the probability distribu-
tiens on parameters, sampling errors are likely to result and be propagat-
ed throughout the expected utility or risk efficiency analysis. Pope and
Ziemer (1984), and more recently Collender (1989) and Gbur and Colling
(1989), are among the only people to address the issues surrounding sampl=
ing errors in efficiency analysis. Their studies were not designed to
look at programming studies per se. Pope and Ziemer's Monte Carlo results,
however, suggest that empirical distributions performed better in risk
efficiency analysis than did maximum likelihood metheds which presume knowl-
edge of underlying distributions. Gbur and Collins found that the relative
performance of non-parametric and parametric specifications depends on
sample size and level of risk aversion. Collender demonstrates that con-
fidence regions around points on efficient sets are conditional on the
allocation of resources but it may be statistically impossible to distinguish
among many efficient combinations. These findings suggest that more re-
search is needed to identify the level of "estimation risk® and the value
of reducing it.




APPENDIX A

EXAMPLES OF RISK MODEL APPLICATIONS

The purpose of this appendix is to illustrate a number of the risk pro-
gramming models discussed in the text. These examples are included primarily
to increase the value of the report for use in a learning environment.

_ In the models reflecting risk in the objective function, a portfolio
problem with only one constraint is used to illustrate each of the methods.
While this is not an agricultural example, it does help to isolate the effects
of the various risk decision criteria on the optimal solutions. In problems
with more than one resource constraint, for example, much of the diversifica-
tion in the optimal solution involves considerations surrounding resource
usage. By abstracting from this issue, the diversification due to the re-
sponse to risk is isolated.

Siightly more comﬁlex examples.éfe needed-to.demonstrate the models in
which there is uncertainty in the right-hand sides or in the technical coef-
ficients. The discrete stochastic programming model is the most complex.

For each of the examples, the data are provided, as are the specific
algebraic formulations of the models and the solutions. They are presented
in the same order as they are discussed in the text.

The models that can be formulated as linear programming problems can be
solved using any conventional linear programming software, whereas the others
can only be solved using nonlinear programming methods. Jefferson and
Boisvert (1989) illustrate how to prepare the data inputs efficiently and
solve a variety of risk programming models with objective function uncertainty
using GAMS-MINOS.

OBJECTIVE FUNCTION UNCERTAINTY
Mean-Variance Analysis

Data for an example mean-variance portfolio application are given in
Table A-1. The first stage in model application is to compute mean returns
and the variance-covariance matrix of total net returns. After calculating
mean returns for the four stocks and the variance-covariance matrix (following
equation (23)) from the data, the objective function is given by:

. . .X.]_
Maximize {13.38 9.18 13.13 16.00] X |
_ | X
X,
7.788 5.561 - 2.996 11.960|| X,
- ¢ [X; X, X3 X, 5.561 5.102 - 2.513 . 15.660(|X,
- 2.996 - 2.513 .12.542 -48.890(|X,

11.960 15.660 . =48 890 381.000}i X,
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Table A-}1. Annual Returns to Stocks for E-V model

Cbservation ' Stock 1 Stock 2 Stock 3 Stock 4

1 $13.20 $ 9.40 $23.00 $-17.00
2 '10.90 5.70 ' 14.00 - 7.00
3 14.90 12.20 11.00 13,00
4 17.40 12.30 -~ 10.00 33.00
5 8.10 " 6.00 © 13,30 13.00
6 13.80 9.20 12.00 33.00
7 16.40° 11.40 10.50 43,00
8 10.20 7.00 : 13,50 '33.00
9 13,10 9.60 11.00 23.00
10 15,80 9.00 ' 13.00 -7.00
Purchase Price $100.00 $80,00 $95.00 - $95.00

In scalar notation, the;objective function is:
.Maﬁiﬁi#e | 13.38'X1 +9.18 X; + 13.13 X3 + 16 X; - ¢(7.788 X1%+ 5.561 X,X,
- 2,996 X X3 + 11.960 XX, + 5.561_X2X1__+_ 5.102 X:- 2.513 XX,
' + 15.660 XX, - 2.996 XX, - 2.513_ XX, + 12.542 Xaz- 48.890_ XX,
4+ 11.960 X,X; + 15.660 m{2 - 48.890 X,X; + 381.000 x,,z)

This objective function is maximized subject to a constraint on invest-
able funds:

100 X; + 80 X, + 95 X; + 95 X, < 1000
and non-negativity conditions on the variables:
X 20,¥%20,X=20, X, = 0.

- This problem is solved for ¢ = 0 to =, The solutions, at selected values
of ¢, are shown in Table A-2. o

The model yields the profit maximizing solution (X; = X, = X3 = 0, X, =
10.53) for small risk aversion parameters (¢<0.0003), but as the risk aversion
parameter increases, X; enters the solution. The diversification between X,
and X,, coupled with their negative covariance, reduces the variance of total
returns. As the risk aversion parameter increases, more is invested in X, and
less in X, until at ¢ = 0.004 expected returns have fallen by $25 or 14.6%,
while the standard deviation of total returns has fallen by $178 or 86.7%.
Thus, a 14.6% reduction in expected returns leads to an 86.7% reduction in
risk exposure. For values of the risk aversion parameter between 0.004 and
0.225, investment in X; increases.
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Three other aspects of these results are worth noting. First, the shadow
price on investable capital continually decreases as the risk aversion parame-
ter (¢) increases. This reflects the increasing risk discount as risk aver-
sion increases. Second, solutions are reported only for selected values of
¢. However, any change in ¢ leads to a change in the solution and an infinite
number of alternative ¢'s are possible; e.g., all solutions between ¢ = 0.0003
and 0.004 are convex combinations of the ¢ = 0.0003 and 0.004 solutions.
Finally, when ¢ becomes sufficiently large, the model does not use all its
resources. In this particular case, when ¢ exceeds 0.225, not all funds are
invested, : '

A Linear Approximation - MOTAD

- The MOTAD model is given by equations (55) through (58). This example
of MOTAD uses the same data as in the E-V example above. The mean returns,
used as a measure of expected value, equal 13.38, 9.18,-13.13, and 1l6.
Deviations from the means (Cy; -C;) for the stocks are shown in_Tablé A-3.

The HOTAD formulation is:

Maximize 13.38 X, + 9.18 X, + 13.13 X, + 16 X, - a 0 _
s.t. 100 X, + 80 X, + 95 X3 + 95 X, < 1,000

- 0.18 X, +0.22 X, +9.87X; -33%X, + d;” 20

-2.48 % - 348X+ .87X; -23X,+ d =0
1.52 Xl + 3.02 XZ - 2.13 X3 - 3 X.ﬁ + da- =z 0
£.02 X; +3.12 X, - 3.13 %X, +17 X, + d° =20

-5.28%X; -3.18% +0.17X; - -3X, + d5 =20
0.42° X, +0.02 X, - 1.13X; +17 X, + dg 20
3.02 X, +2.22 X, - 2,63 %3 + 27X, + 47 =20

-3.18%X; - 2.18 % +0.37 X;- + 17 X, + dg =20

-0.28 X +0.42% -213X%X, + 7X,+ dg =20
242X, -0.18X; - 0.13X; - 23X, +dyy 20
-3.7846 0 + dy” + dy” + dy” + 47+ ds” + 45

+‘d7- + da-‘ + d.g’ + dlo- - 0

Xj, o, dk_, = 0

Table A-3. Estimated Deviations From Mean Return for the Investment Example

Observation - Stock 1 : Stock 2 Stock 3 Stock 4
1 $-0.18 - $0.22 - $9.87° $-33.00
2 -2.48 -3.48 0.87 -23.00
3 1.52 3.02 -2.13 o - 3.00
4 4,02 . 3.12 -3.13 . ' +17.00
5 -5.28 - -3.18 0.17 : ' - 3,00
6 0.42 : 0.02 . -1.13 _ 17.00
7 3.02 . 2.22 . -2.63 . 27.00
8 -3.18 : -2.18 0.37 : 17.00
9 -0.28 0.42 S -2.13 7.00
10 2.42 - -0.18 -0.13 -23.00
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Solutions to this model are obtained for a range of values of a. The
solutions which occur at the basis changes as o is varied are reported in
.Table A-4, : s S o '

The above MOTAD solutions give the levels of investment in each X;, the
unused funds, the mean sbsolute deviation, and the approximation to the stan-
dard error. Also, the true variances and standard errors are calcualted based
on the portfolio chosen. This problem’s solutions are similar to that of the
E-V model. Note that for risk aversion coefficients (a) less than 0.12, the
profit maximizing solution is obtained. For a's between 0,12 and 0.13 invest-
ing all funds in X; and X, -- 8.07 units of X; and 2.46 units of X, -- is
optimal. Solutions for the other values of the risk aversion parameters are
similar to those in the above E-V analysis example, but these solutions are
not convex combinations dependent on the risk aversion parameters as under the
E-V model, Rather they are constant for the range of the risk aversion
parameters specified. Perhaps the only difference in the numerical results
worth noting is that these solutions behave in basically the same manner as
those of the E-V formulation, although at high risk aversion, a small invest-
ment in X, is indicated. Subsequently, however, X, drops to zero.

The reader should also note the approximate nature of the standard error
relationship. For example, the approximated standard deviation of the distri-
bution at the first risk aversion range is 236.4, but the actual standard
deviation of the portfolio is 205.67. In fact, the MOTAD approximation
initially overstates the standard deviation from 6 and 15%, whereas later it
is understated by 22%. The E-V and MOTAD frontiers correspond very closely,
although this is not adequate proof that the solutions will always be close
(see Thomson and Hazell (1972) for a comparison between the methods).

Table A-4. Solutions to MOTAD Problem for Ranges in Risk Aversion Coefficients

o os.12 0.1220=0,13 0,135ac0,28 0§.26550.39 0.395a<1.14 1.1420x8.03 6.032a%8.53 8. 535
Income 168.421 145.2585 145.1859 142.9097 138,11 137.61 137.60 0
Xy ) 0 0 0 0 3.24 3.57 3.57 i
X, 0 0 0 0 0 0 .003 0
X3 0 8.07 8.10 g.89 6.66 6.43 6.43 0
X, 10.53 2.46 Z.42 1.64 0.46 o 0.34 0.34 0
Unused funds @ 0 0 0 0 0 1] 1000
m 178.85 27.72 27 .24 20.69 11,25 10.93 10.83 4]
e 238,41 35.71 35.99 27.33 14.88 l4.44 14 44 )
Variance 42216.06 1176.€8 1141.07 589.11 325.12 338.81 339.83 0

(Variance)-3 205,67 34,30 33.78 24.27 18,03 18.43 18.43 ]
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The Focus Loss Example

The E-V example data are again used in the focus loss example (equations
(59) through (63)). Given that we set K equal to 3 and the activity Fy's to
the standard deviation of the risky activities (corresponding to a t- value of
one), the focus loss formulatlon 1s

Ma_ximize 13.38 X; + 9.18 X, + 13.13 X3 + 16 X,

s.t. © " 13.38 X, +9.18X +13.13 X, +16 X, - L =M
100X, + 80 X, + 95 X, + 95 X, < 1000

2.94 X, - .L/3 =0

- 2.38%, - - L/3 =<0

' 3.73% - L/3 =0

20.56 X, - 1L/3 =0

L; Xj =0

M has not been specified and is parameterized from -« to w. These solu-
tions are shown in Table A-5. :

Any value of M less than -480 results in the undiversified LP solution.

As the value of M becomes larger than -480, X; enters the solution. From -480
<M =< 43, a set of solutions is obtained (and their associated convex combi-
nations) which include only X; and X,. For M above 43.2 but below 91.2, X,
is included in the convex combinations along with X5 and X,. Above 91.25, X,
enters the solution: it increases in value until M = 99.33, For values of M
exceeding 99.36 the problem is infeasible. For M ~ 99.33, the focus loss
model includes all four X's at non-zerc levels in the solutiom.

Table A-5. Solutions to the Focus Loss Model

Vélues.of ' _ .
M <-480.00 -480.00 43.00 43,20 91.20 91.25 99.33*

Average Income 168.42 168.38 142.86 142 .84 138,05 138.05 130.04

X, 0.00  0.00 0.00 0.006 5.30  5.31  3.48

X, 0.00  ©0.00 0.00 0.00 0.00 0.0l 4.30
X 0.00 0.01 8.91  8.90 4.19  4.18  2.74

X, 10.53 10.51 1.62 1.62  0.76 0.76 0.50 .

L 1162.42  648.38 §99.86 99.64 46.85 46.80 30.71

2For M > 99;36, the model is infeasible.
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Target MOTAD
_ ' Using the data from the earlief'eiéﬁ§1¢523ﬁd'§§Sdmiﬁg each state of nature
is equally probable (Py = 1/10) the target MOTAD formulation (equations (64)
_through (68)) is:

Maximize 13.38 X; + 9.18 X, + 13,13 X; + 16 X,

s.t. 100 X, + 80 X; + 95 X; + 95 %, -~ . =< 1000
13.2 X, + 9.4 X, + 23.0%X; - 17X, + 7Y, =T
10.9_X1+ 5.7 Xz+ 14.0 Xa -7 X4 + Yz_ =.T
14.9 X, + 12.2 X, + 11.0 X3 + 13 X, .+ ¥; =T
17.4 X, + 12.3 X, + 10.0 X3 + 33 X, :+.Y, =T

 8.1X% + 6.0X + 13.3X + 13X, .+Ys 2T
13.8 X, + 9.2 X + 12.0X%X +33%X, +¥% =T
16.4 X, + 11.4 X, + 10.5 X3 + 43 X, + ¥, =T
10.2 %, + 7.0X, + 13.5X + 33X  +1Y, =T
13.2 %5, + 9.6 X+ 11.0X; + 23X, + Y5 .2 T
158X, + 90X+ 13.0X, - 73X +Y,p = T
0.1Y, + 0.1Y, + 0.1Y; + 0.1Y, + 0.1Y,
-+

0.1Y5 + 0.1Y; + 0.1Yy + 0.1¥q + 0.1¥;, < A

The solutions to this problem for selected values of T and X are shown
in Table A-6.

The Target MOTAD medel solutions reflect much the same behavior as did
the other models. For income targets exceeding 160 with a X limit of greater
than 85, we obtain the LP optimal solution. As the target values decrease,
X; comes into the solution, along with X,. This is a continucus process across
different values of the target parameter down to the point where the target
parameter equals 20.75. At that point X; enters the solution and increases
in value from there until A falls to 19.67. For A below 19.67, the solution

Table A-6. Solutions to Target MOTAD Model

T 168.4211  160.00  160.00 160,00 160.80 160.00 159.00 160,00 ~ 160.00  150.00
A 8052631  85.008  31.0tb 31,00 22,248 22,22 20.80P 20,75P  19.68  19.67°
% o 0 0 0 0 o 0 0.51 2.04 2.16
X5 0 0 0 0 0 0 o o 0 0
Xy g £.03 6.84 5.84 5.14 8.12 - B8.47 . B.43 6.89 6.80
X, 10.53 10.49 3.68 3.68 2.38 2.38 2.06 2,04 1.49 8.46

Average . . B :

Income 168. 42 188.33  148.79  148.78 145,05 145.04 154.12  144.04  141.58 141.43

*Any value A above B5.00 will yield the LP solution.

boonvex combinations. of this solution and the one to the left are also feas-
ible. The solution is infeasible for T = 160 and any value of A less than
19.65. :
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becomes infeasiblé. Target MOTAD, as does E-V, leads to a continuous, not a
discrete, set of plans. Any convex combination of the plans, for example, for
X between 85 and 31.01, leads to a convex combination of the solutions for X3
and X, . :

Mean-Gini Eff1c1ency Analys;s

The investment problem is also solved using the Mean-Gini formulation
given by equations (75) through (7%). Because the formulation involves
keeping track of all pairs of absolute differences in yearly returns, the
model is rather large even with only 4 investment alternatives and 10 years
of data. For this reason, summation notation is used to facilitate the
presentation of the model. Despite its size, the code to formulate the model
was easy to develop in GAMS (see Jefferson and Boisvert, 1989) The formula-
tion for this example investment problem is: :

10 10 10 Co 10
Minimize 2 (Ylj++Y1J—) + z (Yzj "|"Yzj ) + Z (Y3J +Y3J-) + = (Yﬁd +Y"¢J )
SJ=2 =3 = J=4 i=5

10 : 10’ - 10 14
+ B (Y554 Ys7) + B (Yo" Y5 ) + T (Yp57+Y557) + Z (Yay™+Yg57)

=5 =7 =8 j=9
-+ Yoi0'+Y010”

s.t. o : : : .
100X, + . 8X; + -~ 95X; + 95X4 =< 1000
13.38%; + 9. lﬂxz + 13.13%; + 16X, -

2.3%;, + 3.7%, + 9X; - 10X, + Y, ™+Y,,- =0
C-1.7X;, - 2.8%; + 12X, - 30X, + Yi3™+Yy5" =0
<4, 2%, - 2.9%, + 13X; - 50X, + Y, '4Y,~ =0
5.1, + 3.4X; +  9.7%; - 30K, 4 YYo= 0
-0.6X, + 0.2%, + 11X; - 50X, + Y;g*4Y,s =0
'3.2X1. - 2X2 + 12.5X3 60X4+ Y17++Y17— - 0
3%, + 2.4%, + 9.5K, - 50X, + Y;gtH¥” =0
0.1X; - 0.2%, + 12X, - 40X, + Yyqt¥g” - =0
-2.6X, + 0.4%; + 10X; - 10X, + Yqi30%4Y¥1 =0
-4X; - 6.5X; + 3X; - 20%, + Y,5* +Y23' =0
-6.5%X; - 6.6%; + 4¥; - 40X, + Yy, +Y24 =90
2.8X1 - 0.3X2 + 0.7}{3 20X4 + Y25 ‘+‘Y25 ‘=0
-2.9%, - 3.5%, + 2% - 40X, + Yoet+¥ps~ =0
-5.5%; -~ 5.7X, + 3.5%,; - 50X, + Y,;'+¥,;ms =0
0.7X; - 1.3X, + 0.5X; - 40X, + Yya™+¥q =0
'2.2X1 - 3.9X2 + 3X3 30XQ + ng++ng— s 0
-4 9%, - 3.3%; + X4 _ + Ygi0M4¥519" = O
-2.5%; - 0.1X, + X; - 20X, + Y3, 54Y;,~ =0
6.8X1_ + 6.2X2 - 2.3X.3 -+ Y35++Y35’_ = 0
1.1%, + 3.0%, - X, - 20X, + Yy5™+Y5~ =0
'1.5X1 + 0.8Xz + 0.5X3 30X£. + Y37++Y37- o - 0 .
4.7%, + 5.2%, - 2.5%; - 20X, + Yygtt¥ae™ 0 = O
1.8%, + 2.6X; C10X, + Yao'+Yag” =0
'0.9X1 + 3.2)(2 - ZXE 20}{4 + Y310++Y319- " 0
9.3%; + 6.3X; - 3.3%; + 20X, + Y,s"Y,s =0
3.6%; + 3.1%; - 2%, + YTV, =0
1.0%, + 0.9%, - 0.5X%; - 10X, + Y,;"+Y,;" =0



7.2X1 + 5.3X2 - 3.SX3 sy d
4.3%; + 2.7X; - X; + 10X, + Y. *¢
1.6X, + 3.3%; - 3X, + 40X, + Y, .t
-5.7%; - 3.2%; +  1.3%; - 20K, + Ysghivg
-8.3%, - 5.4%, + 2.8X; - 30X, + Ys5'+¥s, 0
“2.1X1 - Xz - 0.2X3 - 20X4 + Y58-++YSB.-M 0
C-5%, - 3.6X; + 2.3%; - 10X, + Ysg'+Y¥se = 0
~7.7%; - 3%, + 0.3X; + 20X, + Ys0™ Vs = 0
-2.6%, - 2.2X, + 1,5%; - 10X, + Yg'+¥g™ =0
3.6X, +. 2.2%; - 1.5X%, + Yegt+¥es~ = = 0 -
0.7%, - 0.4X, + Xy + 10X, + Ygo'+¥sq™ - 0
-2X, + 0.2%; - X3 + 40X, + Ygio'+Ygy =0
6.2X; + 4.4%, - 3%; + 10X, + Yy3+Y;5 . = O
3.3%, + 1.8%, - 0.5X; + 20X, + Yyg'™+Y¥yq =0
0.6X; + 2.4X, - 2.5%; + 50X, + Yy1c™+Yy00 = O
-2.9X1 - 2.6X2 + '2.5}(_3 + 10){" + Y89++Y89_ = 0
-5.6X%, - 2X, + 0.5X; + 40X, + Yay ™ +Ygyy =0
-2.7X, + 0.6X, - 2%, + 30X, + Ygot+¥g " = O
X20 j=1,.
Yyt and Y~ 2 0 t=1,...,9, k>t (k=2,...,10)

This problem is solved for seven different values of u (expected income).
These values are the same as the expected income levels implied by the solu-
tions to the MOTAD formulatlon in Table A-4. The Mean-Gini solutions are in
Table A-7. :

The solutions to this Mean-Gini formulation are almost identical to the
MOTAD solutions for the cases where expected income is above 143, For the
other solutions, there is slightly higher investment in X, and less in both
X, and X; then in the MOTAD solutions. Furthermore, all solutions are on the
M - T efficiency frontier, but the solution with the lowest expected income
is dominated by another in an SSD seunse.

Table'A-7._ Solutions to the Meén«Gini-Example

Expected Income

(B) 168.42 145.26 145,17 142.91 138.11 137.61 137.60

X 0 0 0 0.44 3.03 3.16 3.16

X, 0 0 0 0 0 0.14  0.14

X, * 8.07 8.10 8.36 6.91 6.72 6.72

X, 10.53 2.46 2.42 1.70 0.43 0.37 0.37

Objective

Function (s?) 11473.66 1937.61 1906.96 1368.38 829.89 819.24 819.15

r 114.74 19.38 19.07 13.68 8.30 8.19 8.19

M-T 53.68 125.88 126.10 129.23 129.81 129.41 129.40
Unused Funds ' ¥ 0 0 0 0 0 0

*less than 0.001.
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A DEMP Example
Suppose an individual with the utility function for wealth U = W3 has an

initial wealth (W,) of 250. The portfolio example formulated as a DEMP model
(equations (80) through (83)) becomes: :

Maximize 0.1(W;)"5 + 0.1(W,)-3 + 0.1(Wy)-% + 0.1(W,)> + 0.1(Ws)*?
+ 0.1(Wg)S + 0.1(W;)-% + 0.1(Wg)-5 + 0.1(Wg):* + 0.1(Wyp)°?

s.t. : £ 100 X; + 8 X, + 95 X3+ 95 X, = 1000

: W, - 13.2% - 9.4X,-20.0X;+17 X, = 250

W, - 10.9%, - 5.7X; - 140X+ 7ZX, =250

Wy - 14.9 % - 12.2 X, - 11.0 X3 - 13 X, = 250

W, - 17.4 % - 12.3'% - 10.0 X3 -:33 X, = 250

Ws - 8.1% - 6.0X, -13.3 % - 13X, =250

Wg - 13.8X - 9.2X -12.0X; - 33X, =250

W, - 16.4 X, - 11:4 X; - 10.5 X5 - 43 X, = 250

Wy - 10.2 X - 7.0X; - 13.5%; - 33X, = 250

We - 13.2 % - 9.6 X, - 11.0 X, - 23 X, = 250

Wi - 15.8% - 9.0X; - 13.0%+ 7 X, = 250

The solution to this problem is:

W, = 266.43 W = 308.31 Wy = 502.12 X, = 0.00

W, = 278.89 W = 494.78 Wy = 433,49 X, = 0.00

W, = 377.07 W, = 543.89 Wo = 274.00 X, = 4.88
o X, = 5.64

W, = 485.03
- The value of the objective function equals 19.95, while avérége wealth
after the stock investment equals 404.40. The total funds shadow price equals
0.0360. Following Lambert and McCarl, this may be converted into an approxi-
mate value in dollar space by dividing by the marginal utility of average
income; i.e., dividing the shadOijrices by the factox u* ~ u/(du(w)/dw) vhere
R ' -.5 .
{U(W)) = 0.5(&04.40) = 0,02486; and u* = 0.036 /.02486 = 0.1447, .
aw . . o _

ihdicating that in this pién the marginal returns from more investable capital
(the shadow price) is approximately $0.1447.

RIGHT-HAND SIDE UNCERTAINTY
Chance Constrained Programming
Given the problem:

Maximize 4%, + 6%,

s.t. 3X1 + Xz < b
X, + 2%, = 20
Xl_, X = 0



.57
Suppose b is distributed normally with mean 30 and staﬁdard deviation 10 :
straint is feasible w1th probability greater than or equal teo a:
P(3X; + %, 2=b) 2

Since 3X; + X; is nonstochastic we need only find a value of b(b") such that
~ by holding 3X, + X, < b* the probability of the constraint holding for any b
. is at least a. Equivalently, b" can be set as in equation (97) at B* = b -
Z, 0 =30 - 102, and if Z, = 2 then b" equals 10. The solutions for alternative
‘values of Z, developed from the standard normal table are shown in Table A-8,

Note that as one becomes more conservative in terms of insuring that the
constraint is satisfied, then Z, is increased, which leads to a RHS decrease.

In turn this leads to an objective function decrease, as well as changes in
the solution values.

TECHNICAL COEFFICIENT UNCERTAINTY
Wicks and Guise Approach

To illustrate the approach taken by Wicks and Guise to a decision problem
in which there is uncertainty in the technical coefficients, suppose we have

the following linear program:

Maximize &4 X' + 6 X2

s.t. aX! + a?x® < 30
¥ o+ 2% < 18
X, x® > 0

where al and a? are uncertain; but we have a set of observatlons on them in
Table A-9. The formulation (follow1ng equations (116-122})) becomes

Table A-8, Optimal Solutions te the Chanced Constrained Example

Objective

| o - Zy b, Function X X, usr . U8
0.5 - 0 30.0 - 68.00 8.00 6.00 0.4 2.8
0.9 1.28 17.20 62.88 2.88 8.5 0.4 - 2.8
0.95 1.65 13.46 61.38  1.38 9.31 0.4 2.8
0.99 2.33 6.70 4.2 0 6.7 6.0 0

#U; and U, are shadow prices.

Then, in a chance constrained framework, we wish to guarantee that the con—f R At
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.Table A-9. Data to Illustrate Wicks and Guise Model

Observation Observations ' Deviations from Means

Number al a? gkl dr2
1 3 4 0.5 -
2. 2 1 -0.5 -2
3 1 3 -1.5 - 0
4 2.5 5 0 2
5 4 2 1.5 ' -1

Mean 2.5 3 '
Maximize 4 %1 4+ 6 X2 o
s.t. 2.5 X + 3 x2 B -+ Yo =< 30
S5Xt 41X+ at ' z 0
-5 % -2 x2 + 42 > 0
-1.5 xt + a° = 0
_ 2 x + a4 = 0
1.5 xt - 2 + & ‘= 0
2dl + 24% + 2c13 + 28" + 28> - D = 0
+ 0.504D - o = 0
x4+ 2 %2 oo o =< 18
X, &, b, o = 0 ' for all j and k

The sclutions to the problem for various values of ¥ are shown in Table
A-10. Notice in these solutions the apprOXimated standard error (¢) of the
program with risky a'd”s decreases from a value of 23.54 to a value of 10.67
as the risk aversion parameter ¥ is increased. Simultaneously, the values of
the X variables change and the obJectlve function decreases.

MULTIPLE SOURCES and TIMING OF RISK
Discrete StocﬁasticnProgramming

In setting up an example of discrete stochastic programming, suppose
that, due to plowing practices, pesticides and inputs (seed, etc.), land use
must be allocated to crops before the growing season and two crops can be
grown on a total of 3100 acres. Stage A activities involve land allocation
to two crops subject to the total land constraint. At this time several of
the parameters inveolved with planting and harvesting are unknown. Crop prices
are known to be $2.50 for Crop 1 and $7 for Crop 2. Further, assume that
there are two possible planting periods for each crop and that the input
requirements and time availabilities for planting wvary w1th the state of
nature. The two states are shown in Table A- 11

‘Once an acre has been planted, fall harvest resource use and crop sale
depend on yields. Yields, in turn, depend on planting date and type of
weather between planting and harvest. Harvest time uncertainties form the
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“Table A-10. Solutions te the Wicks and Guise Mcdel

Cbhjective
- %  Function X! X2 at a2 & @ d&& D o yla  y2a
0 57.00 3.0 7.50 13.50 0 4.50 0 3 42,00 23.54 1 1.50

?0.25 48.02 3,69 5.54 9.24 0 5.54 0 0 29.55 .16.56 1.60 0
fO.SO 42.20 3.25 4.86 8,11 0 4.87 0 © 25;97 14,55 1.40 0O
_ 0.75 37,64  2.89 4.34 7.23 0 4.34 0 0 23.16 12.98 1.25 0
7-1'0 33.96 2.61 3.92 6.53 0 3,92 0 0 20.90.-11.71 1.13 0

1.25 30.%4 2.38 3.57 5.95 ¢ 3.57 0 0 19.04 10.67 1.03 ©

2yl and U? are shadow prices.

Stage ¢ uncertainties. Suppose there are two states of nature for harvesting
and their probabilities are independent of the planting outcome (Table A-11).

Harvesting may be performed in two periods in which time available is
uncertain; the same weather patterns which influence yield are assumed to

affect harvest losses and time availabilites. The harvest data are shown in
Table A-11. '

The LP formulation of this discrete stochastic problem is given in Table
A-12. This formulation merits explanation. Initially in Stage A crop choice
is made between Crop 1 (C!) and Crop 2 (C?). These choices then are linked
to the planting stage (B) and require that the acreage planted to each crop
equal the Stage A committed regardless of the Stage B outcome. However,
planting date flexibility within each state of Stage B -is governed by the
availability of planting time (note the separate constraints for each state).
Thus, variables P! are defined under each state giving the amount of crop i
planted in period j. The B stage then is linked to the Stage C activities by
yield available. In Stage C the acreage harvested will equal that planted in
A and the exact yield harvested will be a function of harvest weather, plant-
ing weather and planting patterns. Thus, four sets of harvesting activities
(m*) are present representing the harvest of crop i in period j. We also
introduce sales activities (s!) for each crop; and an overall income activity.
The solution to this model is shown in Table A-13,

This solution represents the solution of four different:problems, It
gives best "first move" acreage allocation X*'s which is 115.15 acres to crop
1 and 484,85 acres to crop 2 then plans (XP's, Xp's) contxngent upon resolution
of the uncertainties, :

As an alternative to this formulation, onme might argue that 4 individual
LP's should be solved. For example, certainty that event C! will occur
results in the deterministic LP shown in Table A-14. Solving the LP’s for
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Table A-11. Data for Discrete Programming Example

'CROP PLANTING DATA

Spring State of Nature B! B2
Probability ' . 0.6 . : 0.4
Planting Period 1
Hours Available ' o 100 130
Planting Speed (acres/hr)
Crop 1 _ 0.33 . : 0.33
Crop 2 0.4 0.42
Planting Period 2 . - :
Hours Available 140 160
Planting Speed (acres/hr) : ' -
Crop 1 0.5 0.25
Crop 2 0.4 0.33
Planting Cost ($/acre)
Crop 1 : 72 : 81

Crop 2 46 45

CROP YTELD DATA

Fali State of Nature cl L SR =

Probability 0.2 0.8
Yield for Plantlng Perjed 1 : Do
Crop 1 o . 2200 o 130
Crop 2 . . 42 : 62
Yield for Plantlng Period 2 . ' =
Crop 1 ‘ _ 130 - 140

Crop 2. = - ' o S 40 . 42.7'

HARVEST DATA

Fall State of Nature . : ¢t .c®
Harvest Period 1 ‘ S
- Hours Available : ' . 300 S 400
Time Required (hrs/lOO unlts) : C : '
Crop 1 _ : 0.
.Crop 2 S SR ' 0
Harvest Loss’ (percent)
Crop 1 . _ K : 0.0
Crop 2 - ' : 2.0
Harvest Period 2 S : - S AT
Hours Available 285 . . 450
Time Required (hrs/lOO unlts) _ C - :
Crop.1 . : ... 0.25 P S 0.24
Crop 2 : : : 0.43-. - . - 0.40
Harvest Loss (percent) : EET i
Crop 1 - o 5.0
Crop 2 . el - 4.0

oo




Table A-12.

A
0obj.
‘Land

Function

A~B

- Crop 1
‘Link Crop 2
Crop 1
Crop 2
1 .
Plant Per. 1 .33 ok
- Per. 2 .5 L4
2
Plant Per. 1 .33 42
Per., 2 .25 .33
31401
Link Crop 1 -200 -130 100 100
Crop 2 42  -40 100 oD
Bl~02
Link Crop 1 =130 -1490
Crop 2 -42 ~-62
32acl
Link Crop 1 ~200 -130
Crop 2 452 ~40
BZ*CZ
Link Crop 1 -130 -140
Crop 2 -42 -52
Cl*Bl
Har- Par. 1 .2 . b
vast Per., 2 .25 .45
Crop 1 -1060 -85 ) 1
Crop 2 -85 -98 i3
Income 72 72 46 4B ~2.5 =7
Cl*Bz
Har- PFer. 1
vest Per. 2
Crop 1
Crop 2
Income 81 81 45 45
CZ*BI
Har- Per. 1
vest Per. 2
Crop 1
Crop 2
Income 72 72 48 4B
c2p2
Harx- Per, 1
; vest Per. 2
L Crop 1
; Crop 2
% Income 81 61 453 45




Table A-12. Formulationrof Farm
{cont.)
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Planning Problem with Joint Planting and Yield Risk

~ Stage C

12

12

Rig
Har
5id

.48

.08

.32

o

IAINLA LA -

1A 1A

-

JA LA

|A 1A

10¢

100

100

1A 1A

100

100

100

100

In1A

190 100

10

60 100

1A fA

IA{AA LA LA

-100

-85

{A A IA SA LA

.22

-97

24

-98

-98

-98 1

[ALARALEALA -

.22
.24
-97-96

-98

-98

IAQA A A DA




éﬁ_];e A-13. Optimal Solution to the Discrete Stochastic Fa'fu'l Pl,ann'ing_*_lfid_cig.l '

tage State ‘Label . Solutien Value
x! 115.15
X2 48485
Pl 115.15
Bt pl2 0.0
pil 134,85
p22 350.00
pll 115.15
B? pi2 0.0
pel 0.0
p22 484,85
Hi1 230.30
Hi2 0.0
Bict H21 196.64
: H22 0.0
gl 23030.30
g2 19270.36
yil 161874 .40
yil 149.7C
H12 0.0
H2t 237 .64
Blc? H22 0.0
sl 23339.40
52 14520 .61
yi2 193993.3¢
Hit 236,30
Hi2 0.0
H21 0.0
B2Ct K22 193.94
st 19270.36
52 26816.36
y2l 158297.00
Hi! 149.70
H1Z 0.0
H2! 0.0
B2C? H22 300.61
sl 19006.06
52 29459.39
y22 211371.80
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Table A-14. LP Formulation for One -State of Nature .

Allocate . a : S
Land Plant Harvest Sell
Xt X2 pil  piz p2t pie BT RlZ gl e gl g2 RHS

Maximize - 92 .72 -46 -46 2.5 7

Land 1 1 < 600
cl -1 1 1 o < 0
c2 - -1 1 1 < 0
Plant. P% 33 .4 < 100
Time P? .5 - L4 < 140
Yield ¢ -200 -130 100 100 < 0

c? -42  -40 100 100 < 0
sal-  C* - E 2100 -95 1 < 0
able C? E -98 -96 1 < 0
Harv. P! . . : .2 A < 300
Time P2 .25 45 < 285

each of the 4 states of nature leads to the solutions shown in Table A-15 in
terms of overall acreage. Note that these plans are different individually
and on average from the earlier plan, as is the average over the plans. This
points toward the need for the adaptive formulation implicit in the descrete
stochastic model above. - '

Applying the MOTAD formulation to the discrete stochéstic example re-
quires the objective function be changed to:

Maximize V - ¥ o -
and requires the following additional constraints:

0.12 Vil + 0.48 V12 + 0.08 V¥ + 0.32 V% - V=0

Vit .y +d 20
V12-§+'c_12”20
vl .V + @ =20
V22 .Y 4+ dv =20

0.5 MAD - 0.12 d¥ - 0.48 d* - 0.82 4> - 0.32 dv =0
1.2596 MAD - ¢ = 0
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where the coefficient for MAD in the last constraint is calculated assumlng
n=100.

The resultant solutions to this model for alternative values of ¥ are
shown in Table A-16.

Note that, as before, the expected income (V) and risk measure (¢) fall
as risk aversion increases. In this model the plan is altered so as to reduce
the variation among the income variables under the states of nature (ViJ).
At the highest risk aversion (¥ = 2.5) the model has adjusted the plan so all
the income levels are equal, reducing the risk to zero.

Table A-15. Optimal Acreage Allocation Under Four States'of_Néture

Final State

of Nature _ - Probability _ Xt ' X2
e 0.12 . 515.15 84,85
c1? 0.48 .250.00 350.00
c22 0.08 |  495.65 | 105.35
c?? 0.32 0.00 600.00
Weighted Average 221.47 7 _ 378.53

Table A-16. MOTAD Version of the Discrete Stochastic Programming Example

¥ Xt X2 yil yi2 ya 22 OBJ v o
0.0 '115.15 484.85 161874 193993 159297 211371 192844 192924 16326
0.5 250.00 350.00 18694 194112 183190 191674 190046 191597 3102

263.00 337.00 189753 190442 185617 189753 188920 189753 833
274,00 326.00 188188 188188 188188 188188 188188 188188 0

o o
o=







APPENDIX B

RECENT APPLICATIONS OF RISK PROGRAMMING MODELS
IN AGRICULTURAL ECONCMICS

In this appendix, we provide a bibliography of recent applications
of risk programming models in agricultural economics. Other less recent
articles which have, in our judgment, been important contributions to the
field are also included, as are some reviews of the literature. For the
most part, the items in the bibliography are from the American Journal of
Agricultural Economics, the various regional agricultural economics jour-
nals and the agricultural economics journals in England, Canada and Aus-
tralia. However, a limited number of applications in other journals with
which we are familiar are also included, as are selected research reports.
‘We have not attempted to compile an exhaustive list of applications from
experiment stations, the International Centers or those ‘included in M.S.
and 'Ph.D. theses from Agricultural Economics Departments. .. It would have -
been difficult to compile an exhaustive list of these kinds - of publi-
cations and we believe that many of them are probably referenced in jour-
nal publications. ' - ' R :

We also have made no attempt to provide a complete annotation for
the papers listed. We have, however, placed them in a number of ecate-
gories, depending on the type of risk being analyzed (e.g., whether the
uncertainty is in the objective function, the technical coefficients, the
right-hand side or some combination of the three). The citations are
listed by technique, year and author with the earlier work appearing
first. The particular subject matter area or subarea of the application
is listed as well. '
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able B-2. Reviews of Uncertainty Modéi'ﬁpﬁli¢étion5'

“Risk

Dillon, J.L.(1963)

Authors  Area Subarea Method 'Objéct
: Type-
oussard, J-ﬁ.(1967) LIT REV
\ derson, J.R.(1979) - LIT REV
An&;rson, J.R., DPillon, LIT REV
‘a£¥y; P.J., ed.(1984) LIT REV
.;Carl, B.A. (1984) LIT REV
Boisvert, R.N.(1985) LIT REV
ﬁgpngdy, J3.0.5.(1981) LIT REV STOCH DP
-fﬁennedy, J.0.5.{19%86) LIT REV STOCH DP
Hansotia, B.J.(1980) LIT REV DSP
~Apland, J.D. and Kaiser, LIT REV DSP
H. (1984)
| LIT REV GAMES

" Note: See Table B-1 for key to classification codes.
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Authors

Risk

C.R., Nelson, T.C. and
Cartwright, T.T.(1981)

Area .Subarea Method Object
Type

Brink, L. and McCarl, PRODUCTION CROPS OBJ MOTAD EST RAP
B.A.(1978) ' '
Schurle, B.W., Erven, B. PRODUCTIDN CROPS OBJ MOTAD SENSIT
L.(1979)
Bakef, T.G. and McCarl, PRODUCTION CROPS OBJ MOTAD ~SENSIT
B.A.(1982) '
Brink, L. and McCarl, PRODUCTION _CROPS OBJ MOTAD NORM
B.A.(1979) ' .
Mapp, H.P., Hardin, M.L., PRODUCTION CROPS .OBJ MOTAD NORM
Walker, 0.L., Persand, ' : '
T.(1979)
Schurle, B.W., Erven, B. PRODUCTION CROPS OBJ MOTAD NORM
L.(197%) '
Apland, J.D., Barnes, _PRODUCTiON CROPS OBJ MOTAD NORM
R.N. and Justus, F.(1984) :
El-Nazer, T. and McCarl, PRODUCTION CROPS OBJ 'MOTAD NORM
B.A.(1988) '
‘Teague, P.W, and Lee, PRODUCTION CROPS "OBJ ~MOTAD NORM
J.G.(1988)
Weimar, M.R. and A. PRODUCTION CROPS -0BJ MOTAD NORM
Hallam(1988)
Hanf, C.H. and Mueller, PRODUCTION iIVESTOCK OBJ - MOTAD SENSIT
R.(1979) ' '
Whitson, R.E., Barry, PRODUCTICN LIVESTOCK OBJ MOTAD NORM
P.J., Lacewell, : . .
R.D.(1976)
Shumway, C.R., PRODUCTION LIVESTOCK OBJ MOTAD NORM
Gebremeskal, T.(1978) ' -
Kaiser, E. énd Boehlje, PRODUCTION LIVESTOCK OBJ MOTAD NORM
M.D.(1%80) S :
Angirésa, A.K, Shumway, PRODUCTION LIVESTOCK OBJ MOTAD NORM
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T#ble B-3. Applications of Objective Function Uncertainty (cont.)}:

f;'Authors

. Object

Area - Subarea Risk Method
Type

Norton,-G.W.J Easter, PRODUCTION FARM ORJ HOTAD NORM

K.W., Roe, T.L.(1980)

‘Héld, L.J. and Zink, PRODUCTION FARM - OBJ MOTAD NORM

R.J.(1982)

‘Apland, J.D., McCarl, PRODUCTION IRRIG OBJ MOTAD NORM

B.A. and Miller, :

W.L.(1980)

ﬁazell, P.E.R., Norton; PRODUCTION AG SECTOR OBJ MOTAD NORM

R.D., Parthasarthy, M, .

and Pomereda, G.(1983)

Brandao, E., McCarl, B.A. PRODUCTION TENANCY OBJ MOTAD NORM

and Schuh, G.E.(1984)

-Mills,.W.L.,Jr., Hoover, PRODUCTION FORESTRY  QBJ MOTAD NORM

W.L.(1982)

Klinefelter, D.A.(1979) MARKETING CROPS OBJ MOTAD NORM
__Gembreﬁeskel, T. and MARKETING LIVESTOCK OBJ MOTAD NORM

Shumway, C.R.(1979)

Nieuwoudt, W.L., Bullock, POLICY CROPS . OBJ MOTAD NORM

J.B., Mathia, G.A.(1976)

Pomereda, C., Samayoa, POLICY AG SECTOR OBJ MOTAD NORM

0.(1979)

Hazell, P.B.R. and POLICY AG SECTOR OBJ MOTAD NORM

Pomereda, C.{1981)

Simmons, R.L., Pomereda, INT TRADE AG SECTOR OBJ MOTAD NORM

GC.(1975)

Jabafa, C.L. and INT TRADE AG SECTOR OBJ MOTAD NORM

Thompson, R.L.(1980)

Johnson, S.R.(1967) PRODUCTION - CROPS cOBJ EV ANAL

Wolgin, J.M.(1975) PRODUCTION CROPS OBJ EV ANAL

Lin, W., Carman, H.F., PRODUCTION CROPS 0OBJ EV

Moore, C.V., Dean,
G.W.(1974)

SENSIT -
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R.J. and Godwin,
M.R.(1972)

Authors Area ~ Subarea - Risk Method Object
' Type

Lin, W., Dean, G.W., PRODUCTION CROPS 0BJ EV SENSIT
Moore, C.V.(1974) -
Musser, W.N., McCarl, - PRODUCTION - CROPS . OBJ EV SENSIT
B.A., Smith, G.S.(1986) '
McSweeny, W.T., D.E:. PRODUCTION - CROPS OBJ EV SENSIT
Kenyon, and R.A.
Kramer (1987)
Freund, R.J.(1956) "PRODUCTION. CROPS OBJ EV NORM
Heady, E.0. and Candlér, PRODUCTION CROPS OBJ EV NOERM
W.(1958)
McFarquhar, A.M.M. (1961) PRODUCTION CROPS OBJ EV NORM

- Camm, B.M.(1962) PRODUGCTION ~ CROPS OBJ EV NORM
Stovall, J.(1966) - PRODUCTION CROFS 0BJ EV NORM
Thomas, W., Blakeslee, PRODUCTION CROPS OBJ EV NORM
L., Rogers, L., =~ ° : Lo ’ - s
Whittlesey, N.(1972)
Weins, T.B.{(1976) PRODUCTION CROPS OBJ EV NORH
Musser, W.N., Stamoulis, -PRODUCTICN CROPS 0BJ EV NORM
K.G.(1981) ‘ ‘ ST
Dillon, C.R., Mjelde, PRODUCTION CROPS OBJ EV NORM
J.W., McCarl, B.A.(1989) e ' . I :
Woolery, B.A. and R.M. PRODUCTION LIVESTOCK OBJ EV NORM
Adams (1979) - o o R -
Musser, W.N., Shurley, PRODUCTION LIVESTOCK OBJ EV NORM
W.D., Williams, o L
F.W.(1980)
Adams, R.M., Menkhaus, PRODUCTION - FARM 0BJ EV SENSIT
D.J. and Woolery, '
B.A.(1980)
Commor, J.R., Freund, . ‘PRODUCTION. IRRIG ‘OBJ EV NORM




73

Ble B-3. Applications'of Cbjective Function’Uﬁcéftainty;(contf)gf_3f S

“Authors ' Area - Subarea Risk - Hethod. ©. Object
: Type T :
alpaz, H. and J.W. PRODUCTION - IRRIG OBJ EV . - . . NORM -
PRODUCTION AG SECTOR OBJ EV - EST RAP
PRODUCTION SOIL CONS OBJ EV NORM
McCamley, F.P., PRODUCTION INPUT USE OBJ EV NORM
Kliebenstein, J.B.(1983) - ‘
Robison, L.J., Brake, FINANCE FIN STRUG OBJ EV ANAL
J.R.(1979) -
'Feétherstone, A.M,, Moss, FINANCE FIN STRUC 0OBJ EV ANAL
C.B., Baker, T.G. and ' '
Preckel, P.V.(1988)
Robison, L.J., Barry, FINANCE FIN STRUGC OBJ EV NORM
P.J.(1977) S : .
Robison, L.J., Barry, FINANGE FIN STRUC OBJ EV NORM
P.J.(1980) L .
Barry, P.J., Baker, C.B. FINANCE FIN STRUC OBJ EV NORM
‘and Sanint, L.R.(1981) '
‘Tauer, L.W., Boehlje, FINANCE FIN STRUC OBJ EV NORM
M. (1981) I ' . :
Dixon, B.L. and Barry, FINANCE FIN STRUC OBJ EV : NORM
©P.J.(1983) ' . . - .
fLIYoung, R.P. and Barry, FINANCE FIN STRUC OBJ EV NORM
T P.J.(1987)
Ward, R.W., Fletcher, MARKETING  CROPS 0BJ EV ANAL
L.B.(1971)
Peck, A.E.(1975) MARKETING CROPS - - OBJ EV ANAL
Miller, S.(1986) . MARKETING  CROPS OBJ EV ANAL
Heifner, R.G.(1966) MARKETING  CROPS OBJ EV NORM
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Table B-3. Applications of Objective Function Uncertainty (cont.}

Authors ' Area . Subarea Risk Method Object
Type

Eddleman, B.R. and MARKETING CROPS . OBJ EV NORM
Moya-Rodriguez,
J.E.(1979)
Berck, P.(1981) MARKETING  CROPS OBJ EV NORM
Alexander, V.J., Musser,  MARKETING CROPS OB . EV . NORM
W.N. and Mason, G.(1986)
Johnson, D.A. and MIXTURE  CROPS 0BJ EV |  NORM
Boehlje, M.D.(1983) oL .
Boussard, J-M. and Petit, PRODUCTION CROPS OBJ FOC LOSS  NORM
M.(1967)
Boussard, J-M.(1971) PRODUGTION GROPS 0BJ FOC LOSS - NORM
Musser, W.N., Ohannesian, PRODUCTION CROPS 0OBRJ - TRGT INC NORM
J., Benson, F.J.(1981)
Hauser, R.J. and MARKETING CROPS  OBJ TRGT INGC  NORM
Anderson, D.K.(1987) =
Hauser, R.J. and Eales, MARKETING CROPS . OBJ TRGT INC  NORM
J.5.(1987)
Atwood, J.A., Watts, M.J.  FINANCE FIN STRUC OBJ CHAN CON  NORM
and Helmers, G.A.(1988) - . T :
Collender, R.N. and PRODUCTION CROPS  OBJ EUMGF ANAL
Zilberman,- D.(1985) R
Babcock, B.A., Chalfant,  PRODUCTION CROPS 0BJ EUMGF ANAL
J.A., Collender, - g :
R.N.(1987)

Moffitt, L.J., Burrows, PRODUCTION CROPS .OBJ EUMGF NORM
T.M., Baritelle, J.L., S Cee T . ; .
Sevacherian, V.{1984)

Collender, R.N. and "PRODUCTION -CROPS - . OBJ EUMGF NORM
Chalfant, J.A.(1986)

Johnson, S5.R., PRODUCTION CROPS OBJ SCENARIO NORM
Tefertiller, K.R. and : S : . Co :
Moore, D,(1967)_‘
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Table B-3. Applications of Objective Function Uncertainty (cont.)

" Authors ' Area Subarea Risk Method Object
, A., Shumway, PRODUCTION LIVESTOCK OBJ SCENARIO  NORM
R.E. (1984)
Chien, Y.I. and Bradford, PRODUCTION FARM OBJ SCENARIO  NORM_
G.L.(1976) - o
Barry, P.J. and Baker, FINANCE ~ FIN STRUC OBJ SCENARIO  NORM
C.B.(1971)
Adams, R.M., Hamilton, RESOURCES  AG SECTOR OBJ SCENARIO  NORM
S.A. and McCarl, ' o '
B.A.(1986)
Collins, R.A. and Barry,  PRODUCTION CROPS  OBJ SNGL INDX NORM
P.J.(1986) '
Perry, G.M.(1986) PRODUCTION GCROPS  OBJ EV MULTI  NORM
Barry, P.J. and Willmann, FINANCE FIN STRUC OBJ EV MULTI NORM
D.R.(1976) - |
" Sanint, L. R., Barry, FINANCE FIN STRUC OBJ EV MULTI  NORM
P.J.(1983)
. Kawaguchi, T., Maruyama,  PRODUCTION CROPS 0BJ GAMES NORM
Y. (1972) - | | '
 Low, A.R.C.(1974) PRODUCTION CROPS OBJ GAMES NORM
Zering, K.D., McCorkle, PRODUCTION CROPS. OBJ GREMP NORM
C.0., Jr. and Moore,
C.V.(1987)
King, R.P., Oamek, FINANCE CROPS 0BJ GREMP NORM
G.E.(1979)
King, R.P., Lybecker, MARKETING  CROPS 0BJ GREMP NORM
D.W.(1983)
Watts, M.J., Held, L.J.,  PRODUCTION CROPS OBJ COMPAR SENSIT

Helmers, G.A.(1984)

Atwood, J.A., Held, L.J., PRODUCTION CROPS OBJ COMPAR SENSIT
Helmers, G.A. and Watts,
M.J.(1986) .
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Table B-3. Applications of Objective Function Uncertainty (cont.)

Authors o Area Subarea  Risk Method .Object
Type

Reid, D.W. and B.V. PRODUCTION CROPS  OBJ COMPAR SENSIT
Tew(1987) :
Wicks, J.A.(1978) PRODUCTION CROPS OBJ COMPAR ~ NORM
Helmers, G.A., Held, L., PRODUCTION CROPS OBJ TG MOTAD  NORM
Watts, J. and Atwood, '
J.,(1984)
Zimet, D.J. and Spreen, PRODUCTION FARM  oBJ TG MOTAD  NORM
T.H.(1986) ' '
Curtis, C.E., Pfieffer, MARKETING CRCPS 0BJ _ _TG MOTAD  NORM

G.H., Lutgen, L.L. and
Frank, S$.D.(1987)

Frank, $.D., Irwin, S.H., MARKETING CROPS OBJ TG MOTAD " NORM
Pfeiffer, G.H., Curtis, .

C.E.(1989)

Kennedy, J.0.5.,. PRODUCTION FARM OBJ FL,MOTAD SENSIT

Francisco, E.M.(1974)

Note: See Table B-1 for key to classification codes.
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5 Uncertainty
' Authors Area Subarea - Risk Method - Object
Type
Wicks, J.A., CGuise, PRODUCTION CROPS ALJ WICK GUI NORM
J.W.B.(1978) -
Tice, T.F.(1979) PRODUCTION = CROPS MIX DSP- WG .. NORM
Rahman, $.A., Bender, PRODUCTION - LIVESTOCK . ALJ MERRILL ~ NORM
F.E.(1971) - .
, J.T.(1973) PRODUCTION LIVESTOCK =~ AIJ MERRILL .  NORM
Segarra, E., Kramer, PRODUCTION = SOIL CONS AIJ - MERRILL NORM
R.A., Taylor, D.B.(1985)
Babbar, M.M., Tintner, G. PRODUCTION CROPS ALl SCENARIO - . NORM
and Heady, E.O.(1955) '
Townsley, R.(1968) - PRODUCTION LIVESTOCK AIJ OTHER NORM -

:Tﬁote:- See Table B-1 for key to classification codes.
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Table B-5. Applications of RHS Uncertaiﬁty

- Authors L Area - . -~Subarea .. Risk Method ~ Object
: Type

Boisvert, R.N. and PRODUCTION = CROPS - -RHS CHAN CON NORM
-Jensen, H.R.(1973) ’ ' o
Boisvert, R.N.(1976) PRODUCTION CROPS -RHS CHAN CON NORM
Danok, A.B.,, McCarl, B.A, PRODUCTION "CROPS. =~ ~RHS CHAN. CON - NORM
and White, T.K.(1980) ' T
Loucks, D, (1975) RESQOURCES IRRIG RHS - CHAN CON NORM
Maji, G., Heady, E.(1978) RESOURCES IRRIG . RHS CHAN CON = NORM

Kieth, J.E., Martinez, RESOURCES  IRRIG RHS CHAN CON  NORM
‘G.A., Snyder, D.L., : : o - T
Glover, T.F.(l989)

Lambert, D.K.(1984)  MARKETING . CRQPS RYHS DSP NORM

Candler, W.(1956) | PRODUCTION CROPS RHS SCENARIO  NORM

Note: See Table B-1 for key to classification codes.




79

able B-6. Applications of Multiple Uncertaintyfﬁéaéls

. Risk vff-'u"'

 Authors Area Subarea
Type
‘Kramer, R.A., McSweeny, PRODUCTION SOIL CONS MIX
ﬁ,T., Stavros, R.W.(1983)
“McSweeney, W.T. and R.A. PRODUCTION SOIL CONS MIX PARIS SQP NORM =
‘Kramer(1986) ,
Taylor, C.R.(1983) PRODUCTION CROPS MIX STOCH DP  ANAL. -
Taylor, C.R.(1986) PRODUCTION CROPS MIX STOCH DP  ANAL
Burt, O.R. and Johnson, PRODUCTION CROPS MIX STOCH DP  NORM
"R.D. (1967)
" Stauber, M.S., Burt, PRODUCTION CROPS MIX STOCH DP  NORM
© 0.R., Linse, F.(1975)
Klemme, R.M.(1980) PRODUCTION CROPS MIX STOCH DP  NORM
0'Brien, D.(1981) PRODUCTION CROPS MIX STOCH DP  NORM
Taylor, C.R., Burt, PRODUCTION CROPS MIX STOCH DP  NORM
70.R.(1984)
~ Zacharias, T.P. and PRODUGTION CROPS MIX STOCH DP  NORM
Grube, A.H.(1986) :
Zacharias, T.P., Liebman, PRODUCTION CROPS MIX STOCH DP  NORM
J.S. and Noel, G.R.(1986)
Mjelde, J.W., Sonka, PRODUCTION CROPS MIX STOCH DP  NORM
S.T., Dixon, B.L., and
Lamb, P.J.(1988)
Smith, B.J.(1973) PRODUCTION LIVESTOCK MIX STOCH DP NORM
Henderson, R.A. and Toft, PRODUCTION LIVESTOCK MIX STOCH DP  NORM
H.1.(1979)
Toft, H.I., O'Hanlon, PRODUCTION LIVESTOCK MIX STOCH DP  NORM
P.W.(1979)
Rodriguez, A. and Taylor, PRODUCTION LIVESTOCK MIX STOCH DP NORM
R.G.(1988)
Burt, 0.R., and Stauber, PRODUCTION TIRRIG MIX STOCH DP NORH

M.S.(1971)
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Table B-6. Applications of Multiple Uncertainty Models (cont.)
Authors ‘Area ‘Subarea Risk Method Object
Type

Biere,  A.W. and Lee, PRODUCTION IRRIG MIX STOCH DP NORM
I.M.{1972) ' o
McGuckin, J.T., C. Mapel, PRODUCTION IRRIG MIX STOCH DP 'NORM -
R.R. Lansford, and T.W. ' ' S '
Sammis(1987) *
Burt, O.R.(1982) VPRDDUCTION LIT REV - MIX STOCH DP
Burt, O.R.(1965) - FINANCE FIN STRUC MIX STOCH DP  NORM
Weersink, A, and S. FINANCE FIN STRUC MIX STOCH DP NORM
Stauber{1988) : ' T '
Mjelde, J.W., C.R. Taylor, MARKETING CROPS MIX STOCH DP NORM
and G.L., Cramer(1985) ' '
Yager, W.A., Greer, R.C., MARKETING - LIVESTOCK MIX STOCH DP NORM
Burt, O.R.(1980)
Burt, 0.R., Koo, W.W. and POLICY AG SECTOR MIX STOCH DP NORM
Dudley, N.J.(1980)
Koo, W.W., POLICY AG SECTOR MIX STOCH DP NCRM
Burt,0.R.(1982)
Yaron, D. and Olian, RESOURCES IRRIG MIX STOCH DP NORM
A.(1973)
Burt, O.R.(1981) RESCURCES S0IL CONS MIX STOCH DP NORM
Kennedy, J.0.5.(1979) _ INT TRADE AG SECTOR MIX STOCH DP  NORM
Rae, A.N.(1971) PRODUCTION CROPS MIX DSP NORM
Burt, O.R. and Allison, PRODUCTION CROPS MIX DSP NORM
J.R.(1979)
Apland, J.D., MecCarl, . PRODUCTION CROPS MIX DSP " NORM
B.A. and Baker, T.(1981)
Garoian, L., Conner, J.R. PRODUCTION LIVESTOCK MIX DSP NORM
and Scifres, C.J.(1987)

PRODUCTION LIVESTOCK MIX DSP " NORM

Lambert, D.K, (1289)
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'Tabie B-6. Applications of Multiple Uncertainty Models {(cont.)}

" Authors Area Subarea Risk Method
‘Trebeck, D.B., Hardaker,  PRODUCTION FARM MIX DSP
J.B.(1972)
‘Kaiser, H.M., Apland, PRODUCTION FARM MIX DSP NORM
.D.(1989)
3Y£ron, D. and Horowitz, PRODUCTION FIN STRUC MIX DSP NORM
U.(1972)
‘Leatham, D.J., and Baker, PRODUCTION FIN STRUC MIX DSP. - NORM
T.G.(1988) : :
“Lambert, D.K., and MARKETING  CROPS MIX DSP NORM
‘McCarl, B.A.(1989)
‘Brown, C. and Drynan, MARKETING NON FARM MIX =~ DSP NORM
‘R.(1986)
McGCarl, B.A. and G.H. POLICY IRRIG MIX DSP NORM
Parandvash(1988)
Falatoonzadeh, H., PRODUCTION CROPS MIX EV, CHCON  NORM
- Conner, J.R. and Pope, :
" R.D.(1985)
Paris, Q., Easter, PRODUCTION AG SECTOR MIX EV, CHCON  NORM
C.D.(1985)
Harris, T.R. and Mapp, PRODUCTION IRRIG MIX STOCH CON  NORM
H.P. Jr.(1980)
. Zavaleta, L.R., Lacewell, PRODUCTION IRRIG MIX STOCH CON  NORM
R.D. and Taylor, :
C.R.(1980)
Dixon, B.L. and Howitt, PRODUCTION FORESTRY MIX ~  STOCH CON  NORM
R.E.(1980)
Tice, T.F.(1979) PRODUCTION CROPS MIX DSP WG NORM

Note:

See Table B-1 for key to classification codes.
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