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Abstract

This manual was prepared to introduce graduate students in
agricultural economics to GAMS, a mathematical programming software
combination consisting of a modelling language, GAMS 2.05, and lipear,
non-linear and integer programming solvers. It begins with a tutorial
using a problem in farm planning. In later sections, this same
example, combined with five years of data on gross margins, is used to
illustrate how to solve a variety of risk programming applications
(e.g. MOTAD, Mean-Gini and EV models). Other non-linear programming
applications include a spatial allocation model and a non-stochastic
dynamic programming problem. The manipulation of an input-output

system is also discussed. The GAMS code for each of these applications
is included in an appendix.
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INTRODUCTYON

The purpose of this manual is to introduce users to a very
general, yet accessible, mathematical programming software combination,
known simply as GAMS. The basic package consists of the mathematical
modelling system, GAMS 2.05, a modelling language, and a linear
programming solver called BDM-LP 1.01 (after Brooke, Drud, and Meeraus,
who created it). In addition, there are two optional solvers, MINOS
5.2, which is used for solving non-linear problems, and ZOOM, which
solves integer programming problems.

Linear programming problems are solved with BDM-LP in conventional
fashion. Linear inequality constraints are converted to equalities by
the introduction of slack variables. Solutions are obtained through
the adjustment of variables in the basis, and through the exchange of
basic and non-basic variables. This process continues until the
optimum feasible value of the objective function 1is obtained.

MINOS (for Modular In-core Non-linear Optimization System) was
developed at the Department of Operations Research at Stanford
University. It i1s capable of solving optimization problems of the
form:

(1) Max F(X) + ¢'X + 4'Y

subject to

(2)  £(X) + ALY

1A
o
[ =

(3 AdX + A3Y = b

(4) L= ¥ =u

The non-linear and linear choice variables are represented by the
vectors "X" and "Y" respectively, with lower and upper bounds of L and
u. "F(X)" and "£(X)" are non-linear, twice differentiable functions of
the variables contained in "X". The vectors "c¢" and "d" contain
constant objective function coefficients. The "A" matrices contain
coefficients which describe the linear components of the constraint
set. Finally, the "b" vectors represent the right-hand-side values of
the constraints.

For problems involving optimization of a non-linear function,
subject to linear constraints, MINOS uses a version of Wolfe's reduced-
gradient algorithm. Again, all inequalities are converted to
equalities, and the set of choice variables is partitioned into non-

1 The description of MINOS is adapted from G, Fox, Mathematical
Programming with MINOS: A Handbook for Economists, Ontario
Agricultural College, University of Guelph, 1986.
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basic, basic, and "superbasic" variables. The number of superbasics in
the optimal solution is proportional to the degree of non-linearity of
the objective function. Optimization proceeds through changing the
values of the superbasic variables, with the basic and non-basic
variables being adjusted to ensure feasibility. When a basic or
superbasic variable encounters one of its bounds, it is transferred out
of the basis. When no further improvement in the objective function
can be obtained for a given set of basic and superbasic variables, non-
basic variables are considered as candidates. An optimum is identified
when it is no longer possible to improve the value of the objective
function through substitutions of this sort.

A problem with non-linear constraints is solved by MINOS using a
variant of the Projected Augmented Lagrangian algorithm, developed by
Murtagh and Saunders.? A linear approximation to the constraint set is
constructed, and the algorithm proceeds to solve the resulting
linearly-constrained problem. Following an arbitrary amount of
brogress toward solution of the approximation to the problem, the
values of the choice variables are used to recompute a linear
approximation to the constraint set.

Each linear approximation is called a major iteration. Within
each major iteration, the values of the choice variables are adjusted
in a series of minor iterations, attempting to optimize an augmented
Lagrangian (augmented by a quadratic "penalty" term, which penalizes
poor approximation). The process continues until a point arbitrarily
close to a constrained optimum is obtained.

GAMS (for General Algebraic Modelling System) was developed at the
World Bank as a general mathematical modelling language. It is used
here as a sort of pre- and post-processer, attached to the solvers,
Using GAMS, one can write a model in a computer code which differs only
slightly from standard mathematical notation and submit it to the
solvers. Once the solution is obtained, GAMS can be used to perform
further calculations on the results, or as a report writer.

To date, there exists extensive documentation on GAMS,
including a tutorial which takes the reader through the solution of a
small transportation problem. This 1s an extremely simple example,
which does not involve the use of some of the most essential modelling
features of GaMs. These, and other features which are useful in
agricultural economics applications, are described throughout the
several hundred pages of documentation.

2 This algorithm is described in B. A. Murtagh and M. A. Saunders,
"Large-Scale Linearly Constrained Optimization", Mathematical
Programming 14 (1978) 41-72 and B, Murtagh, and M. A, Saunders, TA
Projected Lagrangian Algorithm and its Implementation for Sparse
Nonlinear Constraints™, Mathematical Programming Study. 16 (1982) 84-
117. )

3 The major GAMS documents are: A. Meeraus, General Algebraic
Modelling Svstem: Preliminary User’'s Guide. Version 1.0, The World
Bank, February, 1982, and D. Kendrick and A, Meeraus, GAMS. An

——— o
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The Users Guide by Brooke, Kendrick and Meeraus {footnote 3) is
the documentation that is supplied with the commercial available micro-
computer version of GAMS. It includes introductory material, as well
as material for the advanced user. It is more readable than the
earlier documentation and became available shortly after a draft of
this bulletin had been prepared and used in an agricultural economics
graduate course in mathematical programming. The orientation of our
discussion and the topics emphasized in this bulletin are those most
important to agricultural and resource economics applications.

To facilitate the discussion, a simple farm planning problem
example is used as the basis for an extensive tutorial. In later
sections, this same example, combined with five years of data on gross
margins, is used to illustrate how to prepare the data inputs
efficiently and to solve a variety of risk programming applications
(e.g. E.V., MOTAD, Mean-Gini). Other non-linear programming
applications include a spatial allocation model and a non-stochastic
dynamic programming problem. The manipulations of an input-output
system are also discussed.

The manual is divided into four main sections, with two
appendices. Section I consists of the linear programming tutorial.
Section II provides further information for users interested
specifically in linear programming applications. Section IIT discusses
some of the special features of GAMS, such as the conditional operator
ng"  and operations on sets. Section IV contains a discussion of non-

‘linear programming, including some of the special aspects of dymamic
programming, such as leads and lags.

Introduction, The World Bank, December, 1987, and A. Brooke, D.
Kendrick, and A. Meeraus, GAMS - A User's Guide, The Scientific Press,
Redwood City, California, 1988. The major MINOS document is: B. A
Murtagh and M. A. Saunders, MINOS 5.0 User's Guide, Systems
Optimization Laboratory, Department of Operations Research, Stanford
University, 1983.




SECTION I

A GAMS Tutorial, Using Lineax Programming

The purpose of this section ig to outline the essentials of
formulating and running linear programming problems in GAMS. GAMS was
originally designed as a mainframe package. Thus, in using it, it is
necessary to prepare a complete file, and submit the file to GAMS to he
solved in a "batch” mode. The file may be prepared using any text
editor, but the use of tab characters or other format characters is
prohibited. An attractive feature of GAMS, however, is that one can
embed comments in the input file by beginning each comment line with an
asterisk (%), This feature is especially helpful to document the
structure of large models.

In outlining the essential features of this package, an example
problem, in which a farmer wishes to choose levels of three activities
(the production of standard wheat (X1), oats (X7) and new wheat (X3)),
subject to four resource constraints, that maximize net farm revenue,
is used. Written in standard notation, the problem ig:

(5 Max 108.3Xp + 66.36X, + 127 .56X3
5.t. Xy + X3 + X3 =< 12
X1 + X3 = g
30%; + 20Xy + 40X3 = 400
5Xq + 3X5 + 8X3 = 80
X1, X5, X3 = 0,

The components of the GAMS representation of this example are
discussed in the following order:

INPUT Sets
Data Input: PARAMETER, TABLE, and SCALAR
Variables
Equations
MODEL and SOLVE Statements

SUBMITTING THE FILE

OUTPUT  Compiler Output
Echo Print
Reference Maps

Execution Output

Equation Listing
Column Listing
Model Statistics
Solution Report



When formulating a problem in GAMS, one begins by declaring the
sets over which parameters and variables are defined. The structure of
the command is:

SETS (identifierl) explanatory text

/elementl,elementl,elementl, ... ,elementl/
(identifier2) explanatory text
/element?,element?,element?2, ... ,element2/

(identifierN) explanatory text
/elementlN,elementN,elementN, ... ,elementN/

The declaration of sets begins with the keyword SETS (or SET if
there is only one), which can be typed anywhere on a line except in the
first column. (The first column is reserved for indicators of comment
statements and system commands). Following the keyword, the set name,
or identifier, is typed, followed by a space and optional explanatery
text. An identifier can be up to ten characters long, the first
character of which must be a letter. Identifiers cannot include
embedded blanks, nor can they contain special characters such as
7&#-+=@% () _"" 1.

The elements of a set must be separated either by commas or by
end-of-1ines, and enclosed within slashes. Element names (called
"labels") can be up to ten characters in length. They must also begin
with a letter, and must not contain embedded blanks or special
characters other than "+" and "-". (A blank in an element list serves
to separate the element name, or label, from associated explanatory
text).

For example, set declaration for the set of activities in the
example problem might look as follows:

SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/

The name of the set is "J", which may also be considered to be the
name of its generic element. The descriptive text is "ACTIVITIES", and
the three elements follow on the next line. Note how multi-word labels
are incorporated, by use of the hyphen.

It is possible to append descriptive text to set elements, in much
the same way as one does with set identifiers. This is shown below,
using the farm problem, naming the activities by the conventional Xl,
X2, and X3. '

SETS .
J ACTIVITIES
/X1 STANDARD, X2 OATS, X3 NEW/
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In this case, the GAMS compiler considers X1 to be the label for
the first element and the remaining characters between the first blank
and the comma to be the description of the first element. This is the
reason for excluding embedded blanks from the element labels
themselves,

This set can also be entered using end-of-lines, rather than
commas as separators, as follows:

SETS
J ACTIVITIES
/X1  STANDARD
X2  OATS
X3 NEW/

Large, unordered sets pose no entry problems, since elements may
be separated using either commas or end-of-lines. Thus, if the set of
activities contained twenty-five elements, the set could be entered as:

SETS
J ACTIVITIES
/AY,BEE,CEE,DEE,EE,EFF,GEE,AITCH,AI,JAY,KAY,ELL,EMM,ENN
OH,PEE,KYOO,ARR,ESS,TEE,YOO,VEE,DUBBELYOO,EX,WHY/

In the case of large, ordered sets, such as time periods in
dynamic problems, GAMS accepts a more compact method of set element
entry. For example, if a problem contains constraint equations for
twenty different resources, which are simply numbered consecutively,
they may be declared by entering:

SETS
R RESOURCES
/RES1*RES20/

This is almost identical to the English convention of representing
an ordered set as "RES1-RES20", which is generally understood to mean
"RES1, RES2, RES3,...,RES20".

More simply, the resources might be entered as:
R RESOURCES /1%*20/

While this is an easy way to specify set element labels, it
sometimes causes confusion for beginning users. The difficulty arises
when the user attempts to perform operations on the numbers used as
labels. Since these are only names for elements, it is no more
sensible to use them directly in equations than it would be to multiply
Peter by Paul.

In the farm problem, there are four resource constraints., The set
of resource rows is declared as part of the SETS portion of the GAMS
input, using the convention just described. The two sets needed for
this problem could then appear as:



SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/
1 INPUTS
/RES1*RES4/

Subsets of primary sets can be created through assignment
statements. This 1s discussed in more detail in Section III.

Once the sets have been defined, they can be used in entering data
for the problem. )

Data Input: PARAMETER, TABLE., and SCALAR

There are three forms of information that are entered in the GAMS
language. These are scalars, lists, and tables. (A scalar is simply a
one-element list, so there are really only two types of data input.
However, scalars are entered using a unique keyword.)

When preparing any form of data, the commands are structured in
essentially the same mammer, The structure of the command is:

(Keyword) Name{dcmain) Descriptive text
/Actual Data/

The keywords used are:

PARAMETER (For entering parameter lists)
TABLE (For two-dimensional tables)

SCALAR (For scalars, ot one-entry lists) 4

Names of parameters follow the same convention as that of set
names. Normally, these will be short--one or two letters is generally
all that is required--although parameter names can be up to ten
characters in length.

1f domain-checking is desired, the domain of the parameter 1is
appended to the parameter name inside parentheses.5

4 A1l of these keywords refer to different ways of entering the
"parameters" of the problem being studied. The commands in the GAMS
language are actually PARAMETER LIST, PARAMETER TABLE, and PARAMETER
SCALAR. However, the use of defaults allows the modeller to condense
PARAMETER LIST to PARAMETER, PARAMETER TABLE to TABLE, and PARAMETER
SCALAR to SCALAR.

> Once the input file for the problem is complete, it is checked
for consistency before being submitted for solution. If the domain(s)
of a parameter is included in the parameter declaration itself, the
GAMS compiler will check to ensure that the list or table of data
matches the set{s) to which the data belong. For example, if the
domain of the parameter "R" was mistakenly declared to be "I", the set
of resources, rather than "J", the set of activities, GAMS would have
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When lists of parameters are prepared as input, the actual data
are entered in the same format as that of the original sets themselves,
except that each element contains a pair of entries. Elements of
parameter lists are separated either by commas or by end-of-lines. The
following statements are equivalent ways of entering the parameter "R",
the objective function coefficients:

(1) PARAMETER R(J) REVENUE OF ACTIVITIES
/STD-WHT 108.3, OATS 66.36, NEW-WHT 127.58/

(2) PARAMETER R(J) REVENUE OF ACTIVITIES

/STD-WHT 108.3
OATS 66.36
NEW-WHT 127.58/

The right-hand-side values are entered in similar fashion.
These are defined over the rows, or set "I", and are named "B", in
accordance with linear programming convention:

PARAMETER B(I) AVAILABILITY OF INPUTS

/RES1 12
RES2 8
RES3 400
RES4 80/

While the right-hand-side values are entered simply as another
list, the "A" matrix can be entered in a tabular form, initialized by
the keyword TABLE, as follows:®

TABLE A(I,J) USE OF INPUTS PER ACTIVITY

STD-WHT QATS NEW-WHT
RES1 1 1 1
RES2 1 1
RES3 30 20 40
RES4 5 5 8

There are a number of things to note about table input. First, a
table is two-dimensional, so the parameter "A" is defined over the two
sets "I" and "J". The Order of Domain Entry Matters! The first domain
indexed corresponds to the rows of the table, and the second

expected entries for "RES1-RES4". Not finding these, it would have
signaled an error. While error messages are anneying, in this case
they serve to ensure that the GAMS job is internally consistent before
being submitted to the solver.

6 In this simple example, all rows of the "A" matrix can be
entered on one line. In larger problems, this is not possible. This
issue is discussed in Section II, in the subsection entitled "Large
Tables". :
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corresponds to the columns. The use of domain-checking is recommended,
as an error will be noted if the domains are entered in the wrong
order,

Tables can be entered fairly freely, subject only to the rule that
at least one digit of a number must be directly below one character of
the corresponding column heading, and no digits of a number for one
column may be directly below any character of another column heading.
It iz not necessary to enter zeros. Note that tabular data are not
enclosed within slashes.

Scalars are entered in exactly the same way as lists, replacing
the keyword PARAMETER with SCALAR. Once again, the actual number will
be enclosed within slashes. (There are no scalars in the example
problem. Examples of the SCALAR Keyword are found in Appendix B, B.2,
B.3, B.4 and B.7.)

In addition to the three methods of direct data input, there is
one other type of input which is extremely useful, dealing with data
which are computed. Later examples of this include computation of the
variance-covariance matrix for quadratic programming, and the set of
differences for the Mean-Ginl programming formulation. Since this type
of data input is not required for the example problem, discussion of it
is deferred until Section II, in a subsection entitled "Manipulation of
Data Using Assignment Statements”.

Variables

Once the data have been entered, it would seem natural to proceed
with writing the model equations themselves. However, one rule of GAMS
ig that all components of the structural equations must be declared
before the equations themselves are entered. Although the parameters
have now heen entered, the cholce variables and variable representing
the function to be optimized must still be declared.

The format for the declaration of variables is similar to that for
sets and data, beginning with the keyword VARIABLE(S). Following this
is a variable name (up to ten characters), the domain of the variable
(if domain checking is desired), and explanatory text.

The structure of the command is:

VARTABLES Namel(domain) Descriptive Text
Name2 (domain) Descriptive Text

NameN{(domain) Descriptive Text ;

Following the declaration of variables, restrictions can be put on
gome, or all of them. In this example, we need to incorporate the
restriction that the activity levels be mon-negative. For reasons of
its own, GAMS calls this restriction POSITIVE. The variables listing
for the example problem is:
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VARIABLES
Z NET REVENUE
X(J) ACTIVITY LEVELS
POSITIVE VARIABLE X;

Note the semicolon. The general rule is that all GAMS statements
should end with a semicolon, but this can be relaxed when the next
statement begins with a keyword. (The semicolon is not required after
the line "Z  NET REVENUE" because the next line is 8imply another
element in the list of variables, and is therefore part of the same
statement.)

Variables can be of five types, POSITIVE (which means non-
negative), NEGATIVE (which, of course, means non-positive),
INTEGER, BINARY, or FREE. Unless otherwise specified, GAMS will
consider all variables to be free (able to take on-all values).

Equations

The structural equations are the center of the model. These are
entered in two parts. First the declaration names each equation for
future reference; then the equation is defined. The structure of the
commands is:

EQUATIONS
Namel Descriptive Text
Name?2 Descriptive Text (Declarations)

NameN  Descriptive Text ;

Namel.. (Definition) ;
Name2.. (Definition) ; (Definitions)
NameN.. (Definition) ;

The declarations section is simply a list of equation-names, with
optional explanatory text. An equation name is a single word of up to
ten characters, and the text is a series of words. At the end of the
list, a semicolon is required to alert the GAMS compiler that the list
of names is complete, and the definitions are about to begin. The
semicelon is necessary because the lines which follow are the equation
definitions, which do not begin with a keyword.

WARNING- -omission of the semicolon at the end of the
equations list is one of the most common errors in GAMS.
Identification of this error can be difficult, as it results
in the generation of a lengthy and confusing list of error
mesgages in the output,

The equations for the example problem (equation (5) above) consist
of an objective function, and four constraint functions, all of which
are less-than-or-equal-to constraints.

It is common in mathematical statements to make use of the Greek
letter Sigma to denote summation. GAMS translates this symbol with the
word "SUM". Since in computer code it is not possible to write the
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index of summation below the word SUM, in the GAMS language it is
written beside it, as the first term inside parentheses. The
objective function for the example problem would be written as follows:

SUM(J, X(J)*R(J)) =E= Z;

This is almost, but not quite, self-explanatory. The summation is
over the index "J", and sums the product of X(J) and R(J). (Like most
computer codes, GAMS uses the asterisk to denote multiplication). This
sum is set equal to the variable "Z" using the weird-looking expression
"wE="_ This overdone equal-to expression is used only in structural
equations. The more conventional "=" is used in data transformations
and assignments, of which there are no examples in this problen.

These features of CGAMS are discussed in Section III.

Since they are all of the same form, the constraint equations are
entered using a single expression for the entire group:

SUM(J, X(J)*A(I,J)) =L- B(I) ;

The constraints use the expression "=L=", which stands for "less than
or equal to" in structural equations. (The remaining symbol is “=G=").
Since there are four of these, one corresponding to each resource, the
constraint equations are named and defined over the set "I".

The complete equations section of the GAMS input for the example
problem is:

EQUATIONS
REVENUE OBJECTIVE FUNCTION
SUPPLY(I) RESOURCE CONSTRAINTS ;
REVENUE. . SUM(J, X(J)*R(J)) =E= Z ;

SUPPLY(I).. SUM(J, X(J)*A(I,J)) =L= B(I) ;

Note the two dots after the equation names in the definition
statements. These tell GAMS that the equation name is complete and the
expression defining it is about to begin. Note also that, while the
list of equation declarations ends with a semicolon, each equation
definition statement alsc ends with a semicolon.

MODEL and SOLVE Statements

The model statement is used to name the model and to identify the
equations which it includes. In the simple farm problem, there is only
one model, but one need not look far to find examples of jobs in which
more than one model is to be solved. An example might be where one
wishes to solve the farm problem first using all constraints, and
second using a subset of constraints. (This is discussed in Section
II, in a subsection entitled "Multiple Models™.)

7 Indexed operators, of which "SUM" is an example, are discussed
in more detail in Section III.
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The structure of the MODEL statement is:
MODEL (identifier (text)) /equation names/;
The model statement for the example can be written:
MODEL FARMPRIM FARM PROBLEM PRIMAL /REVENUE, SUPPLY/ ;

or, when the model incorporates all of the equations in the GAMS job,
this may also be written:

MODEL FARMPRIM FARM PROBLEM PRIMAL SALL/ ;
Note that this statement also concludes with a semi-colon.

Next comes the SOLVE statement, which indicates
{a) the model to be solved,
(b) the solution procedure to be used,
(c) the direction of solution (max or min),8 and
(d) the name of the objective variable.

The SOLVE statement for the example is:
SOLVE FARMPRIM USING LP MAXIMIZING Z:

The statement begins with the keyword SOLVE, followed by the name
of the model to be solved. The solution Procedure to be used is
specified with the word USING, and the statement concludes with the
direction and the objective variable.

A small amount of flexibility is permitted with the SOLVE
statement. The statement above could have been written:

SOLVE FARMPRIM MAXIMIZING Z USING LP;

Thus, it is not necessary to remember whether the objective and
direction precedes or follows the specification of the solution
process,

The entire GAMS job file for the example problem is shown on the
next page.  For reference, name this file FARMLP.GMS.

SUBMITTING THE FILE

A GAMS job file can be submitted in default fashion, or by
specifying any of the options available. Most of the option calls are
useful only if large models are to be solved, and will be discussed
later in the manual. Two other option calls (PW and PS) can be used to
control the lengths of lines and pages respectively, in the output
files. These are well documented in the GAMS.DOC file, section 9.

8Non-American users may note that the directions "minimizing" and
"maximizing" have the American spelling (using a "z" as opposed to an
"S") .
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SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/
I INPUTS
/RES1*RES4/
PARAMETER R(J) REVENUE OF ACTIVITIES
/STD-WHT  108.3
OATS 66.36
NEW-WHT  127.58/
PARAMETER B(I) AVAILABILITY OF INPUTS

JRES1 12
RES2 8
RES3 400
RES4 80/
TABLE A(I,J) USE OF INPUTS PER ACTIVITY
STD-WHT OATS NEW-WHT
RES1 1 1 1
RES?2 1 1
RES3 30 20 40
RES4 5 5 8
VARIABLES
z NET REVENUE

X(J)} ACTIVITY LEVELS
POSITIVE VARIABLE X;

EQUATIONS
REVENUE OBJECTIVE FUNCTION
SUPPLY(I) RESOURCE CONSTRAINTS;
REVENUE.. SUM(J, X(J)*R(J)) =E= Z;

SUPPLY(I).. SUM(J, X(J)*A(L,J)) =L= B(I);
MODEL FARMPRIM  FARM PROBLEM PRIMAL /ALL/ ;
SOLVE FARMPRIM USING LP MAXIMIZING Z:
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If the file is to be submitted in the simplest manner, it must be
named either with no filename extension (with a fileprefix only), or
using the extension ".GMS" (in the form "<fileprefix>.GMS").

cd\gams205 (This accesses the GAMS system files)
gams <drive>:<fileprefix>

For example, assume that you have created the file FARMLP.GMS, and
have saved it on a floppy disk. You now wish to submit it using an IBM
PC or PC compatible machine. Assuming the computer designates the
floppy drive as drive "a", the sequence would be:

cd/gams205
gams a:farmlp

The computer will now compile, and if error-free, execute the file
FARMLP.GMS. Whether or not the file is error-free, a new file,
FARMLP.LST, will be created and written to the drive from which the
input file originated (in this example, this is the "a" drive). If
there are errors in the file, a message will appear on the screen
directing the user to examine the "<fileprefix>.LST" file for the
string "¥%%*"  which highlights any errors. When the computer has
completed writing the .LST file, two beeps will sound, and the words
"ALL DONE" will appear on the screen.

If the input file has been named using an extension other than
.gms", the entire filename must be included in the submission command.
For example, had the file above been named FARMLP.IN, the command would
be:

n

cd\gams205
gams a:farmlp.in

The output will again be written to a newly-created file named
FARMLP.LST. The ".LST" file is created using the original fileprefix,
irrespective of the extension.

OUTPUT

Output from GAMS/MINOS is separated into the output from the
compiler and that from execution.

Compiler Qutput

There are two sections of compiler output: Echo Print and
Reference Maps.

Echo Print . The first part of the GAMS compiler output is called the
Echo Print. This simply retypes the GAMS commands, appending line
numbers for further reference. It is here that any GAMS errors are
highlighted. The Echo Print of the example problem is shown at right.
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PAGE 1
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION
1 SETS
2 J ACTIVITIES
3 /STD-WHT, OATS, NEW-WHT/
4 I INPUTS
5 /RES1*RES4/
6 PARAMETER R(J) REVENUE OF ACTIVITIES
7 /STD-WHT  108.3
8 OATS 66.36
9 NEW-WHT  127.58/
10 PARAMETER B(I) AVAILABILITY OF INPUTS
11 /RESL 12
12 RES2 8
13 RES3 400
14 RES4 80/
15 TABLE A(I,J) USE OF INPUTS PER ACTIVITY
16 STD-WHT OATS NEW-WHT
17 RES1 1 1 1
18 RES?2 1 1
19 RES3 30 20 40
20 RES4 5 5 8
21 VARIABLES
22 2  NET REVENUE
23 X(J) ACTIVITY LEVELS
24 POSITIVE VARIABLE X:
25  EQUATIONS
26 REVENUE OBJECTIVE FUNCTION
27 SUPPLY(I) RESOURCE CONSTRAINTS:
28 REVENUE.. SUM(J, X(J)*R(J)) =E= Z;
29 SUPPLY(I).. SUM(J, X(J)*A(I,J)) =L= B(I);
30 MODEL FARMPRIM  FARM PROBLEM PRIMAL /ALL/ ;
31 SOLVE FARMPRIM USING LP MAXIMIZING Z;
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Reference Maps. The reference map of symbols on the next page consists
of (a) a cross referenced list of all symbols by location and use,
alphabetically arranged, and (b% a list of identifiers by type,
including any explanatory text,

The reference map for the example problem is at the right. Some
explanatory comments follow,

Alphabetically, the elements of the "A"™ matrix, here called simply
"A", will be shown first. Under TYPE it is shown that "A" is a
parameter., It is first introduced (declared) on line 15, where the "A"
matrix is initialized. It is referenced on line 29, in the definition
of the constraint equations.

The set "I" is introduced on line 4, referenced on lines 10 and 15
{as a domain of both B{(I) and A(I,J)), and appears twice on line 29.
It is in a controlling position on line 29, as it is the set over which
the four SUPPLY equations are defined.

The set "J" is in a contreolling position on lines 28 and 29; it is
ugsed as the index of summation in REVENUE and SUPPLY equations.

Variables "X" and "Z" are implicitly assigned (IMPL-ASN) values on
line 31, through the SOLVE statement. Once the solution is complete,
values for "X{(J)" and "Z" are determined.

The last part of the Reference Map consists of a list of
identifiers, with any explanatory text. This is simply a listing of
symbol definitions, for the benefit of users of the output,

9 The reference map and symbol listing may be suppressed,
reducing the amount of output, by beginning the GAMS input file with:

SOFFSYMLIST OFFSYMXREF

The "$" symbol must be in the first column, and this line must be
the first statement in the file.
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PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

SYMBOL TYPE  REFERENCES

A PARAM DECLARED 1s REF 29

B PARAM DECLARED 10 REF 29

FARMPRIM MODEL DECLARED 30 REF 31

I SET DECLARED 4 REF 10 15
27

2%29 CONTRGCL 29
J SET DECLARED 2 REF & 15
23
2%28 2%29 CONTROL 28 29

R PARAM DECLARED 6 REF 28

REVENUE EQU DECLARED 26 DEFINED 28

SUFPLY EQU DECLARED 27 DEFINED 29

X VAR DECLARED 23 IMPL-ASN 31 REF
24

28 29 .
Z VAR DECLARED 22 IMPL-ASN 31 REF
28
31

SETS

I INPUTS

J ACTIVITIES

PARAMETERS

A USE OF INPUTS PER ACTIVITY
B AVATLABILITY OF INPUTS
R REVENUE OF ACTIVITIES

VARIABLES
X ACTIVITY LEVELS

z NET REVENUE
EQUATIONS

REVENUE OBJECTIVE FUNCTION
SUPPLY RESOURCE CONSTRAINTS
MODELS

FARMPRTM FARM PROBLEM PRIMAL
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Execution Output

There are four sections to the execution output: Equation
Listing; Column Listing; Model Statistics; Solution Report.

Equation Listing. This portion of the output lists in painstaking
detail some of the equations described in compact notation in the GAMS
input statements. This is extremely useful for checking that the
equations the computer is using in the model are correct.

Equations are listed with all endogenous variables grouped on the
left-hand-side, and parameters on the right. Thus, the objective
function, which is entered in the input file as:

REVENUE.. SUM(J, X(J)*R(J)) =E= Z:
is listed as:

REVENUE.., - Z + 108.3*X(STD-WHT) + 66.36%X(0ATS) +
127 .58%*X(NEW-WHT) =E= 0 ;

The right-hand-side is zero, since the objective function is written
entirely in terms of endogenous variables.

Note that the second supply equation (corresponding to the RES2
row) contains only two terms. GAMS does not print terms which are
equal to zero.

When listing equations which have been entered through sets, such
as the SUPPLY equations here, GAMS will list only the first three,
unless told otherwise. If you wish more or fewer equations listed,
there is an option statement which can be included in the file which
overrides the three-equation default. This statement should be entered
before the SOLVE statement, and takes the form: '

OPTION LIMROW = n;

If the user wishes to suppress the equation listing entirely, this can
be done by setting "n" equal to zero, and entering:

OPTION LIMROW = 0;
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PAGE 3
GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE FARMPRIM USING LP FROM LINE 31

---- REVENUE =E= OBJECTIVE FUNCTION

REVENUE.. - Z + 108.3%X(STD-WHT) + 66.36%X(0ATS) + 127.58*X(NEW-WHT)
=E= 0 ;

---- SUPPLY =I= RESOURCE CONSTRAINTS

SUPPLY(RES1).. X(STD-WHT) + X(OATS) + X(NEW-WHT) =L- 12 ;
SUPPLY(RES2).. X(STD-WHT) + X(NEW-WHT) =L- § ;

SUPPLY(RES3).. 30%X(STD-WHT) + 20%X(OATS) + 40*X(NEW-WHT) =L~ 400 ;

REMAINING ENTRY SKIPPED
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CGolumn Listing. The column listing on the next page shows the
coefficients for each variable, and indicates the rows in which these
ocour,

In the listing for the example, the variable "Z" occurs only in
the objective function. Since it is a free variable, it has a lower
limit (.10) of minus infinity (-INF), an upper limit (.UP) of plus
infinity (+INF), and, as no initial wvalue is entered, takes an initial
level (.L) of zero.

The "X(J)" variables, of which there are three, enter into the
objective function and all four constraint rows. Since "X(J)" is
declared to be POSITIVE, all "X(J)" variables have a lower bound (.LO)
of zero, but, since no further restrictions are imposed, they have no
finite upper bound. Again, since no initial values are introduced,
each "X(J)" takes an initial value (.L) of zero.l.

In this example, there are only three columns. In models
containing more than three columns, as with equations GAMS will list
only the first three. Again, this three-column default is overridden
with an option statement, entered before the SOLVE statement, of the
form:

OPTION LIMCOL = n;

As was the case with the equation listing, the entire column listing
can be suppressed by entering:

OPTION LIMCOL = O;

10 Note that GAMS assigns starting values of zero to all
variables, unless told otherwise. This is fine in the LP solution
procedure, but in the non-linear routines, it can cause fatal
errors. More is said about this in Section IV.
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PAGE 4
GENERAL ALGEBRAIC MODELING SYSTEM
COLUMN LISTING SCLVE FARMPRIM USING LP FROM LINE 31

cee- Z NET REVENUE
z
L0 = -INF , .L = 0, .UP = +INF
-1 REVENUE
---- X ACTIVITY LEVELS
X(STD-WHT)
.LO = 0, .L = 0, .UP = +INF
108.3 REVENUE
1 SUPPLY(RES1)
1 SUPPLY(RES2)
30 SUPPLY(RES3)
5 SUPPLY (RES4)
X(OATS)
10 = 0, .L = 0, .UP = +INF
66.36 REVENUE
1 SUPPLY(RES1)
20 SUPPLY(RES3)
5 SUPPLY (RES4)
X(NEW-WHT)
10 = 0, .L = 0, .UP - +INF
127.58 REVENUE
1 SUPPLY (RES1)
1 SUPPLY (RES?2)
40 SUPPLY(RES3)
8 SUPPLY (RES4 )
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Model Statistics. Next, GAMS prints a summary of the model statistics.

In this case, there are five rows or equations in the problem; the
objective function and the four constraint rows. These are entered
using two statements; one for the objective and one for the block of
constraints. Thus, there are two blocks of equations, and a total of
five single equations.

Likewise, there are four columns associated with endogenous
variables; the objective variable "Z", and the three activity variables
"X(J)". These are entered using two statements; one for "Z" and one
for the block of "X(J)"s. Thus, there are two blocks of variables,
associated with four individual columns, or single variables.

In the problem, there are five equations, each of which can
include coefficients on each of the four endogenous variables. There
are therefore a total of 20 possible coefficients to be entered. The
coefficient on "2" in each of the constraints is zero, as is the
coefficient on "X(OATS)" on the second constraint equation. Thus,
there are 15 of 20 possible coefficients which are not equal to zero.
This is reported in the last line of the MODEL STATISTICS listing.

PAGE 5
GENERAL ALGEBRAIC MODELING SYSTEM

MODEL STATISTICS SOLVE FARMPRIM USING LP FROM LINE 31

MODEL STATISTICS

BLOCKS OF EQUATIONS 2 SINGLE EQUATIONS 5
BLOCKS OF VARIABLES 2 SINGLE VARIABLES 4
NON ZERO ELEMENTS 15

GENERATION TIME = 0.040 MINUTES

EXECUTION TIME = 0.091 MINUTES
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Solution Report. Finally, we come to the answers to the problem (next
page). The Solution Report consists of three parts; the Solve Summary,
the results themselves, and the Report Summary.

First, we examine the Solve Summary for the example. The model
which was solved was FARMPRIM. It was solved using BDM-LP, the linear
programming solver. The objective variable is Z, which is maximized.
While all this information can be read from line 31 of the Echo Print,
it is reprinted here for the benefit of those who examine only the
execution output.

Next, GAMS informs the user that the problem was solved, and that
there is an optimal solution, the objective value of which is
1260.3733. The solver needed only a negligible number of resource
units, of a possible 1000, and required two, of a possible 1000,
iterations. The solver would have stopped, and reported non-optimal
values if either the limit on resource units or the limit on iterations
had been reached before an optimum was obtained. These resource and
iteration limits can be altered entering the following option
statements before the SOLVE statement:

OPTION RESLIM = n; OPTION ITERLIM = m;

Following the message "EXIT -- OPTIMAL SOLUTION FOUND", the second
part of the Solution Report, the tables of results themselves, are
printed.

The LOWER and UPPER bounds on the equation values, and the optimal
LEVELs of these in solution are reported under EQU SUPPLY. All
available amounts of RES1, RES2, and RES4 are used, showing that those
constraints are binding at the optimum., The third constraint is not
binding, as is shown by the fact that less than all available RES3 is
used in the optimal solution. The column MARGINAL shows the amounts by
which the objective variable would change if the amount of each
resource was increased by one unit. (These, of course, correspond to
the dual variables.) The marginal value of RES3, which is not used to
capacity, is zero, a comforting result in view of the complementary
slackness theorems of linear programming. The slack variable
assoclated with RES3 is included in the final basis.

The listing for EQU REVENUE is not very informative. It says that
the left-hand-side of

-Z + SUM({J, X(J)*R(J)) =E= 0

has upper and lower bounds of zero, and consequently takes a level of
zero as well. The marginal value says that, if the right-hand-side was
increased by one unit, the variable "Z" would decrease by one unit
(corresponding to a one-unit increase in "-Z"),
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PAGE 6
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE FARMPRIM USING LP FROM LINE 31
SOLVE SUMMARY
MODEL FARMPRIM OBJECTIVE 2Z
TYPE LP DIRECTION MAXIMIZE
SOLVER BDMLP FROM LINE 31
**%% SOLVER STATUS 1 NORMAL COMPLETION
*%%%* MODEL STATUS 1 OPTIMAL
*%%% OBJECTIVE VALUE 1260.3733
RESOURCE USAGE, LIMIT 0.000 1000.000
ITERATION CCUNT, LIMIT 2 1000
WORK SPACE NEEDED (ESTIMATE) -- 3910 WORDS.
WORK SPACE AVAILABLE - 42144 WORDS.

EXIT -- OPTIMAL SOLUTION FOUND.

LOWER LEVEL UPPER MARGINAL
---- EQU REVENUE . X i -1.000
REVENUE OBJECTIVE FUNCTION
---- EQU SUPPLY RESOURCE CONSTRATINTS
LOWER LEVEL UPPER MARGINAL
RES1 -INF 12.000  12.000 34.227
RES? -INF 8.000 8.000  41.940
RES3 -INF  386.667 400.000 .
RES4 -INF 80.000 80.000 6.4627
LOWER LEVEL UPPER MARGINAL
---- VAR Z -INF 1260.373 +INF
Z NET REVENUE
---- VAR X ACTIVITY LEVELS
LOWER LEVEL UPPER  MARGINAL
STD-WHT . 1.333 +INF
QATS . 4.000 +INF
NEW-WHT . 6.667 +INF
*%%% REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE
0 UKBGOUNDED
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The values of the objective variable "Z", and the choice variables
"X(J)" follow. Here, "Z" is shown to be a free variable, with a lower
bound of minus infinity (-INF) and an upper bound of plus infinity
(+INF). The choice variables X(J) are constrained to be non-negative,
so have a lower bound of zero, but no upper bound, and the "Level
Column" gives their value in the current golution. The "MARGINAL"
column shows the Z;-Cj value or the penalty costs, of bringing the
corresponding activity into solution. Since a one-unit increase in "Z"
costs exactly one unit of "Z", this marginal value is equal to zero.
The marginal values for "X(J)" variables are potentially more
interesting because they indicate the "cost" of deviating from the
optimal solution. However, in this case they are all included in the
final basis and their associated Zj-Cj values, shown in the MARGINAL
columnt, are all zero.

The third part of the solution report is the three-line "REPORT
SUMMARY". 1In this file, there were no problems of infeagibility or
unboundedness. Had either of these problems occurred, the number of
non-optimal values of variables would have been reported. (This
information is often of little use, since these are fatal errors!)



26

SECTION 1T

Extended Modelling Capacity of GAMS for Limear Programming

]

In this section, a number of extensions to the modelling
capabilities of GAMS discussed in the tutorial are outlined. These
extensions are useful in solving larger problems, and in manipulating
and transforming data into the forms needed for the models. The
capacity for manipulating data is among the most powerful features of
GAMS. Although these extensions are discussed within the context of
linear programming applications, they are important for non-linear and
dynamic programming applications as well. Other special features are
described in subsequent sections.

LARGE TABLES

In realistic programming problems, data tables may contain
more columns than will fit on the width of one page or monitor screen.
In these cases, the table may be extended simply by writing the
extended portion under the first portion. For example, if the farm
problem involved twelve activities and five constraint rows, the A(I,I)
matrix could be entered as:

SETS
J ACTIVITIES  /ACTI*ACT12/
I INPUTS /RES1*RESS5/

TABLE A(I,J) USE OF INPUTS PER AGTIVITY
ACT1 ACT2 ACT3 ACT4 ACTS ACT6 ACT7 ACTS8

RES1 XX XX XX XX XX XX XX XX
RES?2 XX XX XX XX XX XX XX XX
RES3 XX XX XX XX XX XX XX XX
RES4 XX XX XX XX XX XX | XX XX
RESS XX XX XX XX KX XX XX XX
+ ACT9 ACTIO ACTI1 ACTI12
RES1 XX XX HX XX
RES?2 xX po.d XX XX
RES3 XX XX XX XX
RES4 XX XX XX XX
RESS AKX XX XX XX

The table is extended by typing a plus ("+") in any column except
the first one. The row labels must be retyped, but only for those rows
which contain non-zero entries in that particular portion of the table.
Since columns need not be entered in any particular order, one may save
considerable effort by ordering data so as_to group columns which
contain only zero entries in some row(s).

11 Lengthy parameter lists can be entered in the same way as
large, unordered sets. Since elements can be separated using commas or
end-of-lines, a parameter list may be continued on successive lines.
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MANTPULATION OF DATA USING ASSTGNMENT STATEMENTS

When formulating models in GAMS, it is possible to enter all
parameters sepsarately., However, this can entail much tedious
calculation by the user prior to rumning a GAMS job. This effort can
be considerably reduced by entering data in its most primitive form,
and using assignment statements to generate more refined data from the
original input. (This practice has the additional advantage of
informing any other users of the model of any data transformations
undertaken in the modelling process.)

As an example, consider a MOTAD version of the farm problem used
in the tutorial.l? 1In this version, it is assumed that the gross
returns from the activities are not known with certainty but that there
exists a time series of observations on gross margins for each
activity. The objective of the problem is to minimize the sum of
absolute deviations of annual revenue from the mean, subject to
attaining some specified level of expected revenue. In formulating the
problem, it is necessary to have calculated the mean revenue and the
deviations from mean revenue for each of the activities.

The GAMS job file for an example in which there are five years of
observations on gross margins is shown on subsequent pages. An

algebralc representation of the model is:

(6) max. Y| + ¥Yp + Y3 + Y, + Yy

s.t.
Xy + Xo + X3 = 12
X1 + )€1 = 8
30X1 + 20Xy + 40X5 < 400
5X1 + Xy + 8Xq < 80
-8.5%X1 + 1.94X» - 14.88%7 + Y3 <= 0
25.0X1 + 64.04Xy + 110.82X5 + Yoy = 0.
34 .4%1 - 33.06Xp - 33.6BXj + Yy = 0
46.0%7 + 8.04Xp - 44 .38X4 + Yy = 0
-96.9%7 - 40.96Xy - 17.88X3 + Y5 O
108.3%4 + 66.36Xp + 127.58X4 < A
X1,....,%320; ¥Y1,...,¥5 =20
12

See P. Hazell, "A Linear Altermative to Quadratic and
Semivariance Programming for Farm Planning Under Uncertainty™, American
Journal of Agricultural Economics, 53(1971):53-62, for a discussion of
MOTAD.

13 The example is used by L. Tauer, "Target MOTAD", American
Journal of Agricultural Economics, 65(1983):606-610, in this comparison
of MOTAD with his target MOTAD formulation.
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Rather than enter these data as is, we start with the raw data on gross
margins and have GAMS calculate means and deviations,

The statements used to calculate the mean revenue and deviations from
mean revenue for each activity are:

PARAMETER RBAR(J) AVERAGE REVENUE PER ACTIVITY;
RBAR(J) = SUM(T, R(T,J)) / (CARD(T)) ;

DISPLAY RBAR;

PARAMETER D(T,J) DEVIATIONS FROM MEAN REVENUES;
D(T,J) = R(T,J)-RBAR(J);

DISPLAY D;

Each parameter created is constructed in three lines, the third of
which is an optional display of the result. The declaration is the
same as for any parameter, but must end with a semicolon, as the
following line does mot begin with a keyword., (The term GARD{T) which
indicates the number of elements in the set, iz discussed in Section
II1.)

The assignment itself takes the form:1%

parameter name(domain) = expression ;
The final line is the DISPLAY statement, which requests the values of
the created parameter to be printed as part of the GAMS output. This
is not required, but it is highly recommended, as it enables the user
to confirm that the parameter is calculated correctly.

The output from the example above will now include: -

- 15 PARAMETER RBAR . AVERAGE REVENUE PER ACTIVITY
STD-WHT 108.300, OATS 66.360, NEW-WHT 127.580
-~ 18 PARAMETER D DEVIATIONS FROM MEAN REVENUES

STD-WHT OATS NEW-WHT
Y1l -8.500 1.940 -14.880
Y2 25.000 64.040 110.820
Y3 34.400 -33.060 -33.680
Y4 46.000 B.040 -44 380
Y5 -96.900 -40,960 -17.880

The entire input file for the MOTAD problem is given on the next
page. Other examples of parameter creation are found in the sample job
files in Appendix B.

14 Assignment statements are explained in greater detail in
Section III.
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*FARM PROBLEM, MOTAD FORMULATION
*

SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/

1 INPUTS
/RES1+RES4/
T TIME PERIODS
/1%5/
PARAMETER B(I) AVAILABILITY OF INPUTS
/RES1 12
RES2 8
RES3 400
RES4 80/ ; .

TABLE A(I,J) USE OF INPUTS PER ACTIVITY
STD-WHT OATS NEW-WHT

RES1 1 1 1
RES2 1 1
RES3 30 20 40
RES4 5 5 8 ;

TABLE R(T,J) REVENUES PER ACTIVITY PER TIME PERIOD
STD-WHT OATS NEW-WHT

1 959.8 68.3 112.7
2 133.3 130.4 238.4
3 142.7 33.3 93.9
4 154.3 4.4 83.2
5 11.4 25.4 109.7 ;

PARAMETER RBAR(J) AVERAGE REVENUE PER ACTIVITY;
RBAR(J) = SUM(T, R(T,J)) / (CARD(T)) ;
DISPLAY RBAR;
PARAMETER D(T,J) DEVIATIONS FROM MEAN REVENUES;
D(T,J) = R(T,J)-RBAR(J):
DISPLAY D;
SCALAR XPINC EXPECTED INCOME /945/:
VARTABLES  SAD SUM OF INCOME DEVIATIONS
X(J) ACTIVITY LEVELS
Y(T) TIME COEFFICIENTS
: POSITIVE VARTABLES X,Y:
EQUATIONS
OBJMOTAD  OBJECTIVE FUNCTION
SUPPLY(I) RESOURGE GONSTRAINTS
ANNUAL(T) YEARLY NONNEGATIVITY GONSTRAINTS
EXPREV EXPECTED REVENUE;
OBJMOTAD..  SUM(T, Y(T)) =E= SAD;
SUPPLY(I).. SUM(J, X(J)*A(I,J)) =L= B(I);
ANNUAL(T).. (SUM(J, X(J)*D(T,J))) + Y(T) =G= O;
EXPREV. . SUM(J, X(J)*RBAR(J)) =E— XPINC:
MODEL MOTAD /ALL/ :
SOLVE MOTAD USING LP MINIMIZING SAD;
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MULTIPLE MODELS

Some commercial linear programming software emphasizes options to
run multiple models and perform "basis change" parametric analysis on
the model's parameters. GAMS does not, and this is certainly one
limitation to this software. However, GAMS does allow the analyst to
solve several versions of a model in one job. This can be done by
creating subsets of the activities set, and/or the constraint set, and
defining equations over the subsets. For example, if we wished to
solve the farm problem first subject to all four constraints, and
second, subject to only the first three, the GAMS input could look
like:

SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/
I ALL INPUTS
/RES1*RES4/
13(I) FIRST THREE INPUTS:
I3(I) = YES$(ORD(I) LE 3);
PARAMETER R(J)  REVENUE OF ACTIVITIES

POSITIVE VARIABLE X;
EQUATIONS
REVENUE OBJECTIVE FUNCTION
SUPPLY(I) ALL RESOURCE CONSTRAINTS
SUPPLY3(13) THREE RESOURCE CONSTRAINTS;
REVENUE.. SUM(J, X(J)*R(J) =E= Z:
SUPPLY(I).. SUM(J, X(J)*A(IL,J)) =L= B(I):
SUPPLY3(I3).. SUM(J, X(J)*A(I3,J)) =L= B(I3):
MODEL FARMALL FARM PROBLEM GLOBAL /REVENUE, SUPPLY/ :
MODEL FARM3 FARM PROBLEM 3 CONSTRAINTS /REVENUE, SUPPLY3/ ;
SOLVE FARMALL USING LP MAXIMIZING Z;
SOLVE FARM3 USING LP MAXIMIZING Z;

The subset of "I" is created in two steps. First, it is declared
in the SETS section. Second, it is defined by an assignment statement.
The assignment statement says that an element of "I" is also an element
of "I3" if the ordinal position of the element of "I" is less than or
equal to 3. The symbol "ORD" and the "$" sign are discussed further in
Section III.

Note that two sets of equations need to be declared and defined;
one for each set of constraints. Equations defined on different sets
must have different names, which is why one set is called SUPPLY, and
the other SUPPLY3.

Subsets of activities can be defined and used in similar fashion.
A general discussion of subsets and supersets is contained in Section
I1T.
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RE-SOLVING MODEIS WITH DIFFERENT PARAMETER VALUES

Another type of multiple run is the case where the modeller wishes
to solve the model usging two or more sets of parameter values. This is
done through the use of a sequence of assignment and SOLVE statements.
As an example, consider solving the farm problem as it is originally
written in the tutorial, then changing the revenue coefficients in the
objective function and re-solving subject to the same set of
constraints, :

Following the original SOLVE statement, the revenue coefficients
can be changed by assigning new values to the parameter “R(J)":15

R{"STD-WHT")} = 85;
R{"0ATS") = 70;
R({"NEW-WHT") = 120;

The "MODEL" remains the same, containing a redefined "REVENUE"
equation and an unchanged set of constraint equations. Thus, only an
additional SOLVE statement is needed, which is a duplicate of the
first:

SOLVE FARMPRIM USING‘LP MAXIMIZING Z;

When the augmented job file is submitted, the resulting output
file will contain the compiler output {(Echo Print and Reference Lists)
for the entire job, as well as two sets of execution output.

When models, or variations of a model, are solved sequentially,
the values resulting from the solution of one model are carried forward
as a starting basis for the next model. This feature of GAMS allows
the second (and subsequent) varilations of a model to be solved in less
time and using fewer iterations than the first.

Sequences of models may also be constructed and submitted using
separate GAMS job files. This is useful in cases where the solution to
one model raises questions which can be answered through solving one or
more variations on the original model. This procedure is illustrated
using a second variation of the farm problem.

The original file, FARMLP.GMS, contained only one SOLVE statement.
Rather than using the default submission, "GAMS FARMLP", the researcher
should submit it using the option "SAVE". The submission command

(assuming that the original input file is stored on drive "a") would
be:

GAMS a:FARMLP SAVE=FARMWORK, or
GAMS a:FARMLF S=FARMWORK

The original file will be executed as before, and the output written to
FARMLP.LST. 1In addition, however, eight intermediate files, to be

15 Note that single element labels are enclosed within queotation
marks. This distinguishes them from set identifiers, which are entered
without quotes.
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named FARMWORK.GOl through FARMWORK.GO8, will be stored on the drive
from which FARMLP.GMS was originally read. These eight files are
referred to as the restart files. Restart files are named using the
fileprefix specified in the "SAVE =" optional statement.

The user now wishes to solve a variation of the model
incorporating new objective function coefficients. Rather than
appending the changes to the original file and re-solving the first
model as well as the second, a new file, containing only the new
assignments and the second SOLVE statement can be constructed and
submitted. For reference, call this file FARMLPl.GMS.

The second file is submitted using the command:

GAMS a:FARMLP1 RESTART=FARMWORK, or
GAMS a:FARMLP1 R=FARMWORK

This command will result in the new input file being compiled by GAMS,
and the new compilation added to that of FARMLP.GMS, which already
exists in the eight temporary restart files. The new SOLVE statement
will then be executed, and a new output file, called FARMLP1.LST, will
be written to the specified drive. This new file will contain an Echo
Print and Symbols List of only the additional lines of input contained
in FARMLP1.GMS, as well as the complete execution output of the second
model.

In order to prevent the output file of the original job being
overwritten, it is important to give any continuation file a different
fileprefix than was used for the original file. For example, if the
original file was named FARMLP.GMS, and the continuation file is named
FARMLP.NEW (which DOS will recognize as separate files), the execution
of FARMLP .NEW will result in the creation of a new FARMLP.LST file,
which will overwrite the first FARMLP.LST file.l®

STARTING WITH A USER-ENTERED BASIS

The above procedure for using the results of an early version of a
model to solve a later version requires the original model to be solved
in GAMS, and that the restart files be saved. In cases where a large
model has been solved outside GAMS, or when restart files are not
available, the solution to the first model can be incorporated into a

16 Thig problem may also be avoided by specifying the mame of the
file to which output is to be written. This is done with the optional
statement "0 = <filename>". A complete path may be specified using
this statement, allowing the user to write the output file to a
different drive than that from which the input file is read. For
example, to execute the tutorial file, FARMLP.CMS, which is stored in a
subdirectory called "AGEC712" in drive "c¢", and write the output to a
file called FARMLP.OUT in the root directory on drive "a", the command
sequence is:

GAMS C:\AGEC712\FARMLP 0=A:FARMLP.OUT
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new GAMS input file as a starting basis for a different version of the
model. This is done by assigning starting values of the variables (and
equations) in the model.

For example, if a user wished to solve a variation on the farm
problem frem the tutorial, having previocusly scolved the original
problem, the optimal values from the first model can be entered with
the following assignment statements:

X.L{"STD-WHT") = 1.333:
X.L("OATS") =  4.000;
X.L("NEW-WHT") = 6.667;

X.M({J) = 0;

SUPPLY .M("RES1") = 34.227;
SUPPLY.M("RES2") = 41.940;
SUPPLY.M{"RES3") -~ O;
SUPPLY.M("RES4") = 6.427;
SUPPLY.L({"RES1*) = 12;
SUPPLY.L("RES2") = 8&;
SUPPLY.L("RES3") = 386.667;
SUPPLY.L{"RES4") = 80;

The identifier extension ".L" indicates that the level of the
variable is assigned. The identifier extension ".M" refers to the
marginal value (in LP problems, these are the Z;-C; values for the
columns of a tableau, and dual variables for the rows). Note that in
this case, we have assigned starting values to equations. This is to
illustrate the fact that this can be done, but for purposes of
restarting a modified problem with a previous optimal basis, only the
starting values for the variables need to be supplied.17’

17 The farm problem is small and easy to solve, so it is a poor
example of the benefits to be had from entering a starting basis., 1In
large problems, it may take several hundred iterations to reach the
frontier of the constraint set from a cold start. The amount of
computation can be significantly reduced by entering a starting basis.

18 1n linear programming problems, the assignment of starting
values potentially reduces the amount of computation, but is not
strictly necessary. In constrast, starting values are essential when
solving non-linear programming problems. A more complete discussion of
this is found in Section IV,
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SECTION IIT

Special Features

There are a number of special features and operators in GAMS which
facilitate modelling of large and complex systems. Some of these were
used in the examples in Section II. More complete discussions of the
most Important GAMS features are contained in this section.

THE "S™ OPERATOR

The "$" symbol has two purposes in GAMS. When it is placed in the
first column of a line, it forms part of an output-control statement.
For example, the statement

SOFFSYMLIST OFFSYMXREF

results in the suppression of the symbols list and reference map in the
output file. The other, more important function, is that of an "if-
then-else” or "such-that" operator, in expressions of the form

{expression)$(condition)

This sentence represents something which is equal to the
(expression) if and only if the condition is met. (An example of how
this is used was seen in the expression for creating a subset of
constraints for an LP problem in Section II.) In general, the
condition is some relation, such as "A greater than B" (written in GAMS
as "A GT B").19 However, a short form exists for the condition
"$(<identifier> NE 0)" (read as "not equal to zero"), which is simply
"$<identifier>". Thus, the condition "$(B(J) NE 0)" can be written
more compactly as "§B(J)". For example, if a parameter is-to be
created which is the ratio of two previously-defined parameters, it
will be undefined for zero values of the denominator. The new
parameter can be safely defined as:

PARAMETER RATIO(J):
RATIO(J) = A(J)/B(J)SB(J):

The parameter "RATIO" will now be defined only for those cases in which
"B(J)" exists and is not equal to zero.

Conditions are well-defined if an only if they are written in
terms of identifiers the values of which have been previously assigned.
Thus, endogenous variables may not be used in condition statements for
data input. However, the optimal values of variables from one model,
which have fixed values through the execution of a SOLVE statement, can

19 Relational operators are discussed in a note to the subsection
below dealing with assignments and are listed in Appendix "A",
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be used as parameter values for later models. These optimal values are
referenced using the identifier extension ".L", to distinguish them
from undetermined variables, which carry no identifier extension.

In certain non-linear models, some of the structural equations may
be undefined if a variable takes on certain "illegal" values. Examples
are (a) division by a wvariable, (b) the square root of a wvariable, and
{c} the logarithm of a variable., Since conditions may not be written
in terms of unassigned variables, the "$" operator may not be used to
rule out the illegal wvalues. In such cases, the only sclution is to
impose bounds on the wvariables in question. This is an issue peculiar
to non-linear models and discussion of it is deferred until Section IV.

As the "§" symbol is used in numerous instances, examples are
presented throughout this section, rather than being grouped here.

IDENTTCAL SETS: THE ALTAS STATEMENT

In some models, notably those incorporating quadratic forms, a set
may be used more than once as an index in an equation. 1In these cases,
it is necessary to have more than one name (identifier) for the set. A
set can be given several different identifiers by means of the ALIAS
statement,

The ALIAS statement is commonly placed in the SETS portion of the
GAMS job file, after the set(s) to be renamed have been declared and
defined. It takes the form:

ALIAS ((oldname), (newnamel), (newname?), ..., (newnameN));

After this statement is entered, the set in question may be referenced
using any of its identifiers.

An example is found in the mean-variance (or E.V.) formulation of
the farm problem (Appendix B, B.4). The objective function in this
model is quadratie in "X(J)". Thus, it is necessary to have an
identifier for the set "J", and another for the set "J-prime", even
though these are the same set. This is achieved by writing

ALIAS (J,J?P);

after the sets for the model have been declared.

The word ALIAS is, itself, a keyword in GAMS, and can be written

2OUnfortunately, the identifier extension ".L" 1is used to refer
both to starting values and optimal wvalues of variables. The potential
for confusion is eliminated, however, when it is recognized that, in
both cdses, it is the level of the variable which is denoted by
"<identifier>.L". While the level can be assigned any value the
modeller wishes before a SOLVE statement is executed, it becomes a
definite (and, hopefully, unique) number after the model has been
solved.
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anywhere in the file. 1If more sets are to be entered following the
ALIAS statement, it is necessary to to rewrite the keyword SET(S) prior
to entering them.

"ORD™ AND "CARD"

The symbol "ORD" is used to refer to the ordinal position of an
element in a set list. The symbol "CARD" refers to the number of
elements in the set.

"ORD" can be used in the creation of subsets, described below, and
in assignments and equation specifications. One important example is
that of dynamic programs in which discounted revenues are to be summed.
In these cases, each period’s revenue is multiplied by a discount
factor raised to the power "t" (for "time"). The discount factor for
each period may be constructed as:

SET
T TIME PERIODS /1%10/

SCALAR DELTA DISCOUNT RATE /0.1/
SCALAR DISC DISCOUNT;

DISC = 1/(1+DELTA);

DISPLAY DISC;

PARAMETER RHO(T) DISGOUNT FAGTOR:
RHO(T) = DISG**(ORD(T)};

DISPLAY RHO;

The objective function may then be formulated as:
Z =E= SUM(T, RHO(T)*(expression);21

Applications of the symbol "CARD" are found in computations of the
mean and variance of a sample or population of data. For example, if
we are interested in the mean and variance of a sample of five annual
revenues of a product, the GAMS representation could appear as:

SETS
T TIME PERIODS /1%5/
PARAMETER R(T) REVENUE
/1 10, 2 15, 3 40, & 21, 5 34/
PARAMETER RBAR AVERAGE REVENUE:
RBAR =~ SUM(T, R(T))/CARD(T);
DISPLAY RBAR;

21 This specification would be used when the objective function
involves summation over the periods (1,2,...,T). In the mine manager
problem (Appendix B, B.7), the summation is from 0 to T. 1In this case,
"RHO" is computed as

RHO(T) = DISC**(ORD(T)-1);

since the first position of the set "T" (where "ORD(T)" = 1) is held by
time pericd *O",
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PARAMETER D(T) DEVIATIONS FROM AVERAGE REVENUE;
B{T) = R(T)-RBAR;

DISPLAY D:

PARAMETER V SAMPLE VARIANCE;
V = SUM(T, SQR(D(T))/CARD(T)-1;

DISPLAY V;

{Note that CARD(T) is a scalar gquantity which can be used in arithmetic
expressions like any other number.)

Similar GAMS statements are ‘used to compute the sample covariance
matrix in the mean-variance formulation of the farm problem. (See
Appendix B for the entire job file.)

Sets created using the ALIAS statement can appear in the domain of
"ORD", but not in the domain of "CARD". This is an annoying detail,
but not a serious problem, since aliased sets must have the same number
of elements. An example is provided in the example file B.8 in
Appendix B.

First, the aliased sets "J" and "K" are created from the original
set "I". Later, in the creation of the parameter "AP", a condition is
imposed:

AP(I,J)S$(ORD(I)LT CARD(I) AND ORD(J)LT CARD(I))

Since "I" is the original set, it may appear in the domain of either
"ORD" or "CARD". The set "J", however, cannot appear in the domain of
"CARD", although it may appear in the domain of "ORD". Thus, the
condition "ORD(J) LT CARD(J)" must be written as "ORD{(J) LT CARD{(I)".

ASSIGNMENTS2?

Assignment statements are used to generate and/or modify sets and
parameters. The structure of an assignment is:

| Left-hand-side | | Right-hand-side |
I = I

| Identifier(domain)${condition) | | expression |

When an assignment is used to modify existing wvalues, the
procedure takes place in two steps. First, all values in the domain of
the identifier on the left-hand-side are set to zero. Second, the
right-hand-side expression, evaluated over the same domain is
inserted.23 Note that this expression may also contain a condition.

22 This discussion is adapted from Meeraus, GAMS: Preliminary
User's Guide (footnote 3).

23 The relations used in "conditions" are legs-than (LT), less-
than-or-equal-to (LE), greater-than (GT), greater-than-or-equal-to
(GE), equal-to (EQ), and not-equal-to (NE). For a complete list of
relations, see Appendix A.
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To illustrate, consider a parameter "R", which is defined over the
sets "I" and "J", each of which contains three elements. We wish to
construct a matrix "R(I,J)", in which the diagonal elements are equal
to 2, and the off-diagonal elements are equal to 1. The statements
used would be: '

R(I,J) = 1; , which yields:

JL Jz2 33
I1 1 1 1
12 1 1 1
I3 1 1 1 , followed by:

R(I,J)$(CRD(I) EQ ORD(J)) = 2; , resulting in the matrix:

J1 -.J2 33
I1 2 1 1
12 1 2 1
I3 1 1 2

Here, only those values meeting the condition on the left-hand-
side of the assignment are set to zero and subsequently replaced.

If, instead, the following assignment had been entered,
R(I,J) = 2$(ORD(I) EQ ORD(J)); ,
a different matrix would have been generated:

Ji1 J J
I1 2
12 0
I3 0

SO OoON
MO O W

In this case, values of “R(I,J)" would have been set to zero; only
those meeting the condition on the right-hand-side would have been
replaced.

An example of a complex assigmment is found in the Mean-Gini
formulation of the farm problem (see Appendix B.3).24 There, we wish
to compute, for each activity, the difference between the activity's
revenue in one period and its revenue in every other period,. However,
once we have computed the difference between the revenue of an activity
in period 1 and the corresponding revenue in period 3, we do neot wish
to recompute the difference between revenue in period 3 and revenue in
period 1. In mathematical notation, we want to compute:

2% The mean-Gini decision criteria was suggested by §.
Yitzhaki,"Stochastic Dominance, Mean-Variance and Gini's Mean
Difference"”, American Economic Review, 72(1982):178-185. The mean-Gini
programming formulation is found in J. Okunev and J. Dillon, "A Linear
Programming Algorithm for Determining Mean-Gini Efficient Farm Plans”,

Agricultural Economics, 2(1989).
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(Rij - Rgj), for all j, j eJ, i,k e T, k>i.

The assignment statement for this can be written as:25

RIJK(T,TP,J) = (R(T,J)-R{TP,J))$(ORD(T) LT ORD(TP));

Note that the first expression on the right-hand-side is enclosed
in parentheses. These are extremely important. If they are omitted,
and the assignment statement is written

RIJK(T,TP,J) = R(T,J)-R(TP,J)$(ORD(T) LT ORD(TP)); ,
a different assignment is created,

In the correct version, there will be wvalues generated for "RIJK"
only when k > i, creating a total of ten values for each activity in
this particular example. The entries will be:

R{(1,J)-R{(2,1)
R{1,J)-R(3,T)
R(1,J}-R(4,J)
R{1,J)-R(5,J)

R(2,J)-R(3,J)
R(2,J)-R{4,J)
R(2,3)-R(5,3)

R(3,J)-R(4,J)

R(3,J)-R(4,7) R(4,J)-R(5,J)

With the incorrect assignment, omitting the parentheses around the
expression "R(T,J)-R(TP,J)", a square matrix of order five will be
generated for each activity. These matrices will contain the following

then-else"
effectively saying:

entries:
R(1,J) - O R(2,J) - © R(5,3) - @
R(1,7)-R(2,I) R(2,J) - 0 .
R(1,I)-R(3,7) R{2,J)-R{(3,J)
R(1,J)-R{4,J) R(2,J)-R(4,J) .
R(1,7)-R(5,T) R{(2,J)-R(5,F) R(5,J) - 0

The incorrect assignment results in "RIJK" being set equal to

R(T,J) when the condition is not met, and equal to
R(T,J)-R{TP,J) when the condition is met.

This is an illustration of the role of the "$" symbol as an "if-

RIJK = R(T,J) -

statement.

25 Equivalently,
RIJK(T,TP,J)$(ORD(T) LT ORD(TP)) = R(T,J}-R(TP,J);

The incorrect assignment statement is

R{(TP,J) if the condition is met
0 otherwise,.

The two are equivalent, as there are no pre-existing values for "RIJK",.



40

SET OPERATIONS

GAMS allows the user to perform several operations on sets. These
include the creation of supersets and subsets, and the operations of
union, intersection, and difference. Only the creation of subsets is
described here, since these are the most commonly-used modified sets.

Subsets are created using the symbols "YES"™ and "$". A subset is
a collection of elements of a larger set which meet some specified
condition. An example from the Conrad-Clark mine-manager problem
(Appendix B, B.7) is the subset of time during which extraction takes
place. This is defined to be all periods except the terminal period
as;

SETS
T TIME PERIODS  /1*10/

TE(T) EXTRACTION PERIODS;
TE(T) = YES$(ORD(T) LT CARD(T));

The last line specifies that an element of "T" is also an element
of "TE" if the condition "ORD(T) LT CARD(T)" is met."

Sets whose elements are entered in set lists are called "constant™
sets. In contrast, sets which are created through modifying existing
sets (creating a subset is an example of this modification) are called
"non-constant” sets. All operations are permitted on constant sets.

In contrast, some operations dealing with domains are not defined on
non-censtant sets., Specifically, the symbols "CRD" and "CARD"
operations with leads and lags, and domain checking are all meaningless
when dealing with non-constant sets.

MATRIX OPERATIONS

The GAMS language does not include built-in matrix operators.
However, most of the operations on matrices which are used in
mathematlcal programming applications can be undertaken u51ng scalar
operations on individual matrix elements.

Addition and subtraction of matrices can be performed using simple
assignments. To illustrate, assume a user wishes to construct a matrix
"C" which is equal to the sum of the matrices (strictly speaking,
parameter tables) "A" and "B". This is done by initializing a two-
dimensional parameter "C" and assigning to it values which equal,
element by element, the elements of "A" plus the elements of "B":

PARAMETER C(I,J) SUM OF A AND B;
C(I,J) = A(I,J) + B(I,J);

(Subtraction is accomplished by replacing the plus sign with a minus
sign.)

The left-hand-side of the assigpment states that the parameter "C"
has "CARD(I)" rows and "CARD(J)}" columnsg, as do the parameters "A" and
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"B". Each element of "C" is then defined to be equal to the sum of
corresponding elements of "A™ and "B".

Matrix multiplication is carried out in similar fashion, by
assigning values to a newly-created parameter table using the indexed
operator "SUM". 8ince this is an indexed scalar operator, the usual
rules concerning conformability of matrices for multiplication are
modified somewhat.

In general, the matrix product "AB" is defined if and only if the
nunber of columns of matrix "A"™ is equal to the number of rows of
matrix "B", If "A" is (I x J) and "B" is (J x K), the product "AB" is
defined, but the product "BA" is not.

In GAMS, two matrices can be multiplied provided that they share a
common domain. This common domain can be thought of as the number of
columns of the pre-multiplying matrix and the number of rows of the
post-multiplying matrix. The statements creating the matrix product
"AB(I,K)" as the product of the two matrices "A(I,J)" and B(J,K) are:

PARAMETER AB(I,K) PRODUCT OF A AND B;
AB(I,K) = SUM(J, A(I,J)*B(J,K)):

The assignment statement assigns a value for each element of "AB",
to which we can give the generic name ABjy. The right-hand-side of the
assignment specifies that ABjy is equal to the sum over the index "J"
of the products of the elements of row "i" from matrix "A" and the
elements of column "k" from the matrix "B".

The dimensions of the matrix "AB" are specified on the left-hand-
side of the assignment, and are invariant to the order in which the
elements of the multiplication are listed. Thus, it is possible to
generate the matrix "ABR" with this equivalent assignment statement:

AB(I,K) = SUM(J, B(J,K)*®A(I,J));

since the right-hand-side contains an indexed sum of terms generated
through scalar multiplication.

Note that the index of summation must be a domain common to both
matrices.

The transpose of a matrix may be obtained using a single
assignment as well. To obtain the transpose of "A(I,J)", a new
parameter is initialized and set equal to the transpose of "A(I,J)", as
follows:

PARAMETER AT(J,I) TRANSPOSE OF A;
AT(J,I) = A(1,);

Each element of "A" will now be assigned to its corresponding position
in "AT".

In mathematical programming, the matrices are transposed in order
to ensure conformability for multiplication. In GAMS, this step is not
necessary. Two matrices of equal column (or row) dimension may be
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multiplied directly, as if one of them had been transposed first. For
example, in the mean-variance (E.V.) version of the farm problem
(Appendix B, B.4), a covariance matrix is created which is equal to the
parameter "D(T,J)" premultiplied by its transpose, and divided by "n-
1". where "n" is the sample size. The parameter "D" in the example has
three columns and five rows, so its transpose would have five columns
and three rows. The matrix "D'D"™ will, therefore, be a square matrix
of order three. The covariance matrix is initialized as a parameter
"V(J,JP)", where "JP" is an alias of "J", and defined with the
following statement:

PARAMETER V(J,JP) GCOVARIANCE MATRIX OF REVENUES;
V(J,JP) = SUM(T, D(T,J)*D(T,JP))/CARD(T)-1;

CONDITIONAT. EQUATION SPECIFICATION

Structural equations may be specified subject to conditions, using
the same type of expression found in conditional agssignments. This can
be illustrated using the input-output file (Appendix B, B.8), parts of
which are reproduced here,

. In this file, we wish to compute two (I-A)'1 matrices, one of
which applies to a model with the household sector endogenous, and the
other to a model with exogenous households. Since the second model
uses the same transactions matrix as the first, minus one row and
column, we may use the same data, and simply specify a restricted set
of equations.

SETS
I SECTORS /AGR,MFG,TRNS,SVC, HH/

ALIAS (I,J,K):
TABLE T(I,J) TRANSACTIONS TABLE HH ENDOGENOUS

PARAMETER G(J) GROSS OUTPUT HOUSEHOLDS ENDOGENOUS

We begin by creating the "A" matrix for the endogenous model,
called "A(I,J)". Next, we create an identity matrix of the same order
Following this, we create the smaller "A" and "I" matrices for the
exogenous model, using conditional assignment statements.

¥

PARAMETER A(I,J) DIRECT REQUIREMENTS HH ENDOGENOQUS ;

A(I,J) = T(1,3)/6(J);

PARAMETER ID(I,K) IDENTITY MATRIX ORDER CARD(I);
ID(I,K) = 1$(ORD(I) EQ ORD(K));

PARAMETER AP(I,J) DIRECT REQUIREMENTS HH EXOGENOUS ;

AP(I,J)$(ORD(I)LT CARD(I) AND ORD(J)LT CARD(I))

= A(IvJ);

PARAMETER IDP(I,K) IDENTITY MATRIX ORDER CARD(I)-1;

IDP(I,K)$(ORD(I)LT CARD(I)) =
1$(ORD(I) EQ ORD(K)):
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The same logic is used in formulating the conditional statements
defining the equation for the model with households exogenous.

EQUATIONS. ..

MATEND(I,K) MATRIX CONSTRAINT HH ENDOGENOUS
MATEX(I,K) MATRIX CONSTRAINT HH EXOGENOUS;

MATEND(I,K).. SUM(J, (ID(I,J)=A(I,J))*XEND(J,K)) =E= ID(I,K);
MATEX(I,K)S(ORD(I)LT CARD(I) AND ORD(K)LT CARD(I))..
SUM(J, (IDP(I,J)-AP(I,J))*XEX(J,K})) =E~ IDP(I,K);

INDEXED OPERATORS

GAMS has four indexed operators which can be used to write lengthy
expressions in compact notation. These are "SUM", "PROD", "SMIN" and
"SMAX". The general structure of statements using these is:

operator((indexl, ...,indexN)$(condition), expression};

The indexed operator "SUM" was used in the linear programming
formulation of the farm problem discussed in the tutorial in Section I.
The symbol "SUM" is equivalent to the capital letter "Sigma" in
conventional notation. "PROD" is the GAMS representation of the
capital letter "Pi", used to denote the product of several terms. The
operators "SMIN" and "SMAX" denote the minimum and maximum of an
indexed collection of terms, respectively.26

Indexed operators may be defined over one or more one-dimensional
sets, When only one set is used as the index, its identifier mneed not
be enclosed within separate parentheses. For example, the constraint
equations in the linear programming formulation of the farm problem are
written:

SUPPLY(I).. SUM(J, X(J)*A(I,J)) =L-= B(I);

When more than one set is used as an index, however, the
collection of indices is enclosed within nested parentheses. An
example comes from the transportation model (Appendix B, B.5), in which
the objective function is written as:

COST.. SUM((I,J), C(I,J)*XT(I,J)) =E= TRCOST:

Here, total cost is defined as the sum of the costs of all shipments
from region "I" to region "J", hence the double summation index.

26 po not confuse the indexed operators "SMIN" and "SMAX" with
the non-indexed operators "MIN" and "MAX". MIN(argl,arg?,...,argN)
returns the minimum of the group of arguments contained in parentheses.
In contrast, "SMIN" returns the minimum of the several terms indexed by
the controlling set identifier.
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An operator’s index may be unrestricted, as in the two examples
above, or subject to conditions. Conditions are imposed, using the "§"
operator, on the index itself. For example, in the objective function
of the Mean-Gini formulation of the farm problem (Appendix B, B.3), we
wish to sum the variables "YPLUS(T,TP)" and "YMINUS(T,TP)", but only
those values for which "ORD(T)" is strictly less than "ORD(TP)" are to
be included. This condition is appended to the indices of both sums.
The objective function is written as:

OBJMGINI.. SUM((T,TP)$(ORD(T) LT ORD(TP)), YPLUS(T,TP))
+ SUM((T,TP)$(ORD(T) LT ORD(TP)), YMINUS(T,TP)) =E= MC:

The summation is defined over those element-pairs from the sets "T" and
"TP" such that the condition holds,
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SECTION IV

Non-lLinear Programming

Although the solution of non-linear programming problems in GAMS
involves many of the features used in linear programming, there are a
number of aspects worthy of separate mention. These are discussed in
this section.

As was the case with linear programming, the discussion of non-
linear programming begins with an extended example. Following the
discussion of static non-linear problems, some of the special features
of dynamic programming problems, such as leads and lags, are discussed.

The problem to be solved is one which should be familiar to most
students of microeconomic theory. Following Koopmans4/, it is cast in
the form of a single agent general equilibrium problem, in which
Robinson Crusoe (RC) must allocate his capital and labour among the
production of fish and coconuts in order to attain maximum utility.
Mathematically, this becomes a problem of maximizing a non-linear
utility function subject to a non-linear opportunity set. Thus, both
non-linearity of the objective function, and non-linearity of the
constraint set are included.

Specifically, RC's consumption of fish and coconuts is given by
Fe and C.,_respectively, and welfare, w, is measured according to w =
FC'ZS CC'75. Capital and labour are in fixed supply at 100 units
each. Fish, (Fp) and coconuts, (Cp) are produced according to:

KF.3333 LF.6667

Fp =
Kc.6667 Lc.3333

CP -

RC's problem is to maximize his welfare subject to the resource
constraints and the constraints that production of fish and coconuts
must be greater than or equal to consumption. Mathematically this
becomes:

max. w = FC'ZSCC'75

s.t.
Fp = Kp-3333 16667
Cp = Kc‘6667 Lc.3333
K + KC < 100

Ly + Lo < 100

v ¥
(Es
te]

27 r, Koopmans, Three Essays in the State of Economic Sciemnce,

McGraw-Hill, New York, 1957.

28 For simplicity, the utility and production functions are all
Cobb-Douglas. This guarantees the existence of a unique interior solution.
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The GAMS job file for this problem is shown below. It is
constructed in a fashion similar to that of a job file for a linear
programming problem, but differs in a few significant aspects.

First, in the SOLVE statement, the solution process used is "NLP"
rather than "LP". This is a trivial-looking difference in the input
file itself. However, "NLP" is a very different solver than "LP". It
involves the use of two FORTRAN subroutines, called FUNOBJ and FUNCON,
for handling non-linear objective and constraint functions,
respectively. 1In the case of a non-linear objective function, the
variables are partitioned into basie, non-basic, and "superbasic”.
Whenever non-linear censtraints

SETS
G GOODS /FISH,GOCONUTS/
I INPUTS /CAPITAL,LABOUR/
TABLE ELAS(I,G) OUTPUT ELASTICITIES
FISH COCONUTS
CAPITAL 0.3333 0.6667
LABOUR  0.6667 0.3333
PARAMETER END(I) FACTOR ENDOWMENTS
JCAPITAL 100
LABOUR 100/
PARAMETER SHARE(G) EXPENDITURE SHARES
/FISH 0.25
COCONUTS 0.75/
VARIABLES C(G) FINAL CONSUMPTIONS
F(I,G) FACTOR USE
BIGW WELFARE
POSITIVE VARIABLES C,F;
EQUATIONS
UTILITY UTILITY FUNCTION
QUTPUT(G) PRODUCTION FUNCTIONS
FEASIBLE(I) INPUT FEASIBILITY;
UTILITY.. BIGW =E= PROD(G, G(G)**SHARE(G));
QUTPUT(G).. PROD(I, F(I,G)**ELAS(I,G)) =G= C(G);
FEASIBLE(I).. SUM(G, F(I,G)) =L= END(I);
MODEL AUTARCHY /ALL/;
F.L(I,G) = END(1)/2;
F.LO(I,G) = 1;
C.L{(G) = PROD(I, F.L(I,G)**ELAS(I,G));
SOLVE AUTARCHY USING NLP MAXIMIZING BIGW;

are included, the solver, MINGS 5.2, solves a set of linearly-
constrained problems, recomputing linear approximations to the
non-linear constraints at regular intervals,2? Second, since MINOS
solves the problem in this way, it is vital that starting values of

29 Each approximation to the constraint set constitutes a "major
iteration". Within each major iteration, a number of "minor
iterations™ are undertaken, in attempts to improve. the value of the
objective function.
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variables be entered to provide Boints around which initial linear
approximations can be computed.3 Third, the equation listing in GAMS
output displays the coefficients of these linear approximations, rather
than the actual non-linear equations. Fourth, since non-linear
equations may be undefined (or absurd) at certain values of the
endogenous variables, it is frequently necessary to restrict the
domains of variables through the imposition of upper and/or lower
bounds.

STARTING VALUES

Both FUNOBJ and FUNCON can be thought of as routines which
construct linear functions which approximate the true non-linear
functions at some given point, using a procedure analagous to a first
order Taylor series expansion. The approximations are constructed
using the first partial derivatives of the functions at the given
point. Therefore, it is imperative that the user tell GAMS the point
at which to begin.

If no starting values of variables are specified, GAMS will set
all variables equal to zero. Unfortunately, this frequently implies
that some or all of the partial derivatives are also equal to zero. In
that case, some or all of the constraints will be approximated either
with non-existent functions (if both sides of a constraint equation are
approximated with zeroes) or functlons the solution set of which is
empty (if one side of the constraint equation is equal to zero and the
other side is constrained to be non-zero).

In the Robinson Crusce problem, the starting values for factor
allocation are entered with the line immediately following the
declaration of the model to be solved:

F.L(I,G) = END(I)/2;

This tells MINOS to begin the search for an optimum from the initial
allocation in which half the total endowment of each factor is
allocated to the production of each good. It also tells MINOS to
construct the first set of linear approximations of the non-linear
functions using these wvalues.

30 The alporithms are described in B.A. Murtagh, and M. A.
Saunders, "Large-Scale Linearly Constrained Optimization", Mathematical
Programming 14(1978):41-72 and in B. A. Murtagh, and M. A. Saunders, "A
Projected Lagrangian Algorithm and its Implementation for Sparse
Nonlinear Comstraints", Mathematical Propgramming Study 16(1982):84-
117.




48

Once an initial factor allocation is established, the starting
values of output quantities can be computed directly, using the
production functions:

C.L(G) = PROD(I, F.L(I,G)**ELAS(I,G));

This statement is simply the GAMS representation of a set of Cobb-
Douglas production functions. TFor each good, the starting level (.L)
is equal to the product of the previously declared factor input levels
(F.L) raised to their respective exponents,

There is a third assignment statement (F.LO(1,G,)=1) before the
SOLVE statement, which places a lower bound on the factor allocations.
Discussion of the purpose of this is deferred until after the equation
listing is presented and interpreted.

Starting values, as defined above, should not be confused with
"initial conditions" in dynamic programming problems. An initial
condition is a value of a stock variable in the initial time period,
and, as such, is a datum of the problem. The difference is illustrated
in the mine manager's problem (Appendix B, B.7). There, an initial
condition is imposed on "X" with the statement

X.FX("T1")=RSRV;

This value of "X" cannot be changed, although "X" values in subsequent
periods can be.

In contrast, starting values for "Y(TE)" are entered as
Y.L(TE)=RSRV/(CARD(T)-1);

These values are only first approximations, and can be altered in the
course of solving the problem.

EQUATION LISTING

As with linear programming problems, part of the GAMS output for a
non-linear program consists of a detailed listing of the equations
entered using compact notation. In this case, however, the numbers in
parentheses are the partial derivatives of the equation with respect to
each argument evaluated at the starting values. In addition, the value
of each equation, evaluated at the starting values is displayed.

To illustrate, consider first the utility function listing from
the "EQUATION LISTING" for the Robinson Crusoe problem, shown on the
next page.

The utility function, written in standard notation is

U(F,G) = Facb
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EQUATION LISTING SOLVE AUTARCHY USING NLP FROM LINE 30
---- UTILITY =E= UTILITY FUNCTION

UTILITY.. - (0.25)*%C(FISH) - (0.75)*C(COCONUTS) + BIGW =E= 0 ;

(LHS = -50 %%)
---- OUTPUT =G= PRODUCTION FUNCTIONS
OUTPUT(FISH).. - G(FISH) + (0.3333)%F(CAPITAL,FISH) +

(0.6667)*F(LABOUR,, FISH)

=G= 0 ; (LHS = 0)

OUTPUT(COCONUTS).. - C(COCONUTS) + (0.6667)*F(CAPITAL,COCONUTS)

+ (0.3333)*F(LABOUR, COCONUTS) =G= 0 : (LHS = 0)
---- FEASIBLE  =L= INPUT FEASIBILITY

FEASIBLE(CAPITAL).. F(CAPITAL,FISH) + F(CAPITAL,COCONUTS)

=~ 100 ; (LHS = 100)

FEASIBLE(LABOUR).. F(LABOUR,FISH) + F(LABOUR, COCONUTS)
=I- 100 ; (LHS = 100)
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A first-order Taylor expansion of this function, at the point
(F*,C*), can be written as

(W = U(F,C)) = U(F*,C¥) + (F-F")Up + (C-C*)Fg
where the partials are evaluated at (F*,C*).

The starting values for F* and ¢* are both equal to 50,31
When these are inserted into the above expression, we have

(W = U(F,C)) = (501/%)(503/4) + (1/4) (F-F*) + (3/4)(c-C*)
Pulling all terms over to the left-hand-side, we obtain
(501/4y (503/%y - (1/8) (F-F*) - (3/4)(c-C*) + W = 0

This equation, less the first term, is found in the "EQUATION
LISTING" as

UTILITY.. - (0.25)*C(FISH) - (0.75)*C(COCONUTS) + BIGW =E= 0 ;

The entry following this, "(LHS = -50 %%%)n" represents the value
of the left-hand-side of the original function, when it is written in
implicit form, with all variables taking on their specified starting
values. This can be seen if we write out the utility function as

W - UF,C) =0

Starting values for "F" and "C" have been specified, but no starting
value for "W" has been given. Therefore, GAMS sets "W" equal to zero
at the beginning of the job. The value of the equation above then
becomes:

0 - (501/%)(503/%)

which is equal to -50, as specified. The three asterisks signify that
this equation (the utility function) always holds with equality, in
contrast with constraint equations, which may or may not be binding.

The fact that the signs on all the terms are negative is purely an
artifact of the way the utility function was entered. Had the function
"UTILITY" been entered as

PROD(G, C(G)**SHARE(G)) =E- BIGW:; ,
all the signs would have been positive. Signs depend only on the
ordering of the equation. GAMS always writes equations with the
variables on the left, and parameters, if any, on the right. Any
variables found on the right-hand-side in the original input file are

31 This can be verified by inserting the starting values of the
inputs, "END(I)/2"(all of which equal 50 as well), into the production
functions and evaluating.



51

subtracted from both the left and right sides. The equation listing
for the utility function entered as shown above would be:

UTILITY.. (.25)*C(FISH) + (.75)*C(COCONUTS) - BIGW =E=~ 0
(LHS = 50 #+%)

In contrast to the utility function listing, the equation listing
for the production functions shows mainly positive terms. This is
because, in the GAMS job file, these equations are entered with the
functional form on the left, and the output variable on the right.

The production function listings are similar to that of the
utility function, with two exceptions. First, the "(LHS...)" term is
equal to zero. This is because each function, evaluated at the
specified starting levels for factor inputs, is exactly equal to the
specified starting levels of the outputs. Thus, when the equations are
rewritten with all endogenous variables on the left, the initial values
of the left-hand-sides equal zero. Second, although the left-hand-
sides are equal to zero at these levels, they are constrained only to
be no less than zero globally. Hence, the three asterisks, connoting
equality, are absent,

The feasibility constraints are linear, but are treated in the
same manne¥ as non-linear constraints. In the "EQUATION LISTING",
there are no bracketed terms preceding the variables, but this is
simply because the partial derivatives of linear functions always equal
constants,

BOUNDS ON VARTABLES

In linear programming problems, the variables are normally
constrained only to be non-negative. In non-linear programming
problems, allowing a variable to become equal to zero can give rise to
special problems.

In the Robinson Crusoe problem, if an input or an output should
become zero at some point, at least one of the two production functions
or the utility function will equal zero. As the utility function is to
be maximized, a zero output will not be infeasible, but simply nomn-
optimal. Presumeably MINOS would reject zero utility as suboptimal,
and continue to search. However, if an input level should become zero,
all the partial derivatives of the relevant production function, as
well as the value of the function itself will egqual zero. Since the
amount of a good consumed is constrained to be no greater than the
amount produced, this immediately implies zero utility.

To prevent this, bounds can be placed on variables. This is done
with assignment statements, using the identifier extensions .LO, .UP
and/or .FX. The extension .LO is used to impose lower bounds on
variables, as is done in the Robinson Crusce problem:

H
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F.LO(I,G) = 1;

The extension .UP is used to impose upper bounds. These are less
common, but no less important in the applications which require them.
For example, in the Conrad-Clark mine manager problem (Appendix B,
B.7), it is obviously impossible in practice to extract more than the
entire reserve in any period. The MINOS algorithm does not know this,
however, and cannot solve the problem without being given this upper
bound.

When a variable is to be fixed, its upper and lower bounds

coincide at the fixed value. The extension .FX is used to set upper
and lower bounds simultaneously at the same value.

CENERATTNG REALISTIC STARTING VALUES

The starting values necessary for executing non-linear
optimization problems often may be computed by GAMS from previously-
entered data. In the Robinson Crusoce model, starting values were
assigned as functions of parameters. In many other applications,
starting values for one problem can be assigned using the optimal
values from one or more previously-solved models.

For example, in the spatial allocation model (Appendix B, B.6),
starting values for the quantities demanded and supplied in each region
must be entered before the problem can be solved. Since it is
reasonable to expect that the optimal post-trade quantities will lie in
the neighborhoods of the autarchy equilibrium quantities,-those values
make good starting points.

These can be entered as starting values in one of two ways. One
way is for the analyst to solve for the autarchy equilibria before
executing the GAMS job, and to enter each number separately. This,
however, requires the user to perform tasks which can be dene more
easily (and frequently more accurately) by the computer. The other way
of obtaining autarchy equilibria is by making use of the linearity of
the supply and demand equations, and incorporating a small linear
programming problem into the GAMS job file. Although the LP problem is
written in conjunction with other statements in the Job, the essence of
the LP problem is as follows .32

32 Here, the sum of autarchy equilibrium quantities is maximized,
subject to the simultaneous satisfaction of each region's demand and
supply equations. Since there is only one solution to the constraint
set of the linear programming problem, the type and direction of the
linear objective function is arbitrary.
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VARIABLES  Q(I) AUTARCHY EQBM QUANTITIES
LPOBJ LP OBJECTIVE
PD(I) DEMAND PRICES
PS(J) SUPPLY PRICES
POSITIVE VARIABLES Q, PD, PS
EQUATIONS
OBJLP OBJECTIVE LP
SUPPLY(J) SUPPLY CURVES
DEMAND(I) DEMAND CURVES
OBJLP. . SUM(I, Q(I)) =E= LPOBJ:
SUPPLY(J).. PS(J) + ETA(J)*Q(J) =E= V(J);
DEMAND(I).. PD(I) - OMG(I)*Q(I) =E= LAM(I):
MODEL AUTARCHY PRE TRADE EQBA /OBJLP, SUPPLY, DEMAND/:
SOLVE AUTARCHY USING LP MAXIMIZING LPOBJ:

Once the linear programming problem has been solved, the starting
values for "X" and "Y" (quantities supplied and demanded, respectively)
are assigned to be equal to the autarchy equilibrium quantities:

Y.L(I) = Q.L(I); X.L(J) = Q.L(J);

Assigning "X.L{(J)" and "Y.L{I)" to be equal to "Q.L{I)" makes
sense only if non-zero values for "Q.L(I)" exist. Therefore, this
asgignment statement must follow the "SOLVE" statement of the linear
model.3% These values must, however, be assigned before the "SOLVE"
statement for the non-linear problem is encountered.

DYNAMIC PROBLEMS

In general, dynamic problems can be written as multiple-equation
static problems in which the set of time periods is treated as any
other set. The solution of such problems presents no additional
difficulties in GAMS. However, there are a few special features of
dynamic problems, specifically leads, lags, and loops, which merit
special mention.

33 Note that, although "Q" was originally declared over the set
"I", it may be referenced as being defined over the set "J". since "I"
is aliased with "J",

34 This is the operational meaning of the line from the symbol
list of the output

Q VAR, .. ... IMPL-ASN 64
This indicates that values for "Q" are assigned implicitly by the SOLVE

statement on line 64. Until the SOLVE statement has been executed, no
non-zero values for "Q" will exist.



S4

Leads and lags

Set elements may be referenced in assignment or equation
definition statements through the use of the set identifier alone, or
by using the set identifier in combination with the lead ("+") or lag
("-") operators. These can be illustrated using the simple GAMS job
file shown below:

SET T TIME PERIODS /T1,T2,T3,T4,T5/;
PARAMETER Y(T) RIGHT HAND SIDE

/Tl 10
T2 12
T3 11
T4 8
5 1l4/;

PARAMETER A(T);
PARAMETER B(T);
PARAMETER C(T);
PARAMETER D(T);
A(T) = Y(T-1);
B(T) = Y(T+1);
C(T+1) = Y(T);
D(T-1) = Y(T);
DISPLAY A,B,C,D;

When the set identifier "T" is used alone, an assignment or
equation is generated, element by element, for each member of the set.
For example, the assignment

X(T) = Y(T);
is taken by GAMS to mean:

Create a parameter "X(T)}", values for which exist for each of the
five elements of "T". Assign to "X("T1")" the (previously-defined)
value of "Y("T1")". Assign to "X("T2")" the value of "Y("T2")", and so
on up to "T5".

The set identifier, in conjunction with the lead operator "(T+n)"
instructs GAMS to generate assignments or equations associated with
elements "n" ordinal positions after each element of the set. When the
lead operator occurs on the left-hand-side of the equation or
assignment, it has the effect of creating a new subset of the original
set. For example, the assipgnment

C(T+1) = Y(T):
is interpreted by GAMS to mean:
Create a parameter "C" which exists for all elements of the

set "T+l". This set contains all elements of "T" for which there
exists an element in the previous ordinal position. Thus, "T1" is not
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a member of "T+1", as there is no element in "T" which precedes "T1".
Initially, all values of "C" are zero. Next, assign to each element of
"C(T+1)" the value of "Y(T)" corresponding to the previous element of
"T". The parameter "C" is displayed in the output as:

---— 16 PARAMETER C
T2 10.000, T3 12,000, T4 11.000, T5 8.000

Note that the number of elements of a parameter to be assigned
through the assignment statement depends on the parameter’s index on
the left-hand-side of the statement. The statement above results in
values for "C" being assigned for all elements of "T" except the first.
By contrast, the assignment for the parameter "B",

B(T) = Y(T+1);

will result in values being assigned for all elements of the set

"T", the last of which is zero. There is no need for a newly-created
subset of "T". The last value, "B("T5")", is zero because GAMS begins
the execution of an assignment by setting to zero all values in the
domain of the identifier on the left-hand-side, and only then assigns
the values defined by the expression on the right-hand-side. Since
there is no element in the ordinal position "5+1" of the set "T",
"B("T5")" will not be assigned a new value, and thus remains equal to
zero,

The parameter "B" is displayed in the output as: 3
---- 16 PARAMETER B
T1 12.000, T2 11.000, T3 8.000, T4 14.000

The set identifier in combination with the lag operator,
"(T-n)", instructs GAMS to generate assignments or equation
specifications associated with elements "n" ordinal positions before
each element of the set. The assignment defining the parameter "A",

A(T) = Y(T-1);

results in values of "A(T)" being assigned for all elements of the set
"T" (again, no subset is created), with the first element, "A(“T1")"
being assigned a value of zero. Here, all values of "A(T)" are
initially set equal to zero and replaced with the value of "Y"
associated with the previous ordinal position in the set "T". Since
there is no element with an ordinal position before "TL1", "A("TL™)" is
not assigned a new value and remains zero. The parameter "A" is
displayed in the output as:

35 1t appears that only four values for "B" have been generated.
However, recall that GAMS does not print zero values, nor labels
associated with them.
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---- 16 PARAMETER A
T2 10,000, T3 12.000, T4 11.000, TS5 8.000

When the lag operator is included in the index on the left-hand-
side of the assignment, again a subset of the indexed set will be
created. Thus, the assignment for the parameter "D,

D(T-1) = Y(T);

results in the generation of a new set, "T-1", which contains all
elements of "T" for which there exists an element in the next ordinal
position. "T5" is not an element of "T-1", since there is no element
in "T" which comes one position after "T5". Each of the (4) elements
of "T-1" is initially set to zero, then assigned values of "Y" which
correspond to the next element of "T". The parameter "D" is displayed
as:

---- 16 PARAMETER D

Tl 12,000, T2 11.000, T3 8.000, T4 14.000

When using leads and lags in assignment statements, the fact that
GAMS regards non-existence and zero values as equivalent permits a
certain flexibility. In the example above, the assignments used to
create "A"™ and "C" differ in terms of internal execution, but the
results are, for practical purposes, the same.

. More care is required when leads and lags are used in equation
specifications. To illustrate, consider the examgle of a monotonicity
constraint on consumption, discussed in Meeraus.>

The problem is one of maximizing intertemporal utility by
allocating consumption of a fixed stock of wealth through time. In
addition to feasibility, an additional constraint is imposed:

Ct_;_]_kct , t=1,2,3.

There are six possible ways to write this constraint equation in
the "EQUATIONS" portion of the GAMS job file, of which only two are
completely correct. The following tables detail the results of using
each.

36 4, Meeraus, GAMS Preliminary User's Guide, The World Bank, 1982.
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MONOTONICITY CONSTRAINT;

C(T) =G= C(T-1};

c(1) C(2) c(3) RHS
1 =G= 0 {redundant)
-1 1 =G 0
-1 1 =G= 0
C(T+1l) =G= G(T);
¢c(1) C(2) C(3) RHS
-1 1 == 0
-1 1 =G= 0
-1 =G= 0 {(incorrect)
C(T) =G= C(T-1);
C(1) C(2) C(3) RHS
1 =G= Q {redundant)
-1 1 =G= 0
C(T+1) =G= C(T);
C(1) C(2) c(3) RHS
-1 1 =G= 0
-1 1 =G= 0
C(T) =G= C(T-1):
c(L) C(2) C(3) RHS
-1 1 =G= 0
-1 1  =G= 0
C(T+1) =G= C(T);
(1) Cc(2) G(3) RHS
-1 1 =G= 0
-1 =G= 0 (incorrect)
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The "LOOP" Statement

In the subsection above, the sequence of actions initiated by an
assignment statement is discussed. There, it is noted that GAMS sets
to zero all terms on the left-hand-side of the assignment, then
replaces these zeroes with the values of the expression on the right-
hand-side. It is important to recognize that these are parallel
operations. For example, the assignment

D(T) = X(T)*¥(T);

results in zll elements of "D(T)" being set equal to zero before any of
them are set equal to the corresponding values of "X(T)*Y(T)".

This implies that it is impossible, using only simple assignment
statements, to instruct GAMS to perform sequential, or dynamic,
assigrnments. In order to do so, it is necessary to use the "LOOP"
statement.

The "LOOP" statement is similar in construction to expressions
involving indexed operators. It has the form:

LOOP((index($condition)), assignment);

To illustrate, consider the example from Kendrick and Meeraus
(footnote 3) in which quantities demanded for future years are
projected from the base year using differing annual growth rates. The

equation of motion describing quantities demanded is:

de+1 = (1 + gelde , dy given

vhere di
&t

quantity demanded in year "t"
growth rate in year "t",

To generate the sequence of quantities demanded, it might seem
logical to use the assignments:

D(!rllr)
D(T+1)

il

(initial period quantity);
D(T)*(1+G(T)) ;

I

Unfortunately, this intuitive statement, which looks very similar
to the assignment statement in the section on leads and lags, will not
generate demand quantities beyond year "2", This is due to the fact
that both the left and right-hand side of the assignment involve the
same parameter D. The reason for the problem in this area can he
understood by examining the way in which GAMS executes assignment
statements.

First, since the left-hand-side of the assignment is indexed by
"(T+1)", the initial value, "D("1")", will not be changed. All other
values ("D("2")", "D("3")", etc.) will be set equal to zero. Thus, at
the completion of the first phase of the assignment, there will exist
temporary values of "D(T)", all but the first of which are zero.
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The assignment will then be executed, generating new values for
"D(T)" by evaluating the expression on the right-hand-side with
reference to the existing temporary values of "D(T)". Following the
evaluation of the expression with respect to all temporary values, all
of the wvalues of "D{T)" will be replaced. Thus, theée value of "D("2™")",
say, will not be replaced with "D{("1")}*(I + G("1")}" until the right-
hand-side expression has been evaluated with respect to all temporary
values.

The result of using the single assignment, then, will be:

D(T) D(T-1)temporary
T temporary times (1 + G(T-1)
i (initial) (initial)
2 0 (initial)=*G("1")
3 0 ¢
4 0 0

What is required is, in effect, a sequence of assignments. In
each, only one value of "D(T)" is set equal to zero, then immediately
replaced with "D(T-1)*(1+G(T-1))". Following the assignment of each
"D(T)", the subsequent assignment takes "D(T)" to be a non-zero value
and repeats the instructions for the next element in the set "T". This
is done by entering:

D{"1") = (initial wvalue);
LOOP(T, D(T+1l) = (1 + G(T))*D(T));

The "LOOP" statement above carries out the following instructions:

(a) Take the first element of "T" (= "1"). Assign the value zero to
"DT+1)" = "D("2")". Next, reset "D("2")" equal to
D("1T)*(1+G("1"))". Note that "D("1")" is not set to zero by
this assignment.

n

We now have "y = (initial)
)

D("1
D("2" (initial)*(1+G("1"))

il

(b)Y Take the second element of "T" (= "2"). Assign the value zero to
"D(T‘i‘l)" = "D("B")". Reset hD(n3u)|r equal to "D("Z")*(l +
G("2")). As before, "D(T)" = "D("2")" is not set to zero at any
point in executing this second assignment.

c) Perform this operation again for each remaining element of "T".
When the last element is encountered, the expression "D(T+1)" will
not be defined. Stop.
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Loops may contain more than one assignment statement, and may in
fact contain nested "LOOP" statements. For example, suppose that the
demand projection discussed above involved quarterly, rather than
annual, growth rates. Suppose further that these growth rates are
entered in tabular format, as shown in the following GAMS job file:

SETS
Q QUARTERS /l%4/

Y YEARS /85%88/

PARAMETER D(Q,Y) DEMAND BY QUARTER:
TABLE G(Q,Y) GROWTH RATE BY QUARTER
85 86 87 88

.005  .004 .00l .006
.004 006 .002  .002
.006  .005 .003  .004
.002  .005 .004  .009

PSR

Demand in the first quarter of "85" is assigned to be equal to
"100". Demand in each of the subsequent quarters is projected to be
equal to the demand in the previous quarter times (1 + previous quarter
growth rate). What is required here is some way of replacing the
following lengthy list of assignments:

D("l","85") = 100;
D(Il2"’ll851!) _ D("l“,"85")*(1+G("l","85");
D(II31|,1l851l) = D("Q",“85")*(14‘@'("2“,"85");

D(uan,llssu) = D("3_","85")*(1"‘G("3","85");
D("l","86") e D("q’ll,il85ll)*(l+G(l|4"’lt851l);

D(“L”" s |I88ll) = D(ll3ll ) "88")*(1+G(“1" . "88") ;
with something much shorter.
For the first year, we may use

D("l","85") = 100;
LOOP(Q, D(Q+1,Y) = D(Q,Y)*(1+G(Q,Y));

The result of this will be as follows: Before any values are
assigned to it, the two-dimensional parameter "D(Q,Y)" is composed of a
table of zeroes. The first assignment sets "D(*1",6"85")" equal to 100.
The "LOOP" statement tells GAMS to create a loop over the set Q"
(which contains the elements {1,2,3,4)}). Thus, we will have:

p("2","85") = (100)*(1+0.005) { = 100.5)
D{"3","85") = (100.5)*(1+0.004) ( = 100.902)
D("4","85") = (100.902)*%(1+0.006) { = 101.507)

This is what we want. However, there is nothing in this "LOOP"
statement which tells GAMS to set "D("1","86") equal to
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D4, "85 )X (14+G("4","85")) and run through the loop again. As it
stands, the loop is constructed only over the set "Q".

What we need, for each four-quarter period, is:

LOOP(Q, D(Q+1;Y) - D(Q,Y)*(1+6(Q,Y)));
D1, ¥41) = D("4", Y2+ (1+6("4",¥)));

The "LOOP" statement generates values for "D("2",Y)™, "D("3",Y)"

and "D("4",Y)", given a value for "D("1",¥)". The assignment statement
below it generates a value for "D("1",Y+1)" given the wvalue of
"D("4",Y)". Now, we need to report this for the next four-quarter
period,

Fortunately, it is possible to embed both lines in another "LOOP"
statement. This will be a loop over the set "Y" (years):

LOOP(Y, LOOP(Q, D(Q+1,Y) = D(Q,Y)*(1+G(Q,Y)));
D("1",Y+1) = D("4" , Y)*(14+G("4",Y)));

Note the number of parentheses. This two-line "LOOFP" statement is
interpreted by GAMS as:

(a) Take the first element of "Y" (= "85"). Take the first
element of "Q" (= "1"). Set "D("2","85")" equal to
"D("l“ . Il85ll)*(l+G("11l . IISSI!) .

(b) Still using the first element of "Y" take the second element of
: "Q" (___ "2") . Set "D(I|3" s 1l85l|)|| equal to
IID(IIZN , “85")*(1"‘@("2" , ﬂ85|l)) .

(C) Set uD(tt4tl’|185u>u equal to "D("3","85")*(1"'(;("3","85")),

(d) Take the fourth element of "Q". Since "Q+1" is not defined,
exit from the loop over "Q" and go to the next line.

(e) Set "D("l","86") equal to "D("[J-","85")*(14—G("4","85")).

(f) Take the second element of "Y" (= "86"). Repeat steps
(a)-(e), incrementing "Y" by one unit. Continue until
reaching the last element of "Y". Stop, as the loop over "Y" is
now complete.

Loops of assignment statements should not be used unless
absolutely necessary. Assigmments which do not involve dynamic
equations are more efficiently carried out using single statements.
These instruct GAMS to assign values for all elements of a parameter in
parallel.
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APPENDIX A

Functions, and Relational Operators

A.1. GAMS BUTLT-IN FUNGTIONS

A partial list of built-in functions, adapted from Kendrick and
Meeraus (1985), is presented below.

NAME AND ARGUMENTS INTERPRETATION

ABS (X) absolute value of X

CEIL(X) the integer just larger than X

EXP{X) "e" raised to the power X .

FLOOR(X) the integer just smaller than X

LOG(X) natural (Neperian) logarithm of X
LOG10(X) logarithm to base 10 of X
MAX(X1,X2,...,Xn) the largest element of {X1,X2,...,Xn)
MIN(X1,X2,...,Xn) the smallest element of {X1,X2,...,Xn}
POWER(X,Y) X raised to the power Y, where Y must be

an integer

ROUND(X,Y) X rounded off to the digit Y.
If Y is negative, this means the Y'th
significant digit to the left of the
decimal point.
If Y is positive, this means the Y'th
significant digit to the right of the
decimal point.
If Y is absent, X is rounded to the
nearest integer,

SIGN(X) The sign of X (+1, 0, or -1)
g

SQR(X) X raised to the power 2

SQRT(X) _ The square root of X

TRUNC(X) The truncated value of X
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A.2. RETATIONAL OPERATORS
GAMS contains most of the standard operators found in programming
packages. These are listed below, in the order in which they are

evaluated in a GAMS statement.

SYMBOL INTERPRETATION

$ Conditional Operator, discussed in
Section IV, "Special Features™

(X)**(Y) X raised to the exponent Y.
Note If "Y" is 2, it is better to
use the special function SQR(X).

(X)*(Y) X multiplied by Y
(X)/(Y) X divided by Y
(X)+(Y) The sum of X and Y
(X)-(Y) X minus Y
LT X less than Y
LE X less than or equal to Y
(X) EQ (Y) X equal to Y
NE X not equal to Y
GE Z greater than or equal to Y
GT X greater than Y

The order of priority can be altered by the use of parentheses,
which can be nested up to 50 levels deep.

In structural equations, the relations "greater-than-or-equal-
to","equal-to", and "less-than-or-equal-to" are written
"=G=", "=E=", and "=L=", respectively. The reason for the difference
is that the relations "=X=" are not operative until a "SOLVE" statement
is encountered, while the other relations are operative without it.
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APPENDIX B

GAMS .Job File Examples

The purpose of this appendix is to illustrate how a number of
applied problems can be formulated in GAMS. These applications are
used frequently in agricultural and resource economics. Most sections
contain an algebraic statement of the problem, followed by the Job
File. If the algebraic statement is not given, it is found elsewhere
in the document.

B.1. FARM PROBLEM., 1P FORM. INCLUDING DUAL

This is an extended job file for the farm problem used in the
tutorial in Section I, equation (5). Here, a solution to the dual is
generated as a separate problem. :

*FARM LP PROBLEM, INCORPORATING THE DUAL
*®
SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/
1 INPUTS
/RES1+RES4/
PARAMETER R(J) REVENUE OF ACTIVITIES
/STD-WHT  108.3
OATS 66.36
NEW-WHT  127.58/ ;
PARAMETER B(I) AVAILABILITY OF INPUTS

JRES1 12

RES2 8

RES3 400

RES4 80/ ;
TABLE A(I,J) USE OF INPUTS PER ACTIVITY

STD-WHT OATS NEW-WHT
RES1 1 1 1
RES2 1 0 1
RES3 30 20 40
RES4 5 5 8 ;
VARIABLES

N NET REVENUE

X(J) ACTIVITY LEVELS

M  DUAL OBJECTIVE

W(I) DUAL ACTIVITY LEVELS
POSITIVE VARIABLES X,W;

EQUATIONS
REVENUE OBJECTIVE FUNCTION
SUPPLY(I) RESOURCE CONSTRAINTS
OBJDUAL DUAL OBJECTIVE FUNCTION
CONDUAL(J) DUAL CONSTRAINT FUNCTIONS:

REVENUE,. SUM(J, X(J)*R(J)) =E= N;
SUPPLY(I).. SUM({J, X(J)*A(1,J)) EL= B(I);
OBJDUAL.. SUM(I, W(I)*B(I)) =E= M;
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CONDUAL(J).. SUM(I, W(I)*A(I,J)) =G= R(J);
MODEL FARMPRIM /REVENUE, SUPPLY/ ;

MODEL FARMDUAL /OBJDUAL, CONDUAL/ ;

SOLVE FARMPRIM USING LP MAXIMIZING N;

SOLVE FARMDUAL USING LP MINIMIZING M;

B.2. MOTAD VERSION OF THE FARM PROBLEM

This Job will set up and solve the MOTAD formulation of the
problem given in Section II, equation {(6). As stated there, the data
input begins with five years of observations on gross revenue and the
mean and deviations are calculated using GAMS.

*FARM PROBLEM, MOTAD FORMULATION
*

SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/

I INPUTS
/RES1*RES4 /
T TIME PERIODS
/1*5/
PARAMETER B(I) AVAILABILITY OF INPUTS
/RES1 12
RES2 8
RES3 400
RES4 80/ ;

TABLE A(I,J) USE OF INPUTS PER ACTIVITY
STD-WHT OATS NEW-WHT

RESL 1 1 1
RES2 1 1
RES3 30 20 40
RES4 5 5 8 ;

TABLE R(T,J) REVENUES PER ACTIVITY PER TIME PERIOD
STD-WHT OATS NEW-WHT

1 99.8 68.3 112.7
2 133.3 130.4 238.4
3 142 .7 33.3 33.9
4 154.3 74 .4 83.2
5 11.4 25.4 109.7 ;

¥

PARAMETER RBAR(J) AVERAGE REVENUE PER ACTIVITY;
RBAR(J) = SUM(T, R(T,J)) / (CARD(T))

DISPLAY RBAR;

PARAMETER D(T,J) DEVIATIONS FROM MEAN REVENUES;
D(T,J) = R(T,J)-RBAR(J); ‘

.
?

DISPLAY D;
SCALAR XPINC EXPECTED INCOME /945/;
VARTABLES SAD SUM OF INCOME DEVIATIONS

X)) ACTIVITY LEVELS
Y(T) TIME COEFFICIENTS
POSITIVE VARIABLES X,Y;
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EQUATIONS
OBJMOTAD  OBJECTIVE FUNCTION
SUPPLY(I) RESOURCE CONSTRAINTS
ANNUAL(T) YEARLY NONNEGATIVITY CONSTRAINTS
EXPREV EXPECTED REVENUE:
OBJMOTAD..  SUM(T, Y(T))} =E= SAD;
SUPPLY(I).. SUM(J, X(J)*A(I,J)) =L~ B(I);
ANNUAL(T).. (SUM(J, X(J)*D(T,J))) + Y(T) =C= O:
EXPREV. . SUM(J, X(J)*RBAR(J)) =E= XPINC:
MODEL MOTAD /ALL/ ;
SOLVE MOTAD USING LP MINIMIZING SAD;

As part of the output from this job, the following parameter lists
will be printed:

---- 30 PARAMETER RBAR AVERAGE REVENUE PER ACTIVITY
STD-WHT 108.300, DATS 66.360, NEW-WHT 127.580
---- 33 PARAMETER D DEVIATICNS FROM MEAN REVENUES

STD-WHT OATS NEW-WHT
1 -8.500 1.940 -14.880
2 25.000 64.040 110.820
3 34.400 -33.060 -33.680
4 46,000 8.040 -44 ., 380
5 -96.900 -40.960 -17.880



67

B.3. FARM PROBLEM, MINIMIZING HALF OF GINI'S MEAN DIFFERENCE

In 1982, Yitzhaki (see footnote 24) suggested using the mean and
Gini's mean difference as an alternative approach to identifying
efficient plans for risk averse decision makers. This mean-Gini (MG)
efficiency approach uses the same data required for the MOTAD problem
and is defined in the following way. Alternative F is MG efficient
relative to alternative G if

(1B) pp 2z ug and pp - T = ue - Tg,

where, for cti = returns for alternative j (j=F,G) in year t

1 T
(2B) By = E Z Cej and
=1

t
1 T T
{(3B) T = —; z E lctj - ijl = half of Gini’s mean.
T t=1 k>t difference.

To generate the MG efficient locus from a set of alternatives, one can
begin by first generating the MI efficient set. In a programming
context, this can be done by finding all solutions which minimize T
subject to mean income equal to a constant and parameterizing the mean
income from zero to infinity.

Letting X5 be preduction activity j and ctj is the return from
activity j in year t, then following similar leogic to that in the MOTAD
formulation, both Yitzhaki (1982) and Okunev and Dillon (1989, see
footnote 24), define: '

[ 2=

j=1

Then, they maximize
T T
(58) T=1/m ¥ ¥ |T¢ - Tgl
t=1 k>t
subject to
n
(6B) ¥ pi X3 = p;
321 J “]
and the resource constraints

n ‘
(7B) ) arj Xy < by (r=1,...,s)
j=1
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(8B) Xj 2 0 (all j).

In this form the problem is not linear but can be transformed into an
LP problem by remembering that for yei', yex™ 2 0

(9B) T - Tkl = (yert + yer).

The problem then becomes

n i
(10B) minimize ) ¥ (yek' + Yek©)
t=1 k>t
s.t.
n
(11B) L o(egy - exd¥y - yik" + yik® = 0 (all t=1,...,T and k>T)
j=1
n
(12B) LBy X5 = ou
j=1
n
(13B) L arj Xj < by (r=1,...,5)
j=1
(14B) X5 = 05 yik', Yik = 0

Once the ul' efficient set is determined, the MG efficient sget can
be determined ex post by applying equation (1B). Using this algebraic
formulation, the uI’' efficient set for farm example (using the five
years of gross revenue given above) can be generated using the
following GAMS job. For large problems, calculating the differences
used in constructing Gini mean difference could be exceedingly time
consuming. An important feature of GAMS is that this set of
differences can be calculated using only a few assignment statements.
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* FARM PROBLEM, MEAN-GINI REPRESENTATION

SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/ ;
I INPUTS
/RES1*RES4/ ;
T TIME PERIODS
/1%5/
ALIAS (T,TP);
TABLE A(I,J) INPUT USE PER ACTIVITY

STD-WHT 0ATS NEW-WHT
RES1 1 1 1
RES2 1 1
RES3 30 20 40
RES4 5 5 8 ;
PARAMETER B(I) AVAILABILITY OF INPUTS
JRES1 12
RES2 8
RES3 400
RES4 80 ;

TAELE R(T,J) REVENUES PER ACTIVITY PER TIME PERIOD
STD-WHT OATS NEW-WHT

1 99.8 68.3 112.7
2 133.3 130.4 238.4
3 142.7 33.3 93.9
4 154.3 74.4 83.2
5 11.4 25.4 109.7 ;

PARAMETER RBAR(J) AVERAGE REVENUE PER ACTIVITY;
RBAR(J) = SUM(T, R(T,J))/(CARD(T));
DISPLAY RBAR;
PARAMETER RIJK(T,TP,J) DIFFERENCES IN ANNUAL REVENUES;
RIJK(T,TP,J) =(R(T,J)-R(TP,J))$(ORD(T)LT ORD(TP)):
DISPLAY RIJK;
SCALAR XPINC EXPECTED INCOME /945/ :
VARIABLES
MG MEANGINI GCOEFFIGIENT
X(J) ACTIVITY LEVELS
YPLUS(T,TP) POSITIVE Y VALUES
YMINUS(T,TP) NEGATIVE Y VALUES
POSITIVE VARIABLES X, YPLUS, YMINUS;
EQUATIONS
OBJMGINI OBJECTIVE FUNCTION
SUPPLY(1) INPUT AVAILABILITY
ANNUAL(T,TP) YEARLY NONNEGATIVITY CONSTRAINTS
EXPREV EXPECTED REVENUE ;
OBJMGINI.. SUM((T,TP)$(ORD(T)LT ORD(TP)), YPLUS(T,TP))
+SUM((T,TP)$(ORD(T)LT ORD(TP)),YMINUS(T,TP))
=E= MG;
SUPPLY(I).. SUM(J, X(J)*A(I,J)) =L- B(I) ;
ANNUAL(T,TP).. ((SUM(J, X(J)*RIJK(T,TP,J)))-YPLUS(T,TP)
+YMINUS(T,TP))$(ORD(T)LT ORD(TP)) -E- 0;
EXPREV.. SUM(J, X(J)*RBAR(J)) =E= XPINC ; :



70

MODEL MEANGINI /ALL/ ;
SOLVE MEANGINI USING LP MINIMIZING MG;

As part of the output from this job, the following parameter lists
will be printed:

- 31 PARAMETER RBAR AVERAGE REVENUE PER ACTIVITY
STD-WHT 108.300, OATS 66.360, NEW-WHT 127.580

---- 34 PARAMETER RIJK DIFFERENCES IN ANNUAL REVENUES
STD-WHT OATS NEW-WHT

1.2 -33.500 -62.100 -125.760

1.3 -42.900 35.000 18.800

1.4 -54,500 -6.100 29.500

1.5 88.400 42,900 3.000

2.3 -9.400 97.100 144500

2.4 -21.000 56.000 155.200

2.5 121,900 105.000 128.700

3.4 -11.600 -41.100 10.700

3.5 131.300 7.900 -15.800

4.5 142.900 49.000 -26.500
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B.4. FARM PROBLEM., MINIMIZING THE VARTANCE QF ANNUAI REVENUE

This Job illustrates the input for the mean-variance (E-V)
efficiency locus for the farm problem using the same five years of data
on gross margins (H. Markowitz, "Portfolio Selection", The Journal of
Finance, 7(1952):76-90.) The problem is to f£ind X5 2 0:

n n
min, Z z 713 Xin
i=1 j-1
s.t,
n
X aj j Xj < b; (i=1,...,m)
i=1

whers ¥ij is the covariance of revenue between i and j and is the

variance when i = j, and j is average revenue.

Notice that because this is a quadratic programming problem, the solve
statement Iinvolves NLP (the non-linear solver).

*FARM PROBLEM SET UP AS MEAN-VARIANCE (EV) QUADRATIC
* PROGRAMMING PROBLEM
SETS
J ACTIVITIES
/STD-WHT, OATS, NEW-WHT/
I INPUTS
/RES1*RES4/
T TIME PERIODS
/1%5/
ALIAS (J,JP):
PARAMETER B(I) AVAILABILITY OF INPUTS

/RES1 12
RES2 8
RES3 400
RES4 80/ ;

TABLE R(T,J) REVENUES PER ACTIVITY PER TIME PERIOD
STD-WHT  OATS NEW-WHT

1 99.8 68.3 112.7
2 133.3 130.4 238.4
3 142.7 33.3 93.9
4 154.3 4.4 83.2

11.4 25.4 109.7

5
TABLE A(I,J) 1INFUT USE PER ACTIVITY
STD-WHT OATS NEW-WHT
RES1 1 1 1
RES2 1 0 1
RES3 30 20 40
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RES4 5 5 8 .
' PARAMETER RBAR(J) AVERAGE REVENUE PER ACTIVITY:
RBAR(J) = SUM(T, R(T,J)) / (CARD(T)):
DISPLAY RBAR:

PARAMETER D(T,J) DEVIATIONS FROM MEAN REVENUES:
D(T,J) = R(T,J)-RBAR(J):

DISPLAY D:

PARAMETER V(J,JP) COVARIANCE MATRIX OF REVENUES:
V(J,JP) = SUM(T, D(T,J)*D(T,JP)) / (CARD(T)-1);
DISPLAY V;

SCALAR XPINC EXPECTED INCOME /945/:

VARIABLES

RISK OBJECTIVE VARIABLE
X(J) ACTIVITY LEVELS
POSITIVE VARIABLE X:

EQUATIONS
OBJ OBJECTIVE FUNCTION
SUPPLY(I) INPUT AVAILABILITY
EXPREV EXPECTED REVENUE:
OBJ .. SUM(JP, X(JP)*(SUM(J, X(J)*V(J,JP))))
=E= RISK;
SUPPLY(I).. SUM(J, X(J)}*A(I,J)) =L= B(I):
EXPREV, . SUM(J, X(J)*RBAR(J)) =E= XPINC:

MODEL EV /OBJ, SUPPLY, EXPREV/ ;
SOLVE EV USING NLP MINIMIZING RISK;

As part of the output, the following parameter lists will be
printed;

- 32 PARAMETER RBAR AVERAGE REVENUE PER ACTIVITY
STD-WHT 108.300, OATS 66.360, NEW-WHT 127.580
-.-- 35 PARAMETER D DEVIATIONS FROM MEAN REVENUES

STD~-WHT OATS NEW-WHT
1 -8.500 1.940 -14.880
2 25,000 64.040 110.820
3 34.400 -33.060 -33.680
4 46.000 8.040 -44 380
3 -96.900 -40.,960 -17.880
m.-- 38 PARAMETER V COVARTANCE MATRIX OF REVENUES
STD-WHT OATS NEW-WHT
STD-WHT 3346.555 1196.527 357.370
OATS 1196.527 1735.053 2139.264

NEW-WHT 357.370 2139.264 3981.527
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B.5. TRANSPORTATION PROBLEM

This job is to minimize the cost of transporting goods (at fixed
per unit costs) in fixed supply at three sources to meet the fixed
demand in three other regions. (S. Gass, Linear Programming Methods
and Applications, 5th ed. McGraw Hill Book Co., New York, 1985.) The
problem is (xij = amount shipped from origin i to destination j):

max. Ox1] + 2x392 + 3xX13 + 2x97 + Oxgp + 1lxo3 + 3x37 + 1x3p + Ox33
s.t,
20
25
61.538
30
15
61.538

X11 + x21 T %31
X12 + X227 +  X32
X13 + X33 + %33
X11 + %12 + X13
X21 + X202 + X323

A ATA IV IVIV

X31 + X32 + X33

xj3 20 all i,j

*SPATIAL AILLOCATION DATA APPLIED TO SIMPLE TRANSPORTATION

* MODEL
*
SETS
I REGIONS
/R1#R3/;
ALIAS (I,J);
PARAMETER X(I) QUANTITIES SUPPLIED IN REGIONS
/RL 30
R2 15
R3 61.538/;
PARAMETER Y(J) QUANTITIES DEMANDED IN REGIONS
/Rl 20
R2 25
R3  61.538/;
TABLE C(I,J) UNIT TRANSPORT COSTS BETWEEN REGIONS
Rl R2 R3
R1 o 2 3
R2 2 0 1
R3 3 1 0 ;

VARIABLES  XT(I,J) SHIPMENTS BETWEEN REGIONS
TRCOST TOTAL TRANSPORTATION COST
POSITIVE VARIABLE XT;
EQUATIONS
COST OBJECTIVE FUNCTION
SUPPLY(I) QUANTITIES SUPPLIED IN REGIONS
DEMAND(J) QUANTITIES DEMANDED IN REGIONS:
COST. . SUM((I,J), C(I,J)*XT(I,J)) ~E= TRCOST;
SUPPLY(I).. SUM(J, XT(I,J)) =L= X(I):
DEMAND(J).. SUM(I, XT(I,J)) =G= Y(J):
MODEL TRANSPORT /ALL/ :
SOLVE TRANSPORT MINIMIZING TRCOST USING LP;
DISPLAY XT.L:
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B.6. SPATIAL ATIOCATION PROBLEM

In this job, a spatial allocation problem, in which the demand and
supply curves for the commodity are linear in each region, is solved
for the competitive trade optimum. The competitive trade solution is
obtained. Letting yj, X;j and pj, be demand, supply and price in region
i, respectively, the supply and demand functions and transportation
costs between regions are given by:

pp = 10 - 0.1y py = 15 - .2ys p3 — 20 - .15yj3

Pl = 5+ .1xq P2 = 2.5 + .5%9 P3 = 4+ .lx3
ty1 =0 t12 =2 t13 =3
t1 =2 tp2 =0 t23 =1
t3p =3 t32 -1 t33 = 0

The problem formulated in quantity terms is:

max. [20 15 20] [y1| - [5 2.5 4] |x1
y2 X2

3 X3
-1/2 [y1 y2 y3] [.1 0 0} El} -1/2 [x1 %2 %3] {.1 0 0] {mJ
0.2 0] |y2 o .5 0] ix9
0 0 .15 3 0 0 .11 X3
-(023201310] [X11]
X12
%13
X21
X292
%23
X31
X32
(X33
subject to
1 1 1 [X11] Y1
1 1 1 X120 5 | ¥2
1 1 1 X313 " | ¥3
-1 -1 -1 X921 -X1
-1 -1 -1 X990 -X3
| -1 -1 -1 X513 -X13
X31
X32
[ X33

¥i,» ¥j and %55 2 0 all i and j.

This problem is a quadratic programming problem. Thus, it is solved
using NLP; the starting values for the NLP are given by the solution to
a small LP problem in which output from the three regions is maximized
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subject to supply being equal to demand in each region. This is
essentially the autarchy solution. After this problem is solved (also
using NLP), GAMS statements are constructed to solve for equilibrium
prices, given the equilibrium quantities from the solution.

*SPATIAL ALLOCATICN MODEL WITH LINEAR DEMAKD AND SUPPLY
# CURVES, SOLVED USING QUADRATIC PROGRAMMING

* STARTING VALUES ARE COMPUTED WITH A SMALL LP FORMULATION

SETS
I REGIONS
JR1¥R3/;
ALIAS (I,IP,J,JP);
PARAMETER 1AM(I) DEMAND FUNGTION INTERCEPTS
/Rl 10
R2 15
R3 20/ ;
PARAMETER OMG(I) DEMAND FUNCTION SLOPES (ABSOLUTE VALUE)
JR1 0.1
R2 0.2
R3 0.15/ ;
PARAMETER V(J) SUPPLY FUNCTION INTERCEPTS
JR1 5
R2 2.5
R3 4 / ;
PARAMETER ETA(J) SUPPLY FUNCTION SLOPES
/RL 0.1
R2 0.5
R3 0.11/ ;
TABLE C(I,J) UNIT TRANSPORT COSTS BETWEEN REGIONS
Rl R2 R3

Rl 0 2 3
R2 2 0 1
R3 3 1 0 ;

PARAMETER OMEGA(I,IP) DEMAND SLOPE MATRIX;
OMEGA(I,IP) = OMG(I)$(ORD(I)EQ ORD(IP));
DISPLAY OMEGA;
PARAMETER H(J,JP) SUPPLY SLOPE MATRIX;
H(J,JP) — ETA(J)S(ORD(J)YEQ ORD(JP)):
DISPLAY H;
VARIABLES  Y(I) QUANTITIES DEMANDED
X(J) QUANTITIES SUPPLIED
Q(I) AUTARCHY EQBM QUANTITIES
XT(I,J) SHIPMENTS BETWEEN REGIONS
LPOBJ LP OBJECTIVE
PD(I) DEMAND PRICES
PS(J) SUPPLY PRIGES
WELF  TOTAL WELFARE
POSITIVE VARIABLES X,XT,Y,PD,PS;
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EQUATIONS
OBJLP OBJECTIVE LP
OBJSPAT  OBJECTIVE SPATIAL
SUPPLY(J) SUPPLY CURVES
DEMAND(I) DEMAND CURVES
PRDN(J } QUANTITIES PRODUCED
CONS(I) QUANTITIES CONSUMED;
OBJLP. . SUM(I, Q(I)) =E= LPOBJ;

OBJSPAT.. SUM(I, LAM(I)*Y(I)) -SUM(J, V(J)*X(J))
- (SUM(IP, Y(IP)*(SUM(I, Y(I)*OMEGA(I,IP)))) / 2)
- (SUM(JP, X(JP)*(SUM(J, X(J)*H(J,JP)))) / 2)
-SUM((I,J), XT(I,J)*C(1,J)) =E= WELF;
SUPPLY(J).. PS(J) - ETA(J)*Q(J) =E= V(J):
DEMAND(I).. PD(I) + OMG(I)*Q(I) =E— LAM(I);
PRDN(I).. -SUM(J, XT(I,J)) =G= -X(I):
CONS(J).. SUM(I, XT(I,J)) =G= Y(J);
MODEL AUTARCHY PRE TRADE EQBA /OBJLP, SUPPLY, DEMAND/:
SOLVE AUTARCHY USING LP MAXIMIZING LPOBJ;
Y.L(I) = Q.L(I); X.L({J) = Q.L{J);
MODEL SPATIAL /OBJSPAT, PRDN, CONS/ ;
SOLVE SPATIAL MAXIMIZING WELF USING NLP;
PARAMETER NOTRADE NO TRADE PRICES AND QUANTITIES;
NOTRADE(I,"PRICE") = LAM(I)-OMG(I)*Q.L(I);
NOTRADE(T, "QUANTITY") = Q.L(I);
PARAMETER CLEAR MARKET CLEARING PRICES AND QUANTITIES:
CLEAR(I, "DEMANDED") = Y.L(I);
CLEAR(J, "SUPPLIED") = X.L(J);
CLEAR(I, "DEMPRICE") = LAM(I)-OMG(I)*Y.L(I);
CLEAR(J, "SUPPRICE") = V(J)+ETA(J)*X.L(J);
PARAMETER TRADE SHIPMENTS FROM ROW TO COLUMN:
TRADE(I,J) = XT.L(I,J):
DISPLAY NOTRADE, CLEAR, TRADE;

The "DISPLAY" statements referring to the matrices in the
objective function will result in the following being printed:

---- 31 PARAMETER OMEGA DEMAND SLOPE MATRIX
R1 R2 R3

R1 0.100

R2 0.200

R3 0.150

.- 34 PARAMETER H SUPFLY SLOPE MATRIX
Rl ‘R2 R3

R1 0.100

R2 0.500

R3 0.110
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The report writer (which begins with the declaration of the
parameter "NOTRADE") uses the optimal quantities from the solution
process to compute the equilibrium prices in each region. These,
together with the optimal quantities themselves, and the shipments
between regions, are reported on the final page of output as:

---- 61 PARAMETER CLEAR MARKET CLEARING PRICES AND
QUANTITIES

DEMANDED SUFPPLIED DEMPRICE SUPPRICE

R1 20,000 30.000 8.000 8.000

R2 25.000 15.000 10.000 10.000

R3 61,538 61.538 10.769 10.769

.- 61 PARAMETER TRADE SHIPMENTS FROM ROW TC COLUMN
Rl R2 R3

R1 20,000 10.000

R2 15.000

R3 61.538
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B.7, OPTIMAL EXTRACTION PROBLEM., WITH REPORT WRITER

An example of a dynamic problem, in which the objective is to
determine the optimal program of extraction of ore from a mine, over a
ten year period, is found in J. Conrad and C. Clark, Natural Resource
Economics, Cambridge University Press, Cambridge, 1987. The problem
involves a non-linear objective, since extraction costs are stock-
dependent, but incorporates only linear constraints. The problem can
be described and written as follows.

A mine is to be shut down in year t = 10, but before then, the
manager must determine the optimal production schedule, y.*, for
periods t=0,...,9. The price of the ore being mined is given by P =1
and the cost of extracting y. is Ct = y%/Xy, where Xt is the remaining
ore reserves at the start of period t.

Net revenue in any perioed t is py - ytz/xt = (l-yo/%c)ye. The
change in reserves can be described by xy41 - x¢ = -¥¢+, and initial
reserves are xg = 1000.

To maximize the discounted stream of net revenue for a discount
rate of 0.1 the following problem can be solved:

9
max. ) p% [1 - Ye/x¢elye
t=0

X4l = Xt - ¥Vt
xg = 1000

Ve, X = 05
where p = 1/1+§.

SETS
T TIME PERIODS  /0%10/
TI(T) FIRST PERIOD
TE(T) EXTRACTION PERIODS;
TI(T) = YES$(ORD(T) EQ 1):
TE(T) = YES$(ORD(T) LT CARD(T));:
DISPLAY TI, TE;
SCALAR DELTA DISCOUNT RATE /0.1/
SCALAR DISC DISCOUNT;
DISC = 1/(1+DELTA);
DISPLAY DISC;
PARAMETER RHO(T) DISGOUNT FACTOR:
RHO(T) = DISG*¥(ORD(T)-1):
DISPLAY RHO:
SCALAR RSRV INITIAL RESERVE /1000/;
VARIABLES Y(T) PRODUCTION
X(T) REMAINING RESERVES
PI TOTAL PROFIT
POSITIVE VARIABLES X, Y;
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EQUATTONS

NETREV NET REVENUE

STOCK(T) STOCK ADJUSTMENT :
NETREV.. PI —E— SUM(TE, RHO(TE)*Y(TE)*(1-Y(TE)/X(TE)));
STOCK(T+1).. X(T+1) =E= X(T)-Y(T)
X.FX(TI) = RSRV; -
X.LO(T) = .001;
X.UP(T) = RSRV;
Y.L(TE) = RSRV/(CARD(T)-1);
MODEL MINE /ALL/ ;
SOLVE MINE USING NLP MAXIMIZING PI:
PARAMETER ANSWERS FINAL SOLUTION VALUES:
ANSWERS(T, "STOCK") = X.L(T);

ANSWERS (T, "PRODUCTION") = Y.L(T):
ANSWERS(T, "LAMBDA") = STOCK.M(T);
DISPLAY ANSWERS;

The output from this job will include a display of created subsets

and created parameters. This display is shown here:
---- 7 SET TI FIRST PERIOD
0
---- 7 SET TE EXTRACTION PERIODS
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
---- 11 PARAMETER DISC = 0.909 DISCOUNT
.- 14 PARAMETER RHO DISCOUNT FACTOR
0 1.000, 1 0.909, 2 0.826, 3 0.751,
4 0.683, 5 0.621 6 0.564, 7 0.513,
& 0.467, 9 0.424, 10 0.386
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The last portion of this file creates a report of the results,

grouping in a single table production, remaining reserves, and the
dynamic Lagrange multiplier. The table is shown here:

--- 35 PARAMETER ANSWERS FINAL SOLUTION VALUES

STOCK PRODUCTION LAMBDA
0 1000.000 238.229
1 761.771 183.679 0.524
2 578.092 141.821 0.471
3 436.271 109.713 0.421
4 326.558 B5.094 0.373
5 241 .464 66.219 0.327
6 175.246 51.741 0.280
7 123.505 40,613 0.231
8 82.891 32.026 0.176
9 50.865 25.433 0.106
10 25.433 EPS

IThe table is not identical to that shown on page 35 of Conrad and
and Clark. The difference is due to their reporting current value
multipliers (lambdas), whereas GAMS computes, as marginal values,
present value multipliers.
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B.8 AN INPUT-OUTPUT ANALYSIS

Many agricultural and tresource economists have used input-output
(I-0) methods in their research, although I-0 analysis is normally mnot
thought of as an application of mathematical programming metheds. It
can be demonstrated that for an I-0 system with only one primary factor
of production, output and price determination in an I-0 system can be
viewed as the unique solutions to a primal and a dual programming
problem, (C. Yan, Introduction to Input-Output Economics, Holt,
Rhinehart and Winston, Inc., New York, 1969). The I-0 model is well
known and can be summarized algebraically by

X=4A+Y

where
X is a (Mxl) vector of output from the n sgctors of an economy;
A is an (nxn) matrix of input-output coefficients (the input

from industry i to produce a unit of output j);

Y is an (nxl) vector of exogenous final demands for the n
sectors. '

Rearranging this set of equations, we have

X - AX = (I-A)X = Y
or
X = (I-a)"1 v,

That is, this set of equations provides estimates of the output from
each sector needed to deliver Y to final demand.?

The solution to this problem requires the calculation of'(I—A)'l
and GAMS does not have the capacity to invert a matrix directly.
However, for a matrix B, one solves the problem :

B 0 Ral e1
B Q2 e
B . .
0
B Qn €n

2Under quite general conditions, one can show that (I—A)“1 does
exist. (F. V. Waugh, "Inversion of the Leontief Matrix by Power
Series", Econometrica, 18(1950):142-154.)
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where ej are nxl column vectors with a 1 in the ith row and zZeros
elsewhere. The (nxl) vectors, Qi, are the n columns of B-L. By
substituting (I-A) for B, we obtain the Leontief matrix.

The GAMS routine that follows calculates this Leontief matrix and
illustrates how it can then be used to derive forecasts of output
needed to meet new final demand levels and how to calculate type I and
type Il income multipliers. It should be noted that one could maximize
any linear function and still obtain the appropriate inverse matrices.
By maximizing the sum of the Q's, the sales or output multipliers are
the dual variables to the problem. The transactions matrix used in the
example is in figure B.1,

Figure B.1l. Transactions Table for Empirical Example (inm thousands of &)
Qutput

Inputs Ag. Man. Trans. Serv. House, Other Total
Final Sales

Demand
Agriculture 34 280 o4 e 7 138 459
Manufacturing 25 1,134 5 201 607 12,340 14,312
Transportation 5 304 54 105 22 119 £10
Services 48 962 71 877 2,558 2,381" 6,897
Households w 208 3,242 252 2,697 869 1,447 8,715

Other Final
Payments v 148 8,380 228 3,017 4,652

-Total Purchases 468 14,312 510 6,897 5,715
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*INPUT OUTPUT COMPUTATIONS
SETS
I SECTORS /AGR,MFG,TRNS,SVC,HH/
ALIAS (I,J,K); ’
TABLE T(I,J) TRANSACTIONS TABLE HH ENDOGENOUS
AGR  MFG TRNS  SVC HH

AGR 34 290 7
MFG 25 1134 5 201 607
TRNS 6 304 54 105 22
SVC 48 962 71 877 2558
HH 208 3242 252 26%7  869;

PARAMETER G(J) GROSS OUTPUT HOUSEHOLDS ENDOGENOUS
/AGR 469 ,MFG 14312, TRNS 610,5VC 6897,HH 8715/
PARAMETER A(I,J) DIRECT REQUIREMENTS HH ENDOGENOUS;
A(I,J) = T(I,J)/GWJ);

PARAMETER ID(I,K) IDENTITY MATRIX ORDER CARD(I);

ID(I,K) = 1${ORD(I) EQ ORD(K));
PARAMETER AP(I,J) DIRECT REQUIREMENTS HH EXOGENQUS;
AP(T,J)S(ORD(I)LT CARD(I) AND ORD{(J)LT CARD(I))
= A(I,J);

PARAMETER IDP(I,K) IDENTITY MATRIX ORDER CARD(I)-1;
IDP(I,K)S(ORD(I)LT CARD(I)) =

1$(ORD(I) EQ ORD(K));
DISPLAY A,AP,ID,IDP:

VARIABLES
EXOBJ OBJECTIVE HOUSEHOLDS EXOGENOUS
ENDOBJ OBJECTIVE HOUSEHOLDS ENDOGENOUS
XEX(J,K) INVERSE MATRIX HH EXOGENOUS
XEND(J,K) INVERSE MATRIX HH ENDOGENOUS:
EQUATIONS
OBJEND OBJECTIVE FUNCTION HH ENDOGENOUS
OBJEX OBJECTIVE FUNCTION HH EXOGENOUS

MATEND(I,K) MATRIX CONSTRAINT HH ENDOGENCUS
MATEX(I,K) MATRIX CONSTRAINT HH EXOGENOUS;

OBJEND. . SUM(J, SUM(K,XEND(J,K))) =E= ENDOBJ;
OBJEX. . SUM(JS$ (ORD(J)LT CARD(I)),

SUM(KS$ (ORD(K)LT GARD(I)),XEX(J,K))) =E= EXOBJ:
MATEND(I,K)..  SUM(J,(ID(I,J)-A(I,J))*XEND(J,K)) =E= ID(I,K);

MATEX(I,K)$(ORD(I)LT CARD(I) AND ORD(K)LT CARD(I))..
SUM(J, (IDP(I,J)-AP(I,J))*XEX(J,K)) =E= IDP(I,K):
MODEL ENDO INVERSE HH ENDOGENOUS /OBJEND,MATEND/:
MODEL EXOG INVERSE HH EXOGENOUS /OBJEX,MATEX/;
OPTION LIMROW = 0; OPTION LIMCOL = O;
SOLVE ENDO USING LP MAXIMIZING ENDOBJ;
PARAMETER ENDINV(J,K) I-A INVERSE HH ENDOGENOUS;
ENDINV(J,K) = XEND.L(J,K);
SOLVE EXOG USING LP MAXIMIZING EXOBJ;
PARAMETER EXINV(J,K) I-A INVERSE HH EXOGENOUS;
EXINV(J,K) = XEX.L(J,K);
DISPLAY ENDINV,EXINV;
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PARAMETER HHINC(J) HOUSEHOLD INCOME BY SECTOR

/AGR 208 ,MFG 3242,TRNS 252,SVC 2697 ,HH 869/
PARAMETER DIR(J) DIRECT INCOME REQUIREMENTS:

DIR(J) = HHINGC(J)/G(J);

PARAMETER ETA(K);

ETA(K)$(ORD(K)LT CARD(I)} = SUM(J,EXINV(J,K)*DIR(J)):
PARAMETER TYPEI(K) TYPE I INCOME MULTIPLIERS:
TYPEI (K)$ (ORD(K)LT CARD(I)) = ETA(K)/DIR(K):
PARAMETER EMPL(J) TOTAL EMPLOYMENT BY SECTOR

/AGR 14 ,MFG 286 ,TRNS 30,SVC 483/

PARAMETER EPSI(J) EMPLOYMENT PER DOLLAR PURCHASES:
EPSI(J)$(ORD(J)LT CARD(I)) = EMPL(J)/G(J);

PARAMETER GAM(K):

GAM(K)$ (ORD(K)LT CARD(I)) = SUM(J,EXINV(J,K)*EPSI(J)):
PARAMETER TYPIMP(K) TYPE I EMPLOYMENT MULTIPLIERS;
TYPIMP(K)$ (ORD(K)LT CARD(I)) = GAM(K)/EPSI(K):
DISPLAY

HHINC,DIR,ETA, TYPEI , EMPL, EPSI,GAM, TYPIMP;
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