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A RISK EVALUATION OF GROUNDNUT GENOTYPES
IN DROUGHT PRONE AREAS OF INDIA
by

Elizabeth Bailey and Richard N, Boisvert"
ABSTRACT

A major source of risk facing farmers in the semi-arid tropics is the variation in crop
production. Much of this variation is due to fluctuations in environmental conditions affecting
yield. One approach to reducing this risk is through the introduction of more stable varieties. The
traditional approach to identifying such varieties has important shortcomings.

This study’s objectives are to explore ways of generating data on genotype performance, to
examine alternative approaches to evaluating genotype performance under variable environmental
conditions, and to apply them in selecting risk reducing groundnut genotypes in India.

The performance of rainfed crops is largely determined by the availability of moisture.
Historical data on meteorological factors are available for three sites in India. An independent
measure of relative water availability is developed. Using data from a single site trial on the
response of 22 groundnut genotypes to a range of drought conditions, the yield response to relative
water available is modelled. While a number of alternative response functions are tried, the translog
is found to fit the response relationship best. The estimated response functions are used to simulate
yields for each genotype for a series of years in each location. )

Having generated yield distributions, the traditional approach to stability analysis is
compared with a number of approaches incorporating economic concepts of risk; mean-variance
analysis, ordinary and generalized stochastic dominance, mean-Gini and mean-extended Gini
criteria, and the exponential utility, empirical moment generating function approach.

Within each location, results are quite consistent across the different approaches. The
degree of risk aversity affects the ordering of genotypes. While high yielding genotypes are
preferred over the moderately risk averse range, they are not dominant at higher levels of risk
aversion. The incorporation of site specific meteorological information leads to different
recommendations than those based on the trial results alone.

Results depend crucially on the estimated response relationships. Given the consistency of
results within each location, it seems that the direction of most concern for future research lies less
in the choice of selection criteria, than with improved modelling of agro-meteorological
relationships.

The authors are Senior Research Officer, Northern Ireland Economic Research Center and Professor, Department of
Agricultural Economics, Cornell University, respectively. Support for the theoretical work came from Hatch NY(C)121412.
This research would not have been possible without the cooperation of scientists from the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT). Tom Walker alerted us to the need for research of this kind and provided
helpful comments on an earlier draft. J. H. Williams and R.C. Nageswara Rao provided the experimental data set.
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A RISK EVALUATION OF GROUNDNUT GENOTYPES
IN DROUGHT PRONE AREAS OF INDIA
by

Elizabeth Bailey and Richard N. Boisvert

I - INTRODUCTION

Agricultural producers throughout the world face a variety of price, yield and re-
source risks which result in year-to-year variability in incomes. The types and severity of
the risks depend on the farming system, weather and market conditions and the policy and
institutional setting. These risks can be particularly burdensome in less-developed countries.
In the semi-arid tropics, a major source of risk facing farmers is the year-to-year variation
in crop production. Such variability can be largely attributed to fluctuations in environ-
mental factors that affect plant growth and yield, particularly available moisture. To help
stabilize agricultural yields, the international agricultural research centers are working to de-
velop higher yielding varieties that also perform well in variable environments (Hazell 1986).
ICRISAT, for example, has an extensive ongoing program to evaluate the performance of
groundnut (peanut) genotypes under a range of drought conditions.

The evaluation of varieties has, in general, been based on data from multisite, mul-
tiseason nursery trials. The analysis of such data generally follows the approach developed
by Finlay and Wilkinson (1963) in which the yields of each genotype at each site are re-
gressed on an environmental index, the mean yield of all genotypes at each site. The slope
coefficient is regarded as a measure of a genotype’s yield stability. The use of
multilocational trial data presumes that the spatial replication reflects the actual distribution
of environmental conditions in producing areas. If this presumption is invalid, the
evaluations may be of less value to farmers concerned with how a genotype will perform
over time in their region. Furthermore, data from such trials are often incomplete and thus,
results may be biased.

To deal with the data problems, plant scientists at ICRISAT have undertaken exten-
sive experiments involving 22 groundnut genotypes of comparable maturity, and 96 drought
treatments. Results from their statistical and physiological analysis of the data are presented
in Nageswara Rao and Williams (1985), Nageswara Rao, Williams and Singh (1985), and
Williams et al. (1986). The purpose of the research on which this bulletin is based is to
extend the analysis and contribute further to the evaluation of the performance of ground-
nuts in drought prone areas by incorporating economic concepts of risk efficiency and
decision making under uncertainty. Yield response functions are estimated from the
experimental data. These response functions are unique in that they account for the effects
of both the quantity and timing of water application. These are in turn combined with
historical meteorological data from three sites in two of India’s major groundnut producing
regions to simulate yield distributions for each genotype in each location. Having generated
yield distributions, the efficient genotypes identified by various risk criteria are compared.
The results have implications both for specific genotype selection by location and for the
design of future experiments.

The bulletin is organized in the following way. Section I contains a brief discussion
of the joint regression approach to the analysis of stability used by plant scientists, while
section III contains a review of the economic concepts of risk and utility maximization, and



introduces several alternative approaches that incorporate efficiency criteria and expected
utility maximization.

The background to the case study of groundnut improvement in India is given in
section IV. The three regions included in the analysis and the importance of groundnuts to
the Indian economy are described; the details of the experiment conducted by groundnut
physiologists at ICRISAT are presented.

Section V' contains a discussion of the derivation of an independent measure of water
stress, relative water availability, and its distribution in the three sample locations. In section
V1, the response relationships between groundnut yields and relative available water are es-
timated, and empirical yield distributions are simulated.

The results of alternative approaches to risk analysis are presented in section VIJ and
compared with results from the traditional stability analysis of the experimental data. The
effects of different assumptions regarding farmers’ utility functions and preferences are
discussed. Section VIII contains conclusions and recommendations for future plant breeding
methodology and risk analysis.

Il - GENOTYPE-ENVIRONMENT INTERACTION AND STABILITY PARAMETERS

The risk involved in the choice of a new variety can be attributed to two sources:
uncertainty associated with environmental factors, and uncertainty about the performance of
any particular variety, arising from the interaction between environmental factors and plant
-productivity. To quantify this risk, early approaches to the study of genotype-environment
(GE) interactions by plant breeders were based on analyses of variance (ANOVA) of
experimental results. The variance components were used to separate out the effects of
genotypes, environments, and their interactions; in multisite, multiseason trials, the GE
interaction was decomposed further into first order interactions, genotype x year and
genotype x location, and a second order interaction, genotype x location x year. In general,
the second order interactions tend to be much greater than the genotype x location or
genotype x year effects (Moll and Stuber 1974; Ojomo and Adelana 1970). While ANOVA
provides information about the magnitude of GE interactions, it ignores the stability of
individual entries in the trial and does not help in the selection of a stable variety.

The Joint Regression Approach to Stability Analysis

As an alternative, Finlay and Wilkinson (1963) developed the joint regression ap-
proach for comparing varietal performance in several locations over several seasons to iden-
tify genotypic differences in adaptability. This is an extension of the work by Yates and
Cochran (1938) and involves regressing yields on an environmental index. The mean yield of
all varieties at each location in each season, the "site mean", is used as a measure of the en-
vironment’s productivity. For each variety, a regression of individual yield on site mean
yield is computed:

where Y = the [);lleld of the i" variety at the jth site, and Y. . = the mean yield of all
varletles at the j*"* site in a given season. Using this procedure, Finlay and Wilkinson (1963)
proposed the regression coefficient, bi’ as a quantitative measure of phenotypic stability: a)
varieties with b. = I have average stability. When this is associated with above average yields
over all environments then the variety exhibits general adaptability (A in Figure 1); if the
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Figure 1. GE Interaction (adapted from Finlay and W_llklnson,‘ 1963)

variety has below average yields in all environments then it is poorly adapted to all envi-
ronments (B in Figure 1); b) varieties with b; > I have below average stability; small
changes in the environmental index produce large changes in yield. Such a variety (C in
Figure 1), is specifically adapted to high yielding. environments; and c) b; < 1 indicates
above average stability; the variety shows little change in yield despite large changes in the
environmental index. Such a variety, being specifically adapted to low yielding environments
(D in Figure 1), will have above average yields in poor environments but relatively low
yields in better environments.

Finlay and Wilkinson (1963) use the term adaptability with reference to the yield of
a variety relative to the average yield in any given environment, while stability refers to the
degree of variation in yields of a variety across environments. A variety’s mean yield over

sites (Yi') is used as a comparative measure of its performance, and is plotted against b..
Each variety is represented by a single point on the plot. One result of their study is that
the variability (between varieties) in phenotypic stability (b;) is inversely related to mean
yield, giving rise to the triangular configuration of points in l’-“igure 2.
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Figure 2. Generalized interpretation of varietal properties when "
stability parameters plotted against variety mean yields.
(Source: Finlay and Wilkinson 1963).

Absolute phenotypic stability would be represented by a regression coefficient of
zero. Finlay and Wilkinson define an ideal variety as the one with maximum phenotypic sta-
bility (bi approaching 0), and maximum yield potential in the most favorable environment.
However, they find that the varieties with high phenotypic stability all have low mean
yields; they are "so stable, in fact, that they are unable to exploit high yielding environ-
ments" (Finlay and Wilkinson 1963, p.752). This implies that one must accept a compromise
between stability and yield potential.

Eberhart and Russell (1966) use a similar model, regressing varietal yields on an en-
vironmental index. Although their environmental index was defined somewhat differently,
the main contribution of the work was to suggest a second measure of stability, in addition
to the slope coefficient. A variety that differs in its response from the majority of the vari-
eties in a trial will have marked deviations around its regression line. These scientists suggest
that a function of these deviations, S di> be used as a second measure of stability, where
S di is the residual mean square corrected by a constant which is a measure of inexplicable
environmental variation (the residual experimental error from the ANOVA table). They de-
fine an ideal variety as one with a high mean yield, a unit regression coefficient, and de-
viations, S di» 3 small as possible.

This approach of regressing varietal yields on site means has intuitive appeal, is sim-
ple to apply and allows easy visual comparison of varieties. Consequently it has been used



extensively by geneticists, plant breeders and other crop scientists as a means of ranking va-
rieties by some measure of stability. However, the shortcomings of the approach have also
been extensively discussed in the literature. Some authors take issue with the basic con-
tention that GE interactions are linear functions of the environment (e.g. Knight 1970; An-
derson 1974). Others have shown that regressions on site means do not satisfy fundamental
statistical requirements, e.g. the site means are not statistically independent (Freeman and
Perkins 1971), there exists bias in the estimates when estimated by ordinary least squares,
and b; and S* ;; are not independent measures of stability (Hardwick and Wood 1972).

One further issue in this type of evaluation is the failure to distinguish between the
temporal and the locational dimensions of GE interactions. Changes in a genotype’s perfor-
mance over time, within one location, can be attributed to fluctuations in the weather, while
differences in performance between locations in a given year are a function of fixed loca-
tional factors, such as soil characteristics, as well as the prevailing weather conditions in
each location.

To deal with this issue, Evenson ef al. (1978) distinguish between the two sources of
variability in performance. They define stability as low sensitivity to environmental changes
over time, within a location. It is this environmental variation that is of importance to pro-
ducers. Environmental variability across locations, on the other hand, while not being of
concern to producers, has implications for crop improvement research when genotypes are
being tested at multiple sites. Adaptability refers to the performance of a genotype with re-
spect to changes in environmental factors across locations.

Evenson et al. (1978) also propose regressing genotypic yields on an environmental
index, but use a two equation model to derive measures of stability and adaptability sepa-
rately. They argue that mean yield of all genotypes within .an environment is ngt a good
measure of site potential; therefore, they regress yields of the i’ variety, at the jt‘ location
in period ¢, on the average of the two highest yields, and a location dummy variable to re-
move systematic locational effects. The slope coefficient on the environmental index is then
interpreted as a stability parameter. Similarly, the second equation contains a time period
dummy variable and the slope coefficient is regarded as an estimate of an adaptability
parameter.

Evenson et al. (1978) find that the two parameters are not closely related. They
examine the relationship between stability and adaptability and the relative yielding ability
of a variety by plotting the estimated stability and adaptability parameters against the aver-
age of the best two relative yields for each variety. They find that high levels of stability
and adaptability do not appear to reduce the performance of varieties in the locations to
which they are best adapted. However, it should be noted that they are dealing with data
from international trials, where one would expect differences in locational environmental
factors to be large. Finlay and Wilkinson (1963) used data from barley trials at a number of
sites, all in South Australia, and Eberhart and Russell (1966) used data from trials all in
north Iowa, which implies a far greater homogeneity of locational factors.

A final objection to methods that employ regression of varietal performance on en-
vironmental indices is that the results are both location and nursery specific. The regression
coefficients are specific to the nursery (set of genotypes) tested; a genotype identified as
being stable, on the basis of a low regression coefficient, is stable only relzative to the other
genotypes in the trial. Similarly, the deviations around the regression (S di proposed by
Eberhart and Russell (1966) as a second measure of stability, are specific to the environ-
ments in which the trials were conducted.



Regression on Independent Environmental Variables

The use of a structural model of the relationship between genotype performance and
environmental variables may eliminate the problem of nursery and locational specificity in-
herent in the previous approaches. In those models the slope coefficients are measures of a
genotype’s sensitivity to the totality of environmental factors. When critical environmental
variables can be measured, they can be included as factors in each genotype’s production
function, and their effects quantitatively assessed. This approach, as used by plant physiolo-
gists, has in the past been based largely on results from greenhouse trials where the perfor-
mance of a plant in response to controlled and measured factors can be easily recorded. Un-
der field conditions, the necessary measurements of environmental factors have seldom been
available. However, much of the more recent agronomic and agro-meteorological literature is
concerned with the measurement and modelling of the relationship between plant perfor-

mance and such environmental factors as daylength, temperature and soil moisture under
field conditions.

Hardwick and Wood (1972) regress yields on environmental factors that are measured
independently of plant performance. The regression coefficients in their model can be in-
terpreted as stability or adaptability parameters. How the coefficients are interpreted will
depend on the environmental variables included. Binswanger and Barah (1980) identify three
types of plant independent variables: ’control variables’ such as fertilizer, 'site variables’ that
vary across location, but not over time, such as soil characteristics, and ’weather variables’,
such as rainfall which vary across location and over time.

Focusing on the effect of weather variables, if a stable variety is defined as one that
is insensitive to variations in weather, then the regression coefficients on the weather vari-
ables should be close to zero for a stable variety. In effect "we are looking for low explana-
tory power of the regression" (Binswanger and Barah 1980, p.15). This has implications for
relevant hypothesis tests and the interpretation of measures of ’fit’. Other problems will in-
volve errors arising from possible misspecification of the model or the omission of relevant
variables. If an omitted variable is correlated with a variable included in the model then
parameter estimates will be biased. An understanding of the relationship between environ-

mental variables is needed before any conclusions can be drawn on their interactions with
plant performance.

Some Final Observations

Despite the progress made in resolving the issues surrounding sample design and the
specification of an appropriate structural model, much of the literature on genotype-envi-
ronment interaction fails to discuss how, and by what criteria, the trade-off between yield
and stability is to be made. One exception is the approach proposed by Binswanger and
Barah (1980), results of which are reported in Barah et al. (1981). They identify stability as
the converse of the degree of risk faced by the producer; a more stable variety is less ’risky’.
Using multisite, multiseason trial data, the stability and adaptability components of the
overall variance in yield of each genotype are estimated using the mean squares from the
ANOVA table for each genotype. The estimated stability standard deviations are then plot-
ted against mean yields. The genotypes can then be classified in terms of risk (stability) ef-
ficiency. A genotype is defined as risk efficient if no other genotype with the same mean
yield has a lower standard deviation, or no other genotype with the same standard deviation
has a higher mean yield. It is not possible to assess the trade-off between yield and standard
deviation in the resulting efficient set without knowing something more about decision-
makers’ attitudes toward risk and returns. This mean-variance approach is one of a number
of methods discussed in the following section on choice under uncertainty.



IIl - CHOICE UNDER UNCERTAINTY

In this section a variety of approaches to decision making under uncertainty are re-
viewed, before discussing their application to the problem of genotype selection under en-
vironmental variability.

Review of Expected Utility Maximization and Risk Aversion

In a risky situation, the decision maker must choose between alternative courses of
action whose outcomes are determined by the state of an uncertain environment. Letting a J
= the _] act or alternative course of action; s; = the it state of the environment; p; = P(s )
= the probability that s. occurs; and x.. = the outcome of a. given that s. occurs, the ex—
pected utility hypothesis is based on preferences that are consistent with tfne axioms of or-
dering, transitivity, continuity, and independence, for which there exists a utility function,
U(.), such that: a) if any risky action, a;, is preferred to another, a,, then U(a ) > U(az)
and b) U(a .) = E. U(xlj) = Z plU(xU) The optimal act, aj*, is that Wthh max1mlzes ex-

pected utility (Anderson, D1llon and Hardaker 1977):

(2) U(a F) = MaxU(a) Max[ZpU(x 7.
J J

The utility function is taken to be a single valued function of some measure of wealth X.
Several increasingly restrictive conditions may be imposed on the utility function, U( x)

First, it is assumed that individuals prefer more wealth to less; this implies a mono-
tonically increasing utility function with marginal utility of wealth strictly positive, U(x) >
0. Second, it is generally assumed that the utility function U{x) exhibits decreasing marginal
utility of wealth implying a concave function with U”(x) < 0; this is equivalent to assuming
risk aversity.

A risk averse individual prefers a sure amount to taking a risk, ie., UfE(x)] >
E[U(x)], as long as the sure amount is not less than the minimum outcome from the gam-
ble. This is demonstrated, for a simple lottery, in Figure 3. Suppose an individual is given
the choice of playing a lottery that pays X ] units of x with probability p yand X, units of x
with probability py= 1-p I The expected outcome is E(x) = Z sz As can be seen

from Figure 3, when the utility function is concave, the expected utility of the lottery,
E[fU(x)], is less than the utility of the expected outcome:

(3) E[U(x)] = ¥ pU(X;) < U[E(x)] = U[Y p;X;].
1 1

The certainty equivalent, CE, is the amount, in units of x, such that U(CE) = EfU(x)]; it is
the certain amount that will give the same utility as the lottery. Most risk averse individuals
are willing to pay an insurance premium to avoid the uncertainty involved in the lottery.
Pratt’s risk premium, II{x), is the difference between the certainty equivalent and the
expected outcome of the lottery; for risk averse individuals, II(x) > 0.

In many economic applications, wealth might be measured in terms of annual income or some measure of long-term
asset position. In applying these decision models to genotype selection, if there are no differences in product quality,
then one can ignore prices and assume that yield is the appropriate measure of wealth.
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Figure 3. lllustration of the concepts of risk aversity, certainty
equivalence, and the risk premium, 7

The single valued utility function U(x) is not a unique representation of preferences;
any positive monotonic transformation of a utility function leaves the ranking of certain
outcomes unchanged. The same does not hold for the ranking, in terms of expected utility,
of uncertain outcomes. Expected utility rankings are invariant under any positive linear
transformation of the form: V(x) = a + bU(x), b > 0 (Henderson and Quandt 1980). While
the sign of the second derivative, U”(x), provides an indication of an individual’s attitudes
toward risk, its magnitude is no indicator of the degree of risk aversity because U”(x) is not
invariant under such linear transformations. The degree of risk aversity is, however,
uniquely measured by the Arrow-Pratt absolute risk aversion function:

(4) ry(x)=~U"(x)/U(x),
Values of r 4(x) are local measures of the degree of concavity or convexity of a utility
function and are unique measures of preferences; it can be shown that r A( x) is unchanged
by any positive linear transformation of U(x):
ifVix)=a+bU(x), b>0,
Vix) = bU(x), V'(x)=bU"(x), and

ra(x) = -bU"(x)/bU(x) = -U"(x)/U(x).



Relative risk aversion is defined as:

(5) rp(x)=-xU"x)/U(x) = xr 4(x)

Arrow (1965) suggests that utility functions for risk averse individuals should display
decreasing absolute risk aversion (DARA), i.e., the degree of risk aversion decreases as
wealth increases, but increasing relative risk aversion (Boisvert 1972). The assumption of
DARA constrains the first derivative of the absolute risk aversion function to be negative:

(6) 1 4(x) =(U"(x)? - U(x)U"(x)}/U(x)* < 0

Given the conditions for risk aversity: U(x) > 0 and U”(x) < 0, this implies a further con-
dition on the utility function; a positive third derivative is a necessary (but not sufficient)
conditzion for DARA. A necessary and sufficient condition for DARA is U(x)U"(x) >
U”(x).

Bearing these conditions in mind, the discussion now turns to the application of ex-
pected utility (EU) maximization and the development of other selection criteria.

Empirical application of EU maximization involves identifying the alternative ac-
tions, a;, specifying all possible states of nature along with their probabilities of occurrence,
identifying the possible outcomes of each action, X5 given the alternative states of the en-
vironment, deriving a measure of the utility of eacf‘{ outcome, U(x..), and hence determin-
ing the utility of each action Ei[ Ul X )J. The action maximizing E{I’J will be selected. This
’decision theoretic’ approach to EU maximization assumes that preferences are completely
known, i.e., that a single valued utility function can be determined, and that probabilities
can be specified.

When preferences are known and can be precisely formulated, the decision theoretic
approach to maximizing expected utility gives a unique and complete ordering of actions,
but in applied problems preferences are rarely known, are difficult to measure, and are not
unique across decision makers. In many cases, however, individual decision makers’ prefer-
ences may not be required; for instance, when dealing with policy questions, one is more
interested in specifying how a group of individuals with similar preferences might respond
or, in the case of plant breeders, one may be acting as an agent representing the preferences
of a group of individuals. Under these circumstances other ordering criteria can be speci-
fied. Such criteria, in the absence of complete information on preferences, provide a partial
ordering of alternatives by identifying two subsets: those that are ’risk efficient’, for which
no clear preference can be determined without further information on preferences, and
those that clearly would not be preferred by any individual in the group (Boisvert 1985).

That is, given a set of conditions, or restrictions, placed on the set of utility func-
tions of a group of individuals, then prospect A is preferred to prospect B, in terms of ex-
pected utility, if E, U > E pU for every utility function in the defined set. Such a criterion
is a sufficient condition for expected utility maximization. The efficiency criterion is an
optimal criterion if it is both a necessary and a sufficient condition for expected utility
maximization. An optimal efficiency criterion minimizes the efficient set of choices by dis-
carding those that are inefficient.? Any further reductions in the efficient set require fur-
ther restrictions on the admissible set of utility functions. The more restrictive the assump-
tions about preferences, the smaller the efficient set. In short, an efficiency criterion is a
set of necessary and sufficient conditions on the probability distributions of outcomes for

2 Prospects are inefficient in the sense that they would never be preferred by an expected utility maximiger in the
group of decision makers defined by the restrictions on the utility function.
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one action to be preferred to the other, in terms of expected utility, by all individuals in a
particular group defined by conditions placed on the utility function.

Efficiency Criteria 1: EV Analysis

Perhaps the simplest and most widely used approach to efficiency analysis is the ex-
pected return-variance (EV) approach. This approach equates risk with variance (or the
standard deviation) and the EV criterion can be stated as: if A and B are two uncertain ac-
tions, and y, > p p and o, <o B with at least one strict inequality, then A is preferred to
B. Any choice between alternatives in the risk efficient set involves a trade-off between
mean and variance and requires knowledge of the decision maker’s preferences.

Despite the widespread application of the EV criterion in the economics and finan-
cial literature, there are a number of important objections to its use. First, the EV approach
is consistent with the EU hypothesis when utility can be specified as a function of the mean
and variance only. Using a Taylor approximation to the unknown true utility function, the
utility of a risky prospect, f(x), can be expressed as a function of its mean and higher mo-
ments about its mean (Anderson et al. 1977, p.92). The mean and variance completely spec-
ify the normal, and log-normal, distributions; odd moments about the mean are equal to
zero, and even moments about the mean are functions of the variance. Accordingly, when
returns are normally distributed, whatever .the form of the utility function, it may be speci-
fied in terms of the mean and variance through the Taylor series expansion around the mean
(Anderson et al. 1977, pp. 192-193). Alternatively, regardless of the form of the distribu-
tions of outcomes, if a quadratic utility function is assumed, the EV criterion is also consis-
tent with expected utility maximization (Boisvert 1972). However, both these assumptions
that make the EV criterion consistent with the expected utility hypothesis have undesirable
properties. The assumption of normally distributed outcomes is empirically unrealistic in
many cases. Day (1965) has demonstrated that the distributions of yields may deviate sub-
stantially from normality. The quadratic utility function has a third derivative of U= 0; it
follows that r A’( x) = U"Z/U'Z > 0, ie., the quadratic utility function exhibits increasing

absolute risk aversion. This is a theoretically unacceptable restriction to place on prefer-
ences. : '

Second, from a more practical point of view, EV analysis identifies risk with vari-
ance which means that extreme gains, as well as extreme losses, are considered undesirable.
There may be cases where an increase in variance is not undesirable, for instance, if it is
accompanied by an upward shift in the location of the distribution. One can envisage a sit-
uation where one distribution has both a higher mean and a higher variance than a second
distribution, and with all its outcomes lying to the right of those in the second distribution.
Under EV analysis, no clear preference can be determined, while clearly the first distribu-
tion would be preferred by any individual who prefers more to less.

Efficiency Criteria 2: Stochastic Dominance

The development of the theory of stochastic dominance has provided alternative ef-
ficiency criteria. If the value of the cumulative distribution function (CDF) of a preferred
choice never exceeds that of an inferior choice, then the preferred choice is stochastically
larger than, or stochastically dominates, the inferior choice. The stochastic dominance crite-
ria provide a means of selecting alternatives that are optimal, according to expected utility
maximization, for a specified set of utility functions.

Initially three such criteria were developed, requiring increasingly restrictive as-
sumptions about preferences. These are reviewed in some detail before proceeding to
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discuss Meyer’s (1977) "generalized" dominance criteria, commonly referred to as stochastic
dominance with respect to a function.

Ordinary Stochastic Dominance

It is useful at this point to specify the notation that is used in the following sections.
Define two risky prospects, F and G, with continuous outcomes lying in the range [ab],

X ,

having CDFs F(x) and G(x), where F(x) = P[X < x] = f f(t)de , and dF(x) = f(x)dx,
a

where f(x) is the probability density function, and F(a) = 0 and F(b) = 1.

X X
Define Fy(x) = [ F(t)dt, and Fy(x)= J Fy(t)dt. The expected value of a
a a
b
risky prospect F is: EF(x) = f xdF(x). The expected utility of a risky prospect
a
b
Fiss EgU = [ U(x)dF(x).

a

Statistically, F stochastically dominates G, or is stochastically larger than G, if F(x)
< G( x) for all x, with at least one strict meahuality. In its economic use, stochastic domi-
nance is defined as: F dominates G by the i*" degree stochastic dominance if, and only if,
E FU > EGU forall U € Uz where Ul is a specified class of admissible utility functions.

First Degree Stochastic Dominance (FSD) was developed by Hadar and Russell (1969,
1971) and Hanoch and Levy (1969). It imposes mild restrictions on the utility function;
preferences are restricted to the set of utility functions, U I that are monotonically increas-
ing. U, = {U: U continuous, U’'>0}; it follows that -oo < r ,(x) < oo. The ordering rule
for FSD is: F dominates G by FSD if, and only if, F(x) < G(x) for all x in [a,b] with a
strict inequality for at least one value of x.

The proof of sufficiency involves showing that if F(x) < G(x), or F(x)-G(x) < 0,
then E FU > EGU, or E FU-EGU > 0. Necessity can be proved by contradiction. This in-
volves showing that if the conclusion above does not hold ie., if F(x) - G(x) > 0, then
there exists a utility function U € U > such that EpU U < 0 Such proofs are given by
Hadar and Russell (1969; 1971) and Hanoch and Levy (19&

The rule for FSD can be interpreted as F dominates G if, for every value of x, P/ X
< x] is not larger for F than it is for G. Graphically, this means F(x) may never lie to the
left of G(x). If the distributions cross, then no conclusion regarding FSD can be drawn.

A corollary to the rule (proved by Hadar and Russell, 1971) is that if F dominates G
by FSD, then all the odd moments of F(x) are greater than those of G(x); when x is in the
range [0, oo/, then all moments of F(x) exceed those of G(x). The first odd moment is the
mean, therefore if F dominates G, BE > Bg- The reverse does not necessarily hold,
however; one cannot identify first degree stochastically dominant distributions simply by
comparing their means.

Second Degree Stochastic Dominance (SSD) was developed independently by Hanoch
and Levy (1969) and Hadar and Russell (1969). It assumes a further restriction on the
utility function, that of decreasing marginal utility. U 2={(U: U continuous, U’>0, U"<0 }
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identifies the class of all strictly concave functions and represents all risk averse individuals.
This assumption restricts the absolute risk aversion function, r 4(x), to the range [0, oo].

The ordering rule for SSD is: F dominates G by SSD if, and only if, F 2( x) <G 2( x)
for all x in [a,b], with a strict inequality for at least one value of x. The proofs of suffi-
ciency and necessity can be found in Hadar and Russell (1969).

Graphically, SSD is interpreted as F is preferred to G, by all decision makers who
are risk averse if, and only if, the area under F(x) is less than that under G(x). When the
CDFs cross, the area between F(x) and G(x) when F(x) lies above G(x) must be less than
the area between them when F(x) lies below G(x).

Two corollaries are proved by Hadar and Russell (1971): a) if F dominates G by
SSD, then pp. > B and b) if bp = ko and F dominates G by SSD, then UZF <
Fishburn and Vickson (1978) show that when the CDFs cross only once, then F dominates G
by SSD if, and only if, bp > b

It should be noted at this point that the mean-variance (EV) criterion is a special
case of SSD. When the utility function is assumed to be quadratic, or when F and G are as-

sumed to be normally distributed, then the SSD efficient set is the same as the EV efficient
set.

Third Degree Stochastic Dominance (TSD) was developed by Whitmore (1970). A
third restriction on U(x), a positive third derivative, is imposed such that U; = (U: U con-
tinuous, U’>0, U”<0, U”>0)}. Recall that, as was shown earlier, this is a necessary, but not
sufficient, condition for decreasing absolute risk aversion (DARA); it is possible to have
U”>0 and not have DARA. It follows that U, can contain utility functions exhibiting con-
stant and increasing, as well as decreasing, absolute risk aversion. The restrictions on U 3
are therefore not as restrictive as imposing DARA.

The ordering rule for TSD is: F dominates G by TSD if, and only if, a) F3(x) <
G3(x), for all x in [a,b], with a strict inequality for at least one value of x, and
b) Fz(b) < Gy(b), ie. if F3(x) never exceeds G3(x) and the total area under F(x) is less
than the total area under G(x).

The proofs of necessary and sufficient conditions are given by Whitmore (1970). He
also presents a corollary of his theorem: if p F = W and F dominates G by TSD, then o? F<
ozG (inequality is not strict).

Any further reductions in the efficient set will require the imposition of further re-
strictions on the utility function, but there is no theoretical justification for such restric-
tions. If there appears to be a theoretical foundation for assuming DARA, then, defining
Uyj={(U.:Ue€U, r,(x) < 0), since U, is contained in U, we can expect a dominance
criterion for U d (DSD’} to be stronger than TSD. Fishburn and Vickson (1978) find that
DSD and TSD are equivalent when p F = B, but that with unequal means DSD is stronger.
At the time of their writing the DSD criterion was limited to discrete distributions; Fishburn
and Vickson could not give general necessary and sufficient conditions for DSD.

Stochastic Dominance With Respect to a Function

Ordinary stochastic dominance has some shortcomings. First, it may not be discrimi-
nating enough and a decision maker will be left with a large efficient set of choices. Any
further reduction in the size of the set would require theoretically unacceptable restrictions
on preferences. Second, the existing restrictions on preferences imposed by the SD criteria
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may be difficult to support theoretically, or may not conform to empirical findings. For in-
stance, King and Robison (1981a), in measuring decision-makers’ preferences, found that
most individuals exhibited increasing risk aversion over lower income levels.

There is, therefore, a need for criteria that offer greater flexibility and discriminat-
ing power. Ordinary SD criteria describe classes of admissible preferences by assuming re-
strictions on the form of the utility function. Stochastic dominance with respect to a func-
tion (SDWRF), developed by Meyer (1977a; 1977b), is a criterion which orders risky actions
for a particular group of decision makers defined by placing assumed, or measured, restric-
tions on the upper and lower bounds of their absolute risk aversion function: r q(x) =
- U"(x)/U(x). The interval can be as wide or as narrow as desired.

Meyer defines U(ri(x), ry(x)) as a group of agents with expected utility functions
satisfying rl(x) < -U{(x)/U(x) < rz(x), where r(x) is the absolute risk aversion function,
r A( x). Meyer’s criterion provides, for any two functions r,(x) and r2( x ), the necessary and
sufficient conditions for one CDF to be preferred, or indif%erent, to another by all agents in
the class U/r (%), ro(x)j]. In this respect, SDWRF is a generalized version of ordinary
stochastic dominance: if r,(x) = -oo and rofx) = oo then SDWRF will identify the same
efficient set as FSD; if ry(x) =0 and ro(x) = oo then SDWRF will identify the same effi-
cient set as SSD.

Meyer’s more general approach, by allowing the specification of explicit bounds on
risk aversion, allows the ranking of distributions that could not be ranked by ordinary
stochastic dominance. In addition, by varying the values of r j(x) and ro(x), the effects, on
the choice of action, of changes in the degree of risk aversion can be examined.

Discussion

The decision theoretic approach to ordering uncertain actions has limited applicabil-
ity due to the difficulties involved in eliciting accurate information on preferences, particu-
larly in the form of a single valued utility function. The EV approach is consistent with the
expected utility hypothesis only under certain conditions. The stochastic dominance
approach is based on Bernoullian decision theory and expected utility maximization, but
does not require explicit knowledge of preferences; it does, however, require specification of
the probability distributions of the outcomes of each action. This has been the cause of
some reservations regarding the empirical application of stochastic dominance criteria.

A necessary condition for FSD and SSD, is that the lower bound of a dominated dis-
tribution cannot be less than that of an unpreferred distribution, or that a dominant distri-
bution may not have a greater probability of the worst possible outcome than an unpreferred
distribution.  This requirement focuses attention on the lower, left-hand, tails of the
cumulative distribution functions. Many researchers are concerned about the emphasis this
places on the estimation of the lower, extreme values and their associated probabilities. If
the lower tails of two CDFs are very similar, then the results of a stochastic dominance
ordering will be very sensitive to any measurement errors. However, it can be argued that
it is precisely this area of the distribution that producers are concerned about, i.e., the risk
of falling into the lower tail, or the risk of some disastrous outcome occurring, and any
approach to decision making that is to take account of this risk must, implicitly, deal with
the same problem. Anderson et al. (1977) argue that we must either accept the best that we
can do and try to estimate lower tails as accurately as possible, or be forced to declare
efficiency analysis infeasible.
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An associated problem is the lack of statistical tests for stochastic dominance results;
we are unable to test whether the differences between CDFs, identified by stochastic domi-
nance criteria, are significantly different.

Given the null hypothesis, Hy EpU = EGU, the alternative hypothesis, H 40 18 EgU
<EgUorE U > ELZU. A Type I error occurs when HO is rejected (H 4 accepted) when H
is true; a Type II error when H, is accepted when it is not true. Inaccurate predictions of
orderings represent a Type I error, while the inability to order actions represents a Type II
error.  Cochran, Lodwick and Robison (1982) propose that the measurement errors
associated with estimating a single valued utility function in the decision theoretic approach
to EU maximization will lead to large Type I errors. The stochastic dominance approach
while reducing the probability of Type I errors, will do so at the expense of increasing the
probability of Type II errors.

Pope and Ziemer (1984) have gone some way toward testing the power of the
stochastic dominance approach. Studies in stochastic efficiency differ in the way that the
distributions are estimated. One alternative is to assume a parametric family of probability
distributions and use sample data to estimate the underlying population parameters; the
other, a non-parametric approach, is to use empirically estimated probability distributions.
Pope and Ziemer compared the two approaches, comparing the parametric, or "plug-in"
method, using appropriate Maximum Likelihood parameter estimates, for the normal, log-
normal and gamma distributions, with the estimated empirical distribution function. They
identify three possible conclusions that can be drawn from the comparison of the estimated

A A A A A
CDFs, F and G, either: A: neither distribution dominates, B: G dominates F, or C: F domi-

A

nates G. Suppose that the correct (true) ranking in the population is that the true popula-
tion distribution F dominates the true population distribution G. In comparing the estimated
distributions, the occurrence of A or B results in an error regarding the conclusion about the
dominance in the population. Pope and Ziemer (1984) argue that a Type B error
(concluding that G dominates F when in fact F dominates G) is more serious than a Type A
error (concluding that neither distribution dominates when in fact F dominates G), as it will
result in a strictly erroneous, rather than a simply incomplete, ordering. The alternative
estimators were compared in a Monte Carlo experiment using a number of parameter values
and sample sizes, and their performance evaluated according to the relative percentages of
correct rankings and the probability of Type A and Type B errors. They found that there
was no noticeable difference between estimation methods, in the probability of Type A and
Type B errors, and both declined as sample size increased. In terms of correct rankings, the
empirical distribution compared favorably with the Maximum Likelihood methods, especially
with small samples and regardless of the underlying parent distribution. They conclude that
for most applied problems in agricultural risk analysis, the empirical approach is probably
the best estimation method.

Efficiency Criteria 3: Mean Gini Analysis

The popularity of the EV approach to choice under uncertainty is attributable to its
ease of application; one need only calculate and compare means and variances. An alterna-
tive approach, developed by Yitzhaki (1982), is based on a function of Gini’s mean absolute
difference. The approach has the convenience of the EV approach but does not equate risk
with variance, and the decision rules are shown to be necessary conditions for SSD.

Gini’'s mean absolute difference is the expected value of the absolute differences
between all pairs of values of a random variable with distribution F(x):
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[ «BNe o]
(7) A=Eflx-)]= [ [ |x-MdF(x)dF(y).
~00—00
It is dependent on the spread of the values among themselves and not on deviations from

some constant value such as the mean. Gini’s coefficient of concentration is G = A/2pu
(Kendall and Stuart 1958).

Yitzhaki proposes that a necessary condition for a distribution F, to dominate an-
other, F,, by FSD and SSD is: By > pyand p; - I'y > py - Ty, with at least one strict in-
equality, where I‘i is defined as one half Gini’s mean difference:

(8)  Ty=1/2[[|x-YdF(x)dF(y),
which can be written as:
%) r.=f Fy(x)[1-F (x)]dx

where I' = A/2 = uG. Proof of this proposition is given in Yitzhaki (1982). The same condi-
tions are also derived from Yitzhaki’s development of an extended Gini inequality index.

Yitzhaki (1983) defines the absolute parametric Gini index of equality for a distri-
bution F defined over the range [a>0, b] as:

b

(10)  &(v)= [ [I-F(x)]¥dx, v > 0,
0
with the following properties:
a) §(v) is a non-increasing function of v:
b

(11) 88(v)/8v = [ Inf1-F(x)] [1-F(x)]¥dx < 0

0

b ) when v=0, §(v)=b;

b b
c) when v=1, §(v) = [ [1-F(x)]dx =b- [ F(x)dx = p;
0 0
| b b
d) when v=2, §(v) = [ [I1-F(x)]?dx = [ [1-2F(x)+F(x)?]dx
0 ‘ 0
b

=0f [1-F(x)] - [1-F(x)]* dx = p - T .

The absolute parametric Gini index of inequality is defined as
b

(12)  p=-6v)=T(v)= [ [I-F(x)] - [1-F(x)]"dx .
0
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I'(v) is a measure of the degree of inequality, or the degree of dispersion, among points in a
given distribution; §(v) = p-T(v), the index of equality takes account of the mean and de-
gree of inequality.

Yitzhaki (1983) defines necessary conditions for ranking two distributions according
to §(v) = p -~ I(v). Under the assumption U(x) > 0, a necessary condition for F; to domi-
nate F,, in terms of expected utility is:

61(v) _>_52(v) for all v > 0.

Under the additional assumption of risk aversity, U”(x) < 0, the necessary condition be-
comes:

§4(v) 2 685(v) forall v > 1.

If the two distributions cross only once, then these are also sufficient conditions for second
degree stochastic dominance.

It follows that, under the assumption of risk aversity, a necessary condition for FI to
dominate F,is that p; > tyand p; - I 5, where N I';(2). This will be referred
to as the Mean-Gini (]MG) criterion.

An alternative way to look at this criterion is that the most equal (least variable)
distribution will be that which maximizes the Gini index of equality §(v) in (10). This
index can be regarded as a weighted integration of the area under the CDF. A risk averse
decision maker will place more weight on values in the lower tail than in the upper tail.
Changing the value of v affects the weights attached to the points on the distribution;
increasing v will increase the weights attached to the lower tails and decrease those attached
to the upper tails. The parameter v can be regarded as a measure of aversion to inequality:
0 < v < 1 represents aversion to equality, v = ] represents indifference, and v > I represents
inequality aversion (Yitzhaki, 1983). F(x) can be interpreted as a measure of the rank of
any given observation x: as x approaches the upper value b, F(x) approaches unity, as x
approaches its lowest value a, F(x) approaches zero. It can be shown that 8(v) is a
decreasing function of rank, F, and hence equality will be maximized, with respect to F, for
all v, when observations are concentrated at b (Yitzhaki, 1983).

The construction of the MG efficient set is simpler than for SSD; it requires only the
calculation of means and Gini’s mean differences. Since the MG criterion is a necessary
condition for SSD i.e., SSD implies MG, every SSD inefficient (dominated) distribution will
be inefficient by MG. The reverse is not necessarily true. Every MG inefficient
distribution is not necessarily inefficient by SSD; a distribution may be inefficient, under
the MG criterion, even if it is contained in the SSD efficient set. In short, while all MG
efficient distributions are SSD efficient (by necessity), some SSD efficient distributions may
be MG inefficient and the MG efficient set may, therefore, be smaller than the SSD
efficient set. In other words the MG criterion exhibits greater discriminatory power. In
contrast to the EV approach, which requires a trade-off between mean and variance, the
MG criterion allows a prospect with a larger mean and a greater degree of dispersion to be
preferred, if its higher mean compensates for the higher degree of variability. This supports
Hanoch’s and Levy’s assertion that an increase in variability is not necessarily undesirable if
it is accompanied by a shift to the right in the location of the distribution. It is not known,
however, what the implications of this greater discriminatory power are, in terms of the
admissible set of risk averse decision makers. If the MG criterion is reducing the SSD
efficient set, it is doing so by rejecting some choices that may be preferred by some risk
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averse individuals in the admissible set defined by U 5 = { U: U>0, U<0 ). The
implication is that the MG criterion applies to some subset of U 2

Buccola and Subaei (1984) suggest a number of reasons and produce results that sup-
port the hypothesis that the MG criterion best represents the preferences of relatively
weakly risk averse decision makers. In one of the few empirical applications of MG
analysis so far reported in the literature, Buccola and Subaei compare SDWRF (with varying
absolute risk aversion intervals) with EV and MG criteria. The MG efficient set is identical
to the SDWRF efficient set when 0 < rA(x) < 0.0015. As the upper bound on rA(x) is
increased to 0.0045 and then to infinity (SSD), hence admitting more strongly risk averse
individuals into the admissible set, the SDWRF efficient sets increasingly diverge from the
MG efficient set. Buccola and Subaei conclude that, for representing weakly risk averse
individuals, the MG approach deserves close attention.

In another study, Bey and Howe (1984) examine the empirical performance of the
MG criterion compared to the EV, mean-semivariance (ES), FSD, SSD, and TSD criteria.
They compare the resulting efficient sets in terms of size, common membership and proper-
ties of the efficient portfolios. The MG efficient set was by far the smallest; the average
MG efficient set consisted of only 19% of the average SSD efficient set. In all cases MG
efficient portfolios were SSD efficient; in addition, in most cases, they were also a subset of
the TSD efficient set. There was a strong tendency for the MG efficient set to contain
mostly those portfolios with high returns and high variances. Bey and Howe conclude that
the MG criterion is potentially useful if the admissible set of decision makers could be more
accurately defined.

Although it is not possible to define the precise absclute risk aversion intervals rep-
resented by the MG efficient portfolios, it might also be argued that this is no great disad-
vantage. Efficiency criteria were, after all, developed in response to the problems involved
in the precise specification of preferences. Furthermore, as Yitzhaki (1982) points out, the
MG approach is similar to Baumol’s (1963) expected-gain confidence-limit (EL) criterion
where decision makers choose alternatives that maximize u subject to a given level of L = p
- ¢0 > 0. For ¢o =T, the criteria are the same and are not unlike other safety-first criteria.
As with the EL approach, a prospect of greater risk can be preferred over another, by the
MG criterion, if the mean is large enough.

Exponential Utility-Moment Generating Function Approach

A number of possible approaches to decision making under uncertainty have been
discussed, based on the hypothesis that a decision maker will prefer the choice that maxi-
mizes his expected utility. FEach approach has its advantages and disadvantages. Direct EU
maximization requires explicit specification of the utility function and the statistical distri-
bution of outcomes. The EV approach is only consistent with expected utility maximization
under certain conditions. Results from efficiency analysis may be inconclusive. The final
approach to be discussed, the exponential utility-moment generating function (EUMGF) ap-
proach, leads to a complete ordering of uncertain choices, according to expected utility.

The EUMGTF approach was developed by Hammond (1974) who observed that the
negative exponential utility function yields a simple expression for expected utility in terms
of the moment generating function (MGF) of the random variable. Yassour et al. (1981)
applied Hammond’s approach to the case of discrete choices among technologies with
stochastic yields. Their approach is simplified slightly by assuming, in our case, that costs
and product prices are the same for all varieties. Let 7. be the it technology (variety) with
stochastic yields Yi and fixed price P, then returns to the it technology, R; = PYZ-. Under
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EU maximization, T; will be preferred to T . if E[U(Ri)] > E[U(Rj)]. The EUMGF
approach assumes a negative exponential utility’ function:

(13) U(RI-) = —exp(-rRi) = -exp(—rPYl-),

where r is a measure of absolute risk aversion. The MGF of a random variable Yi’ dis-
tributed Fi’ is:

oo

(14)  My(t) = E[exp(tY;)] = [ exp(ty)dF(y).

(e o]
Expected utility can then be expressed as:
(15) E[U(Rl-)] = —E[exp(—rPYl-)] = —Mi(—rP).

The certainty equivalent (CE) as defined in equation (3) is a sure return whose utility is
equal to the expected utility of a risky prospect: U(CE) = EfU(X)]. 1t follows that:

(16) U(CE) = -exp(-rCE) = E[U(R;)] = -M(-rP), and
(17) CE = - (I/r)ln[Mi(—rP)].

Maximizing expected utility is equivalent to maximizing the certainty equivalents of
each technology. The technologies can then be ranked by their CE’s, under alternative
specifications of the measure of absolute risk aversion, r 4 Yassour et al. (1981) derive
ordering rules for a number of parametric distributions: Normal, Gamma, Chi-square,
Exponential and Poisson. In the case of the Normal, EUMGTF reduces to the EV criterion.
In the other cases, the parameters of the MGF appearing in the decision rules can be
expressed as functions of the means and variances of the random variable. Collender and
Zilberman (1985) extended the approach to the problem of continuous choice and
multivariate distributions, and derived rules for the optimal allocation of land among a
number of alternative crops.

The EUMGF approach has many desirable properties: it leads to a complete ordering
according to EU maximization, and ordering rules, based on means and variances only, can
be derived for any parametric distribution with a finite MGF., Varying the parameter r 4
allows actions to be ranked under varying degrees of risk aversion.

The use of the EUMGF approach also has its shortcomings. First, it depends criti-
cally on whether the assumption of a negative exponential utility function is an acceptable
representation of preferences. The negative exponential utility function exhibits constant
absolute risk aversion; as discussed earlier in this chapter, it has been argued that most indi-
viduals exhibit decreasing absolute risk aversion.

The second problem is that of selecting, under uncertainty about the exact distribu-
tion of returns, the parametric distribution (or MGF) that best represents the empirical data.
Collender and Zilberman discuss various criteria for the selection of a distribution. How-
ever, a recent development of the approach, by Collender and Chalfant (1986), circumvents
this problem. Their approach retains the assumption of an exponential utility function but
replaces the parametric MGF with a non-parametric estimator, the empirical MGF (EMGF).
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Given a random sample of independent and identically distributed random variables
X, (i=1 ... N), the quantities exp(tX;) are also independent and identically distributed;
the EMGF is the sample mean of these variables:

N N
(18)  Mjt) = N1 exp(tX;).
i=1

The selection criteria becomes:

N
(19)  maximize CE = ~(1/r) In[N"' ¥ exp(-rX;)].
i=1

Quandt and Ramsey (1978) show that the EMGF is a minimum variance, unbiased estimator
of the true, unknown MGF. This non-parametric approach allows complete ordering of un-
certain choices without requiring parametric specification of the distribution functions as
long as one is willing to accept the assumption of constant absolute risk aversion.

Application to Selection of Genotypes

A comparison of genotypes using the various decision criteria discussed above, re-
quires a set of observations on the performance of the genotypes over a time span of suffi-
cient length to provide an estimate of the probability distribution of yields. In the absence
of such observations on genotype performance, the assessment and choice of improved
genotypes has largely been based on data from multisite, multiseason trials.

In section II various approaches to the assessment of genotypes in terms of their in-
teraction with the environment are discussed. The standard joint regression approach does
not distinguish between the temporal and locational dimensions of yield variability, and the
resulting ’stability’ parameters are location and nursery specific. It is shown that any choice
between genotypes would involve a trade-off between yield and ’stability’. To rank the
genotypes according to their expected utility would require that preferences be measured in
terms of means and the ’stability’ parameters.

The approach reported by Barah et al. (1981) is an illustration of the use of EV
analysis. The optimal genotype was found using the slope (ratio of mean to standard devia-
tion) of the iso-utility curves as measured by Binswanger (1980). This approach has all the
shortcomings discussed earlier in this section. It assumes either that yields are normally dis-
tributed or imposes a quadratic utility function, thereby equating risk with variance (in this
case the stability component of yield variance). Binswanger and Barah (1980) show that the
results are also nursery and location specific. Risk efficient genotypes are efficient only
relative to others in the nursery and given the environments included in the multisite, multi-
season trial.

The classic example of the application of stochastic dominance to the examination of
how different genotypes perform under uncertain environments is that by Anderson (1974).
Anderson uses data from the Sixth International Spring Wheat Nursery, in which 49 varieties
were compared in trials at 60 locations covering 39 countries. For each variety, the sixty
trial observations on yield make up a discrete sample probability density function (pdf);
each observation is assumed to have equal probability of occurring. The sample pdf’s there-
fore reflect the distribution of yields for each variety, given the environments in which the
trials were conducted.
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All approaches to the appraisal of new varieties, when based on data from multisite,
multiseason trials suffer from the fact that their results are specific to the environments in-
cluded in the trials. Their usefulness in identifying generally stable, or adaptable, varieties
is recognized. The problem comes when one wishes to make recommendations for one par-
ticular area. Producers are concerned only with the variability in production over time.
Whether a variety will be adopted by a group of producers will depend on the environmen-
tal conditions in which they operate, and on how the variety will perform given those con-
ditions. Any recommendations must take account of the environmental variability, over
time, in a given area.

As discussed in section /I, the analysis of GE interactions using independent envi-
ronmental variables is neither location nor nursery specific. However, instead of
interpreting the regression coefficients as stability or adaptability parameters, it is proposed
that, if the trials include a wide enough range of environments, the model can be used to
predict yields for any given environment for which the relevant factors have been measured.
If the probability distributions of those factors can be specified for a given location, then
the distribution of yields can be derived. The decision criteria discussed in this section can
then be applied, and the results will no longer be specific to the trial environments, but will
be specific to the location of interest.

Much of the variability in crop production in semi-arid areas can be attributed to
variable climatic factors, particularly available moisture. It is proposed that one way to
stabilize production in such areas is through the introduction of drought tolerant varieties.
The identification of potential varieties requires trials that include a sufficient range of
rainfall regimes. Such an experiment has been conducted by Groundnut Physiologists at the
International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), in India.

ICRISAT examined the effect of varying degrees of water stress on the yields of 22
-genotypes of groundnut. Irrigation was used to simulate a whole range of drought
conditions varying in their timing, duration and intensity. The experimental results have
been used to measure the relationship between vield and different patterns of water stress.
However, recommendations for a particular area must take account of the incidence of
drought conditions in that area, and consider farmers’ preferences regarding any trade-off
between yield and drought tolerance (stability).

Historical data on the relevant meteorological variables were used in the specification
of empirical probability distributions of drought conditions for three groundnut producing
areas of India, Hyderabad, Anantapur and Gujarat. Combining these distributions with the
experimental results makes it possible to simulate empirical yield distributions and, in turn,
evaluate the 22 genotypes in these three locations according to the various decision criteria
discussed above. Before proceeding with a description of the experimental data and
procedures for estimating response functions, some background on groundnut production is
provided.

IV - GROUNDNUTS IN INDIA: BACKGROUND AND DATA SOURCES

This case study addresses the question: which genotypes should be recommended for
three groundnut producing regions of India, where recommendations are based on yield re
sponse to water stress? The analysis, which is reported in greater detail by Bailey (1988), is
conducted in four steps: a) historical meteorological data in the regions are used to derive
empirical distributions of water stress; b) experimental results are used to model the
relationship between genotype performance and critical environmental factors, in this case
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the timing, duration and intensity of water stress; c¢) results from (a) and (b) are combined
to derive yield distributions for each genotype in each region; and d) the yield distributions
are used to evaluate genotypes for each region according to the alternative selection criteria
discussed in section I/I.

This section contains a brief discussion of groundnut production and its importance
to the Indian economy, and a description of the three selected sample locations. The design
of the trial, conducted by ICRISAT, on the response of 22 genotypes to water stress, is then
discussed. Subsequent sections deal with the measurement of water stress and the empirical
distributions of water stress in each of three sample locations, the estimation of a response
relationship between yield and water stress, and the generation of yield distributions.

Groundnut Production in India

Arachis hypogaea L. (Groundnut, Peanut) is a leguminous oil seed, distinguished
from other such species by the fact that its fruits mature underground. It is adaptable to a
wide range of soil and climatic conditions. Its major use worldwide is as a source of
cooking oil, but it is also processed into high protein products, such as peanut butter. Whole
nuts are used for confectionary purposes, and whole roasted nuts are a delicacy worldwide.
The oilcake remaining after oil extraction is also a nutritious animal feed; the groundnut
haulms (or hay) remaining after harvest may be used locally as livestock fodder.

Commercialization of groundnuts has made it an important cash crop in many coun-
tries. Approximately 70% of the world’s production is grown in the rainfed areas of the
semi-arid tropics (ICRISAT 1983). India is the largest producer, accounting for over 30% of
the world’s production, followed by China and the United States (Table 1).

Average yields in India, Senegal, Sudan and Nigeria, are low compared with those of
China and, particularly, the United States. Low yields can be attributed to two major fac-
tors: unreliable rainfall, and biological constraints, such as pests and disease. Groundnuts in
India and Africa are grown primarily under rainfed conditions and therefore suffer the ef-
fects of unreliable, and frequently, insufficient rainfall.

The area planted to groundnuts in India increased steadily in the 1950’s and early
1960’s (Central Statistical Organization, 1984) (Table 2). Over the period 1980-1984, it re-
mained relatively stable, averaging 7.3 million ha., with a coefficient of variation of about
5%; over the same period total production ranged from approximately 5 million metric tons
(M.T.) to 7.3 million M.T., with a much higher coefficient of variation of about 20%, illus-
trating the effect of variability over years in rainfall.

India is a leading exporter of groundnut cake, (Table 3), but it exports less than one
percent of its production in the form of whole nuts. This is in sharp contrast to the United
States which exports 18-21% of its production as whole nuts. Whole nuts are normally des-
tined for the confectionary market and must meet strict requirements regarding size, color,
flavor, etc.

Groundnuts produced in India are used predominantly for oil extraction; India ex-
ports no groundnut oil, retaining its entire production for domestic consumption. India pro-
duced 884,000 M.T. of vegetable oil in 1982-83, and 890,000 M.T. in 1983-84 (Central Sta-
tistical Office 1984). This figure includes oil from eight other oilseeds grown in India but
groundnuts are by far the most important oilseed, making up over 40% of the area, and over
half the total production, of edible oilseeds (Directorate of Economics and Statistics 1984).
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Table 1. Area, Production and Average Yield of Groundnuts in Six Major Groundnut-
Producing Nations

Area Production Yield % World
Production

(’000 ha.) ('000 M.T.) (kg./ha.)

World 1974-76* 18,920 17,830 942
1979-82° 18,844 18,673 991
19842 18,350 20,611 1,123
India 1974-76 7,109 5,720 803 32
1979-82 7,185 5,887 817 32
1984 7,250 6,900 952 34
China 1974-76 1,909 2,247 1,177 13
1979-82 2,385 3,594 1,502 19
1984 2,442 4,900 2,007 24
Senegal 1974-76 1,267 1,228 969 7
1979-82 1,032 691 674 4
1984 873 682 782 3
Sudan 1974-76 795 849 1,068 5
1979-82 971 823 848 4
1984 800 420 525 2
Nigeria © 1974-76 937 393 420 2
1979-82 600 573 954 3
1984 600 550 917 3
United States 1974-76 606 1,701 2,801 10
1979-82 575 1,553 2,700 8
1984 614 2,008 3,270 10

3FAO Production Yearbook 1984

bDirectorate of Economics and Statistics 1984

The Three Sample Locations

In selecting sample locations for the study, our attention was focused on major
groundnut producing regions. Table 4 presents the area, production and average yields of
groundnuts in the ten top producing states in India in 1983-84. Between them, Gujarat and
Andhra Pradesh produced just under half of India’s output; 79% of Gujarat’s production and
72% of the production from Andhra Pradesh are produced in the kharif , Or rainy season.

The selection of specific sites within Andhra Pradesh and Gujarat was largely deter-
mined by the availability of meteorological data. Agriculturally significant droughts occur
when a lack of precipitation leads to the depletion of soil moisture to the point where plants
experience stress. A shortfall in expected rainfall is not, in itself, an indicator of drought;
drought only begins when available soil moisture is exhausted. Thus, when considering
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Table 2. Area, Production and Average Yield of Groundnuts in India

Area
Year Cropped Groundnut % of Groundnut Average
Area Cropped Production Yield

- - - -(000 ha.) - - ~ - (000 M.T.) (kg./ha.)
1950-51 131,893 4,494 3 3,481 775
1955-56 147,311 5,133 4 3,862 752
1960-61 152,772 6,463 4 4,812 745
1965-66 155,276 7,698 5 4,263 554
1970-71 165,791 7,326 4 6,111 834
1975-76 170,995 7,222 4 6,755 935
1980-81 172,305 6,801 4 5,005 736
1981-82 174,764 7,429 4 7,223 972
1982-83 169,657 7,215 4 5,282 732
1983-84 173,324 7,640 4 7,284 953

Source: Central Statistical Organization 1985.

agricultural droughts, other meteorological variables, besides rainfall, must be considered,
such as temperature, wind velocity, and evapotranspiration, as well as other factors, such as
the moisture holding capacity of the soil and the stage of crop growth which will determine
moisture use. Meteorological data for two sites, Hyderabad and Anantapur, in Andhra
Pradesh, and for four sites in Gujarat, were provided by ICRISAT.

Hyderabad (18°N, 78°E) is the location of ICRISAT’s experimental station. Daily
rainfall data are available for the years 1901-1984 and other daily meteorological data, from
ICRISAT’s meteorological station, for 1974-1985.

Anantapur (15°N, 77°E) lies to the south of Hyderabad; Anantapur District is one of
the leading producers of groundnuts in Andhra Pradesh. In 1982-83, 43% of the total
cropped area in Anantapur District was planted to groundnuts, producing 236,040 M.T., 21%
of the state’s total production of groundnuts. Daily rainfall data are available for the years
1911-1984, while other daily meteorological data are available for one year only, 1985.

As shown in Table 4, Gujarat is the foremost groundnut producing state. While
weekly rainfall data were available for four sites in Gujarat, Class A pan evaporation data
(1983-1985) were available only for Anand (22°N, 73°E) in Kaira District. While Anand is
not in the primary groundnut-producing area of Gujarat, it is considered reasonably repre-
sentative of Gujarat’s climate and it was decided to use the rainfall data for the years 1952-
1983 from Anand rather than combine Anand’s evaporation data with rainfall data from an-
other site.

The three sites differ climatically. Figures 4, 5, and 6 show the differences in aver-
age weekly rainfall distributions and evaporative demand across the three sites. (See Bailey
1988 for more detailed meteorological data.)

Hyderabad has three distinct seasons. The rainy season (monsoon, kharif) usually
begins in June and extends into early October. The average annual rainfall (1901-1984) is
780 mm. of which 85% falls in the kharif season; the peak rainfall months are July through
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Table 3. Quantity and Value of Exports by India and Other Leading Net Exporters of
Groundnut Products

Quantity Yalue
1982 1983 1984 1982 1983 1984
—————— MT)------ - - -=-=--(%000) - - - - - -
Cake
India 258,491 236,054 319,413 37,800 32,000 45,000
(37)* (33) (53) (39) (31) (50)
Senegal 194,877 197,000 110,000 30,906 29,000 17,000
(28) 28) (18) (28) (28) (19)
Sudan 72,458 83,308 36,000 13,111 11,516 6,300
(11) (12) (6) (12) (11) (7
Whole nuts
(shelled)
India 36,000 21,500 38,000 32,000 19,600 36,000
(5) (3) (5) (6) 4) (7
USA 200,037 222,399 263,970 171,971 173,971 200,642
(28) (30) (36) (33) (35) (36)
China 107,570 154,302 143,100 76,051 91,002 102,000
(15) 2n (20) (15) (18) (18)
Sudan 88,990 15,510 36,000 34,302 12,341 30,000
(12) (2) (5) (7 (3) (5)
Oil
Senegal 151,485 154,810 108,000 95,242 93,243 108,000
(34) 31 31) (33) (31) (31)
China 54,700 51,271 64,181 35,000 30,979 61,264
(12) (10) (19) (12) (10) (18)
Brazil 77,623 56,962 26,455 44,685 27,467 24,943
(17) (12) (8) (16) 9 (7)

Source: FAO Trade Yearbook 1984

aFigures in parentheses are % of world exports.
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Table 4. Ten Leading Groundnut-Producing States in India, 1983-84

State Cropped Groundnut % Production % All  Average

Area Area Cropped India Yield
Area

- --(000 ha)--- - (000 M.T.) (kg./ha.)
Gujarat 10,695 2,150 20 1,905 26 886
Andhra Pradesh 12,281 1,629 13 1,695 23 1,041
Tamil Nadu 6,469 1,061 16 1,073 15 1,011
Maharashtra 20,270 812 4 834 11 1,027
Karnataka 10,660 843 8 747 10 886
Orissa 8,746 279 3 378 5 1355
Madhya Pradesh 21,402 345 2 247 3 716
Rajasthan 17,350 183 1 174 2 951
Uttar Pradesh 24,574 249 1 160 2 643
Punjab 6,763 58 1 42 1 724

Source: Central Statistical Organization 1985.
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September when 63% of the average annual rainfall is received. Maximum daily tempera-
tures decline from approximately 38°C in early June to 30°C in September-October, and
evaporative demand (pan evaporation) falls from a daily average of about 12 mm. in early
June to 4-5 mm. in October. The post rainy winter season (rabi) lasts from mid October to
January and is dry and cool with shorter days. While maximum temperatures remain around
28°C-30°C throughout the season, minimum temperatures drop from 22°C in September-
October to 12°C-15°C in December-January. The hot, dry summer season lasts from
February until June when the rains begin. Maximum temperatures steadily rise, as does
daily pan evaporation from 5 mm. in January to 12-13 mm. in May.

Anantapur, to the south of Hyderabad, has a longer rainy season (end of May until
mid November), but receives only 560 mm. of rainfall annually. About 60% of the rainfall
comes between August to October. Maximum temperatures remain around 32°C-33°C in the
rainy season and this is reflected in higher daily pan evaporation which declines from 13-14
mm. at the end of May to 8-9 mm. in October and to 6 mm. in November. The lower
rainfall and higher evaporative demand lead to a greater incidence of periodic droughts.

As can be seen from Figure 6, the rainy season in Anand, Gujarat is clearly defined
and short; rainfall is restricted largely to the four months of June to September. However,
average annual rainfall is 913 mm., 95% of which falls during those four months. Average
daily pan evaporation is lower than in Hyderabad, declining from 8 mm. in June to 5 mm.
in October. Crop production in this area is controlled by the short growing season, and any
delay in planting is critical.

In short, while the three sample locations represent the foremost groundnut
producing regions of India, they also highlight the agroclimatic differences in groundnut
growing environments. Hyderabad has a relatively high assurance of adequate rainfall.
Anantapur has a much lower rainfall, with a high and variable incidence of drought.
Gujarat, with relatively high rainfall, has a high incidence of late season drought.

Experimental Data on Groundnuts

The identification of potential risk reducing genotypes for these three sample loca-
tions requires information on yield response to different patterns of drought. The severity
of a drought, in terms of its effect on plant growth and productivity, depends on its inten-
sity, or the degree of moisture deficiency, its duration, and its timing with respect to the
stage of growth of the plant.

In 1982-83, ICRISAT conducted an experiment to study the effects of the three
components of drought, timing, duration and intensity of water stress, on groundnut pro-
ductivity, and the extent of genotypic variability. The experiment was conducted at
ICRISAT’s center near Hyderabad, in Andhra Pradesh. To allow simulation of drought pat-
terns using irrigation, and without any interference from rainfall, the experiment was con-
ducted in the late post rainy and summer‘season.3

The experiment was sown in early December, 1982, after a basal application of fer-
tilizer, on a clay silt alfisol with available water holding capacity of approximately 100 mm.
The crop was harvested in mid-April, 1983. Twenty-two groundnut genotypes of compara-
ble maturity belonging to subspecies fastigiata, varieties fastigiata (valencia) and vulgaris
(spanish) were included in the trial. The genotypes were selected to include lines which

3
The experimental design and preliminary results are described in detail by Nageswara Rao and Williams (1985);
Nageswara Rao, Williams and Singh (1985); Williams et al. (1986). Only a general overview is presented here.
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have been found to be tolerant, average or susceptible to drought in earlier drought
screening trials at ICRISAT (Nageswara Rao and Williams 1985). They include established
commercial cultivars and popular Indian cultivars as well as new accessions and advanced
breeding lines. Details of the 22 genotypes and their GNO identifiers for this study are in
Appendix A.

For the experiment, the land was divided into 12 blocks. Within each block, the
land was prepared in beds and furrows. Each block contained eight beds, running the
length of the block, of 1.2 m. width, divided by furrows 0.3 m. wide. Each genotype was
sown in paired rows (one plot) of 12 m. length running across the eight beds. This
arrangement was replicated three times within each block.

The crop was irrigated uniformly for 30 days after sowing (DAS), to ensure crop es-
tablishment and a fully charged soil profile. The drought treatments, designed to examine
the effects of both single and multiple droughts, varying in timing and duration, were im-
posed thereafter. The drought patterns were developed in relation to four phenological
phases in the groundnut growing cycle: a) seedling-flowering vegetative phase; b) pegging
phase; ¢) podset phase; and d) podfilling to maturity. Twelve drought patterns were selected
and assigned at random to the 12 blocks. Within each block (pattern) the genotypes had
been assigned at random to the plots (paired rows) within each replicate. Line source
irrigation (Hanks er al. 1976) was used to create eight intensities of drought within each
pattern, by varying the irrigation amount systematically across the eight beds.

Table 5 provides details of each of the 12 patterns. Periods of stress are created by
line source (LS) irrigation; release of water stress is represented by a uniform (U) irrigation.
The 12 patterns include single periods of stress over each of the four phenological phases,
plus various combinations of multiple droughts.

Table 5. Timing and Duration of Drought Patterns in the Experiment

Irrigation Patterns
Interval DAS Days Pl P2 P3 P4 P5 P6 P7 P8 P9 PI0 PIl PI2
1 0 15 U U U U U U U U U U U U
2 15 14 U U U U U U U U U U [8) U
3 29 10 LS LS U LS LS U LS U U U LS U
4 39 9 LS LS U LS LS U LS U U U LS U
5 51 6 LS LS U LS LS U LS U U U LS U
6 57 9 U U LS U LS U LS LS U U U U
7 66 6 LS U LS U LS U LS LS U U LS LS
8 72 10 LS U LS U LS U LS LS U U LS 1S
9 82 11 LS U U LS U LS LS U U U LS LS
10 93 7 U 18] U LS U LS LS U LS LS U U
11 100 11 LS U U LS U LS LS U LS LS U LS
12 111 7 LS U LS U U LS LS U LS LS U LS
13 118 11 LS U LS U U LS LS U LS U U LS
14 129 2 U U [8) U U U U U U U U U

Note: DAS = days after sowing; Days = days in interval; U = uniform irrigation of 50 mm.;
and LS = linesource irrigation.
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V - ESTIMATION OF AN INDEX OF WATER STRESS

As stated at the beginning of the previous section, an important part of identifying
potential risk reducing genotypes for specific locations is generating a set of observations on
yields by location. In this study, observations on yield for each genotype in each of three
selected locations are generated in two steps by combining the experimental response to wa-
ter stress with location-specific information on environmental factors. The first step relates
the patterns of drought observed in each sample location to those in the trial, taking account
of all three parameters of drought: timing, duration and intensity. In the second step, the
relationship between yield and different patterns of stress is estimated; location-specific
yield distributions can then be simulated. In this section, an independent measure of water
stress is derived, and the distribution of drought conditions in each location is described.
The specification of the response relationship between genotype yields and water stress and
the simulation of yield distributions are discussed in section VI,

Development of a Measure of Water Availability

To control the drought treatments through the application of irrigation without in-
terference from rainfall, the trial was planted in the late post rainy season and continued
into the summer season under conditions that, meteorologically, are different from those in
the kharif (rainy season). Furthermore, the trial is characterized by discrete applications of
water, irrigation being applied only when symptoms of wilting were observed in the non-
stressed control plots. This is in contrast to the essentially continuous nature of rainfall in
the rainy season, when soil moisture may be continually replenished by rain showers. Thus,
the problem of simulating yields in each of the three sample locations is compounded by the
difficulties involved in translating results from the post rainy season to rainy season condi-
tions. :

To do this, two strategies were tried. The first involves matching each weather pat-
tern to a specific pattern in the trial, using the pattern specific measure of cumulative per-
cent water deficit (%WD) discussed by Nageswara Rao and Williams (1985), Nageswara Rao
et al. (1985) and Williams et al. (1986). The results from both strategies are reported in de-
tail by Bailey (1988) but those from the first strategy were extremely disappointing. There
was little correlation between the patterns in the experiment and the percent water deficits
calculated from the weather data for each site. Furthermore, while the measure of %WD
takes account of the differences in evaporative demand between the two seasons, it does not
take account of the possible carryover of soil moisture from one interval to the next. This
is inherent in the design of the experiment, irrigations being timed according to when soil
moisture has been depleted to the point where non-stressed plants show signs of wilting.

In the second strategy, an index of relative water availability (RAW, available mois-
ture relative to potential water requirements) is developed based on a simple daily soil
moisture budgeting approach. It takes account of the soil moisture holding capacity and the
consumptive water use requirements of the plant, given potential evapotranspiration rates
and stage of crop growth, and also allows for the carryover of soil moisture from one period
to another.

Evapotranspiration (ET) is the sum of the water evaporated from a moist soil surface
and foliage, without passing through the plant, and the soil water used by the plant in
transpiration. Crop dry matter production is closely linked to the amount of water
transpired by the crop (Campbell and Diaz 1986). Potential evapotranspiration (PET) is an
indicator of the possible maximum consumptive use when water is not limiting and there is
full foliage ground cover (Baier and Robertson 1966). It has been maintained that
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evaporation from a freely evaporating open water surface provides an upper limit on PET
(Arnon 1975), and that "ET from a field fully covered with lush green foliage does not
exceed evaporation from a large open body of water in its neighborhood" (Minhas et al.
1973, p.384). Potential evapotranspiration can therefore be viewed from two perspectives.
On the one hand, it is the amount of water potentially required to meet ET demands. On
the other, it can be taken to represent the totality of the prevailing weather conditions, "it is
an index composed of the various determinants of evaporation” (Minhas ef al. 1973, p.384).

When water is freely available, plant development is determined by chronological
time (McGuekin et af. 1987), and evapotranspiration will proceed at the potential rate, but
when water is limited, plant development will be determined by other factors. There are
complex interactions among the plant, soil and meteorological factors which determine how
a plant reacts to a given moisture regime. As a soil moisture deficit accumulates, transpira-
tion is progressively restricted, reducing ET. Under conditions of high temperature, low
relative humidity, high winds, etc., both PET and the plant’s demand for water increase and
the plant will be more sensitive to moisture deficits. Estimating the amount of water avail-
able for ET, relative to PET, gives a measure of the shortfall in water required by the plant.

The amount of water available for transpiration is determined by the amount of wa-
ter left in the soil after other demands for water have been satisfied. Water is supplied by
precipitation and irrigation. If water is supplied at a rate faster than it can infiltrate the
soil surface, then it may be lost to run-off. Water that enters the soil may drain beyond the
root zone. The amount lost to such deep drainage depends on the soil structure and its

moisture storing capacity, Only that water which is stored in the root zone is available for
transpiration.

The problem is that of estimating the soil moisture balance remaining at the end of
each interval that, along with any water added by rainfall or irrigation less any water lost to
run-off or to deep percolaticn beyond the root zone, will be available to the crop in the
following interval. The soil moisture balance and the rate of ET are inextricably linked.
On any given day, consumptive water use not only depends on the soil water available on
that day, but also determines the soil water available for use the next day. Daily
consumptive water use also depends on the stage of crop growth which is a function not

only of time, but also of the preceding scil water conditions and the degree to which ET
demands have been satisfied.

There is a vast literature in the agricultural sciences dealing with the determinants of
the soil-water-plant system. Models of various degrees of sophistication have been devel-
oped; they range from simple soil water bookkeeping methods to simulation models which
incorporate the physiological processes of the plant with detailed information on me-
teorological and soil factors. Much of this literature was reviewed in developing a measure
of relative water availability (see Bailey 1988). A number of simplifying assumptions have
been made in the interests of minimizing meteorological and soil data requirements.

A modification of the simple soil moisture budgeting approach is adopted. The
initial soil moisture balance is determined, inputs of water in the form of precipitation or
irrigation, less any water lost to run-off or deep drainage, are added, the estimated
evapotranspiration is subtracted and the balance carried forward into the next period. The
soil moisture at the end of a given interval of time, {, 15 then expressed as:
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where SWI- = the soil moisture at the end of interval i, P;
irrigation in interval i, Ro; = run-off in interval i, Dr; =
ETI. = evapotranspiration in interval ;.

= precipitation in interval 7, [/ ;i =
deep drainage in interval §, and

In estimating ET, many approaches rely on the use of experimentally determined re-
lationships between ET and PET. A common approach is the use of a crop factor or coeffi-
cient, k, such that ET = KPET, where k varies with stage of growth. Stern (1986) applied
this approach to rainfall data for Hyderabad to derive water requirements of groundnuts, in
10-day intervals, over the kharif growing season; his crop coefficient increases from 0.3 at
planting to 1.0 at 60-90 DAS, declining to 0.6 at maturity. Such crop coefficients are, how-
ever, specific to the experimental conditions. More important, ET will vary with available
soil moisture and, therefore, k has to be corrected when soil moisture is limited (Hanks and
Rasmussen 1982). Furthermore, the crop coefficient is specific to the stage of crop growth
which is partially determined by past soil moisture conditions and ET rates.

The use of crop coefficients highlights the difference in objectives in many of the
studies reviewed. If the objective is to determine optimal irrigation scheduling, then the
crop factor approach is used to determine the amount of water required by the crop at any
stage given PET demands. Our objective, on the other hand, is to approximate the actual
soil water status in any given interval of the growing season. Consequently, the evapotran-
spiration estimated by APET is interpreted as the potential water requirements (PWR =
KPET) of the crop, i.e., it is the amount of water required by the crop for evapotranspira-
tion under optimal soil water conditions and given the stage of growth of the crop. This
can be viewed as the amount of water potentially required by the crop when water is freely
available, and has been freely available over preceding intervals so that the crop has devel-
oped at the optimum rate. Following Stern (1986), it is assumed that evapotranspiration will
proceed at the maximum rate possible, given the available soil moisture.

The daily soil water budget is estimated as folows:

1. The available soil moisture capacity (SWC) is 100mm.

2. Daily PET is approximated by daily pan evaporation‘data.

3. Potential water requirements during any day, f,

20 PWRt = k[ PETI,

where k, is taken from Stern (1986).

4. The water available for evapotranspiration on day ¢ (4W,) is the sum of the soil
moisture balance from the previous day (SW,_ 1) and the water added by precipitation
(Pt) or irrigation (/ t)’ less any losses to run-off or deep drainage (Lt):

(22) AW, =SW, ; + P, + 1, -L,.

It is assumed that losses (Lz) occur whenever the water added, plus that already in the soil,
exceeds the storage capacity (SWC), i.e.,

(23) if SW:-I + P, + 1, > SWC then Ly=(SW, ;+P,+1,)-SWCand AW, = SWC,

i SW,_; + P+ I, < SWC then L, = 0 and AW, =SW,_;+ P, + I,
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It is not possible to differentiate between losses to run-off and to deep percolation. A more
sophisticated approach would take account of the rate of rainfall and infiltration rates.

5. The soil moisture balance at the end of day ¢ (SWI) depends on the estimated rate of
evapotranspiration (ETf) which is determined by the water available (4W,) and the
potential water requirements (PWR,). If available moisture exceeds PWR, then it is
assumed that ET, = PWR, and the surplus is stored as soil moisture; if PWR exceeds
available moisture, then it is assumed that soil moisture is depleted to zero as follows:

(24)  if AW‘t > PWRt then ETt = PWRZ and SWI = AWI - PWR,_,
otherwise ETt = AW[ and SWt = 0.

The soil water balance, SW,, is then carried forward and used in the estimation of the fol-
lowing day's water budget.

To begin the soil moisture budgeting procedure, an initial soil moisture balance must
be determined. In the absence of plant cover, evaporation from a bare soil surface is equal
to 30%-40% of pan evaporation (Boote ef al, 1982). This fact is employed in the determina-
tion of initial soil moisture levels at date of planting (SW,). In the trial, planted in the late
post rainy season, initial soil moisture, before the application of the first uniform irrigation,
is assumed to be zero. In the kharif, soil moisture is assumed to be zero until the first rains
occur; daily ET is then fixed at 40% of pan evaporation and the same rules as above applied
to determine the soil moisture balance on the day of planting.

Daily mean air temperatures during the post rainy - summer season are very differ-
ent to those in the kharif. Plant development is predominantly controlled by temperature:
there are conspicuous differences in the time to flowering, podding and the total duration of
growth of groundnuts between the two seasons (Ong 1986). The 130-day growing period in
the trial is appropriate for the late post rainy - summer season. In the kharif, however, the
normal time to maturity of the genotypes included in the trial would be about 105 days. The
time to maturity of the experimental crop is some 25 days longer in duration due mainly to
the lower temperatures during December, which delay germination, and to the shorter day
length, which delays plant development.

A 105-day growing season was defined for each year for which data were available
in each of the sample sites. Planting dates in each year were determined based on farming
practices and the actual rainfall received. In two years in Hyderabad and 15 years in Anan-
tapur, it was determined that there was insufficient rainfall to allow planting of groundnuts.
In such years, farmers would have planted an alternative crop, such as pigeonpea. The 105-
day growing seasons were then divided into intervals corresponding to the irrigation inter-
vals in the trial. The first 29 days in the trial, which were irrigated uniformly, "telescope”
into about 15 days in the kharif due to the higher temperatures in the early kharif promot-
ing earlier germination. The remaining 90 days of the 105-day growing season are divided
into 11 intervals of eight days each, corresponding to the 11 irrigation intervals in the trial,
plus two remaining days which correspond to the 14th, pre-harvest, interval in the trial.

To account specifically for the effect of timing of water application, the growing
seasons were further divided into four growth phases: G!: seedling-flowering vegetative
phase: intervals 3 -~ 5, G2: pegging to beginning of podset; intervals 6 - 8, G3: podset to
podfilling: intervals 9 - 11, and G4: podfilling to maturity: intervals 12 and 13. The
differences in timing and length of the growth stages in the two seasons correspond to the
differences in time to flowering and podding, and in the total duration of growth, noted by
Ong (1986}.
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A measure of the total available soil moisture during each of these growth phases
(AW i=1,2,3,4) is obtained from the daily water budgets. By assuming that evapotranspira-
tion proceeds at the potential rate, unless soil water is limiting in which case the amount of
water used in evapotranspiration is assumed to equal the amount avallable AW is the sum
of the estimated daily evapotranspiration for the days in that growth stage

(25)  AW; = ¥ ET,.
ter

Relative available water (RAW ) is then defined as available water relative to potential water
requirements:

(26) RAW; = AW,/ PWR;, where PWR; = Y. PWR,
tei

RAW; is effectively constrained to lie between zero and unity as follows:

if AW, > PWR, for all i€i, then ) ET, = ), PWR, and RAW, = I,
tei tel

if AWt < PWRt for any ¢€i, then ET[ < PWR Z ET < Z PWR and RAW < I
tei tei

if AW, = 0 for all t€i, then }; ET, = 0 and RAW; = 0.
tei

RAWi is a measure of the degree to which the crop’s requirements for water during each
growth phase are satisfied. It is not proposed that this approach gives an accurate represen-
tation of the soil water regimes in the different sites and seasons; it simply provides a means
of determining a relative measure of available water that is comparable across sites and sea-
sons. A value of RAW. = 1 indicates that sufficient water was available to meet the
potential water requirements of the crop during the interval, a value less than unity that
available water was insufficient to meet potential water requirements. No notion of the
degree of stress experienced by the plant is attached to the values of RAW RAW . is simply
an index of relative water availability; whether or not the crop expenenced stress 1s revealed
by relating the yields achieved in each pattern to the values of RAWI in each interval.

Distributions of RAW

Table 6 presents summary statistics on relative water availability in each of the four
growth phases in the experiment and each location. Due to the low temperatures during the
early part of the experiment, PET, and therefore PWR, during the early growth phase were
relatively low. Because the experiment was adequately irrigated during the first 28 days

AW. can also be defined as the sum of the soil water balance on the last day of the previous growth stage and the
total precipitation or irrigation, less the amount lost during the interval and the amount remaining in the soil at the
end of the interval which was in excess of requirements and is available in the subsequent interval:

AWi = SWi_1 + X Pt + X It -z Lt - SWi. Expanding, it can be shown that
tei tei tei
AW.= ¥ AW _-SW.= X ET, .
i t i t
tet tei
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Table 6. Summary Statistics on Distributions of RAW

Growth Phases
RAW Gl G2 G3 G4

Experiment

Maximum 1.000 1.000 0.716 0.790
Minimum 0.497 0.012 0.024 0.005
Mean 0.935 0.795 0.507 0.570
Std. dev. 0.148 0.282 0.189 0.269
Skewness -2.105 -1.289 -0.969 -0.936
P[RAVW < 0.5] 0.01 0.18 0.39 0.33
Hyderabad
Maximum 1.000 1.000 1.000 1.000
Minimum 0.394 0.278 0.367 0.000
Mean 0.977 0.934 0.893 0.923
Std. dev. 0.092 0.139 0.166 0.200
Skewness -5.172 -3.062 -1.521 -3.220
P[RAW < 0.5] 0.01 0.02 0.04 0.05
Anantapur ‘
Maximum 1.000 1.000 1.000 1.000
Minimum 0.000 0.000 0.000 0.000
Mean 0.441 0.352 0.453 0.564
Std. dev. 0.299 0.287 0.317 0.392
Skewness 0.468 0.679 0.523 ~-0.274
P[RAW < 0.5] 0.60 0.73 0.64 0.41
Gujarat
Maximum 1.000 1.000 1.000 1.000
Minimum 0.554 0.033 0.008 0.000
Mean 0.986 0.944 0.793 0.603
Std. dev. 0.079 0.188 0.302 0.470
Skewness -5.654 -4.168 -1.200 -0.392
P[RAVW < 0.5] 0 0.03 0.25 0.41

before the drought patterns were imposed, stored soil moisture was sufficient to maintain
relatively high levels of AW during the early growth phase even in plots that received little
or no water, and consequently 0.5 < RAW 1 < 1. RAW , covers the full range from virtually
zero, in the highest intensities of patterns 5 and 7 (P5:8 and P7:8), to unity in adequately
irrigated treatments. As PET increased over the experimental season and the crop matured
(with corresponding higher crop coefficients, k;), PWR increased and this is reflected in
RAYV in growth stages G3 and G4: RAW3 < 0.75 and RAW4 < 0.79. The result is that the
distribution of RAW, even in the later growth phases, is negatively skewed.

In each year in the three locations the total rainfall, the total water lost to run-off or
deep percolation, the total water available to the crop, the total potential water requirements,
and the total number of drought days in Hyderabad and Anantapur, or drought intervals in
Gujarat, were accumulated over the eleven intervals, where drought days (intervals) are de-
fined first, as any day (interval) in which soil moisture is zero, and second, as any day
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(interval) in which soil moisture is 25% of soil capacity or less. Data are reported in Bailey
(1988), but the important differences across sites are summarized below,

In Hyderabad, the total amount of rain received during the eleven intervals was
highly variable, ranging from 154 mm. to 990 mm., with a mean value of 446 mm. Simi-
larly, total losses were highly variable; high losses were, however, associated with high
rainfall and, consequently, there was relatively little variation in total available water which
in many years was sufficient to meet total water requirements. This fact is reflected in the
mean values and negatively skewed distribution of RAW in the four growth phases in Table
6.

Total water requirements in Anantapur were far higher than in Hyderabad due to
higher temperatures, and therefore higher PET rates, while total rainfall was lower, ranging
from only 53 mm. to 523 mm., with a mean of 286 mm. Levels of available water reflected
the variability in rainfall and, on average, provided only 42% of the total water required.
As can be seen from Table 6, the distributions of RAW in the four growth phases in
Anantapur are very different to those in Hyderabad. Mean values are far lower, the
probability of RAW falling below 0.5 far higher and, except for growth phase G4, the
distributions are positively skewed.

In Gujarat, the variation in total rainfall was associated with date of planting. Years
in which planting occured later in the season showed lower total rainfall levels. While mean
rainfall was high, total losses were also high; high water losses, however, generally occured
in years of high rainfall so that even with such high losses, total available water was often
sufficient to meet total water requirements. Years in which a number of intervals were
droughted tend to be either those with low rainfall or those in which planting was delayed
by the late onset of rain; the exception is 1979 which received 1,673 mm. rain but lost most
of it to run-off or deep drainage. Mean values of RAW in each growth phase are similar to
those in Hyderabad, except for G4 (Table 6). The shorter rainy season in Gujarat increases
the probability of late season droughts, consequently the distribution of RAW is less
negatively skewed than distributions of RAW ] - RAW ;.

VI - SIMULATION OF YIELD DISTRIBUTIONS

Having derived an index of relative water availability, RAW, the relationship be-
tween yields in the trial and RAW must be estimated to allow simulation of yields in each
year in each study site.

Yield Response

In examining the experimental data, it was discovered that yields recorded for inten-
sity 8 of pattern 8 duplicated those recorded for intensity 7 of pattern 8. This was
attributed to errors in recording or data entry and therefore one set of observations was
deleted from the data set. Due to these deletions, plus a number of other missing
observations and suspected recording errors, yields in the experiment were averaged over
replicates. Mean pod yields (over all genotypes) for each intensity of each pattern are
presented in Table 7. '

Our objective is to estimate the relationship between yields and RAW through the
specification of a response function for each genotype such that:

27) Y=g (RAW 1)
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Table 7. Mean Yields (gm./m.?) by Pattern and Drought Intensity

Drought Intensity
Pattern® 1 2 3 4 5 6 7 8

P1 315.0 272.7 263.1 230.7 175.8 130.2 91.7 38.1
(45.9)°*  (46.7) (35.1) (37.7) (32.6) (28.3) (22.5) (11.8)

P2 328.1 306.1 316.1 280.3 305.0 280.8 290.7 2559
(48.2) (48.1) (61.3) (65.6) (51.8) (48.5) (52.2) (44.3)

P3 286.4 287.8 212.4 191.7 173.4 123.8 77.0 87.6
(52.5) (63.2) (36.3) (31.2) (24.7) (27.0) (15.2) (24.0)

P4 219.3 263.1 266.0 227.0 182.8 141.9 108.8 71.3
(38.5) (41.5) (46.2) (45.0) (28.0) (26.8) (19.2) (19.3)

PS5 272.7 278.4 291.0 267.2 251.8 196.3 153.4 153.8
(50.9) (64.7) (46.3) (49.1) (44.9) (39.8) (33.9) (28.1)

P6 256.3 244.4 205.2 155.9 113.3 89.5 56.7 37.4
(37.0) (35.6) (35.6) (31.9) (19.4) (22.0) (12.9) (11.8)

P7 269.4 269.3 200.3 131.3 48.8 19.4 2.5 6.9
(38.9) (33.6) (31.2) (24.8) (19.9) (14.0) 4.7 (11.9)

P8 301.8 ° 265.7 267.9 229.9 205.8 172.5 128.4
(51.9) (62.3) (45.1) (36.7) (38.0) (39.6) (37.5)

P9 263.4 250.7 210.8 217.0 195.7 142.4 106.4 823
(51.0) (47.9) (42.6) (33.8) (31.3) (30.7) (22.2) (17.8)

P10 266.9 249.5 231.2 214.4 161.9 102.2 84.3 104.4
(52.0) (42.5) (37.2) (35.9) (41.4) (32.9) (37.3) (36.0)

P11 293.3 288.0 318.3 290.3 219.3 166.4 156.8 101.1
(45.6) (43.1) (58.1) (52.7) (36.8) (29.4) (26.3) (22.0)

P12 267.3 244.3 210.2 179.7 159.2 102.9 67.0 32.3
(52.3) (51.3) (28.6) (23.3) (30.7) (21.7) (15.9) (15.6)

#See sections IV and V for a discussion of the drought patterns and intensities.

bFigures in parentheses are standard deviations.

where ¥ d= thﬁ average yield (over replicates) of the gth genotype in the ath drought il}-
tensity o%pthe pt pattﬁrn, and RAWp i= the ave};age relative water availability in the i
growth phase in the d’ drought intensity of the pt pattern of the experiment, p = 1, ..., 12,

=1, ..,8 and i =1, .., 4. In each location, yields in any year, y, can then be simulated
by using the estimated function and the calculated values of RAW at the sites:
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A A

(28) Y4y, = f, (RAW; )

A A
where ng = estimated yield of the gth genotype in the yth year, f ¢ = the estimated re-
sponse function, RAWyi = relative water availability in the ith growth phase in year y.

in their initial analysis of the experimental results, ICRISAT scientists used.a pattern
specific measure of water deficit (%WD) to compare the effects on average yields of dif-
ferent patterns of drought. The index of relative available water, RAW = AW /PWR, is anal-
ogous to 1 - %WD. Thus, the general results on average crop response to %WD reported by
Nageswara Rao and Williams (1985), Nageswara Rao et al. (1985) and Williams et al. (1986)
are useful in developing some initial hypotheses regarding the response to RAW. The sim-
plest hypothesis is that yield is a linear function of relative water availability in each inter-
val. Such an assumption, however, implies that yield increases monotonically with RAW and
never reaches a maximum (2 biological impossibility), imposes a constant marginal produc-
tivity of RAW in each interval, and does not allow for possible interactions between the de-
gree of relative water availability in different intervals.

In contrast, Nageswara Rao ef al. (1985) found that interactions between different
stages of drought did exist; depending on whether or not the early vegetative phase was
droughted, response to subsequent droughts was modified. They also observed the effect on
vields of water stress in the early growth phase alone. Average yields do not decline
linearly with increasing stress in the early growth stage. This may be attributed to the
groundnut plants’ capacity, at this stage of growth, to lie dormant until soil water is
replenished. From an examination of the disaggregated results from the trial, there are
indications that, over some range, yields may in fact increase with increasing water deficits
in the early growth stage, i.e., over some range, the marginal productivity of RAW may be
negative. For all other growth phases, it is hypothesised that as RAW approaches zero and
the plant is increasingly stressed, a small increase in AW relative to PWRI will result in a
relatively large marginal response, i.e., as RAW — 0, f is large. However, as RAW.
approaches unity, the plant has adequate water and responses to a small increase in AW will
be negligible, i.e., as RAW — ] then f — 0.

Assessment of Response Relationship

Modelling the relationship between RAW and yield proved to be the most problem-
atic part of the analysis. Not only is one concerned with the ability of the model to repre-
sent the experimental results accurately, but one must also deal with the problem of pre-
dicting outside the range of RAW represented in the trial. As discussed in section V, the
full range of 0 < RAW < 1 is not covered in all growth phases in the trial.

Based on these considerations, a number of model specifications were compared on
the basis of a) their ability to model accurately the yield response within the range of RAW
in the trial, and b) their performance in predicting yields in years with drought patterns not
included in this range.

Assessment of goodness of fit of the alternative specifications of the functional rela-
tionship between yield and RAW; - RAW, within the experimental range was based on a
number of criteria. Actual and predlcted yields were compared and the size and pattern of
residuals examined. Recalling, from section II/, that results from any stochastic dominance
analysis are extremely sensitive to any errors in the measurement of the lower tails of the
CDFs, particular attention was paid to the model’s predictive capabilities in the lower yield-
ing environments in the trial.
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Second, predicted yields were regressed on actual vields; an intercept near zero, a
slope coefficient approaching unity and a low MSE indicate a reasonable correspondence
between actual and predicted yields. The predictive performance of a model can also be
assessed using Theil’s inequality coefficient:

T
/1/TZ(YP Y42
(29) U= t=1

/ T / T
UTY (YR + /1Ty (YA
t=1 t=1

where Yz = actual yleld Yt = predicted yield (Pindyck and Rubinfeld, 1981, p.364). If
U = 0, then Y A for all ¢ and there is a perfect fit. Pindyck and Rublnfeld (1981,
p.365) show that the ‘i‘heﬂ coefficient can be decomposed in the following manner:

(30) 1/T z (Y -YAP=(YF -V AP 4 (P ™)t 21 - p)oot
t=1

where YF I7A oP and o* are means and standard deviations of the predicted and actual

yields respectlvely They then defme three proportions of inequality: bias, variance, and
covariance. The bias proportion, oM

@f - ?A)Z
(1/T) %(Yf -YA)

31) UM =

is an indication of systematic error, measuring the extent to which the average values of the
actual and predicted ylelds deviate from each other; UM values close to zero are desirable.
The variance proportion U

P_ AP
(1/T) L (Y] - Y )
t

(32) US =

indicates the ability of the model to replicate the degree of varlablhty in yields in the ex-
periment; again low values are desirable. The covariance proportion, U

2(1 - p)otot

(33) UC =
(1/T) ; (YF -vA)?

measures the unsystematic error and is calculated as the remainder: UC = 1 - UM - US
for any value of U > 0, the ideal distribution of inequality over the three sources is UM
=0, and U®

Assessment of a model’s performance in predicting yields outside the experimental
range was initially based on the computation of predicted yields for three hypothetical cases:
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a) RAWi =1 foralli=1,..4;

I

b) RAW, = 0.1, RAW; = 1, j # 1;

¢) RAW; = 0.1, RAW, = 1, RAW 3 = 0.72, RAW 4 = 0.79.

In all three cases yields are expected to be relatively close to the maximum in the experi-
ment. If yield response to these hypothetical drought patterns met a priori expectations, then
yields were predicted for all years in each location and examined closely for inconsistencies.

Specification of Response Functions

In finding the appropriate response relation, a number of model specifications were
examined. These included: a) a general power function; b) a generalized quadratic and a
third order polynomial; c¢) a function proposed by Minhas et al. (1973) where marginal
products go from oo to zero as the input goes from zero to unity; d) a function proposed by
Mitscherlich (in Hexem and Heady, 1978) which states that yields can be expanded through
increasing levels of any single growth factor as long as that factor is not present in suffi-
cient amounts to produce maximum yields; e) a generalized logistic growth curve and f) a
Gompertz growth curve.

The results from the experimentation with these functions are reported in detail in
Bailey (1988) In general, however, these functions were too inflexible to model the lower
tails of the distribution and did not predict well outside the range of the data, or the non-
linear estimation process did not converge.

As an alternative, a flexible form, the transcendental logarithmic (translog) produc-
tion function was estimated. Letting ng 4 =Y and RAWp i = X; from equation (27), then :

a; 1/2[ 3 b;jinX ;]
(34) Y=g, X; T X, j
1 1

or in logarithmic form:

(35) InY = Inay + Xl: a;lnX; +1/2 Z ]Z bl-jlnXl-lan .
i

(36) The production elasticity e;=dInY/dlnX; = a; + Y. bijlan,
J

J

(38) [y = [by; + (e;-1)e;].Y/X;” and

The elasticities of substitution between inputs, e; ., are not constant, but vary with the level
of inputs (Boisvert, 1982). Recalling that 0 < X i< 1, then InX i < 0. The marginal produc-
tivity, fz., can be positive for a range of values of X . if b, < 0, but can also be negative if
bz" > 0. Positive marginal productivity requires that e: > 0. If e; < 1 then f,; < 0 (and
marginal productivity is diminishing) if bj; < 0 or if bii > 0 and biz‘ < Iei(el-—l)l; if e; > 1,
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as Y = ag, f; = a;a,. ll'he sign of f; will be determined by the sign on a;.

A translog production function was estimated for each genotype in the trial by single
equation OLS. Within the experimental range, predicted yields were close to actual yields
for all patterns, particularly in the lower vielding patterns, and the function did not
overestimate yields in the higher intensities of pattern P2 (early drought), a problem
encountered with many of the other functions that were tried. Regressions of predicted
yields on actual yields produced intercepts close to zero, slope coefficients less than, but

reasonably close to, unity and R? in the range 0.8 - 0.9, except for genotype GNOI16.

Multicollinearity was an evident problem, as exhibited by large standard errors on
estimated coefficients particularly for terms involving X, and, because X ; rarely fell far
below unity, for crossproducts involving X I One potential solution is to remove selectively
those squared and crossproduct terms whose t-ratios are below some critical value.
However, without any a priori rationale for deleting terms, this strategy could ultimately
destroy the flexibility of the function (Boisvert 1982). One of our concerns is with the
prediction of yields when X i’s are outside the range in the experiment, and particularly
when X ;7 — 0. In the initial estimation of the full translog models, there were differences
between genotypes in the sign and magnitude of estimated coefficients on terms involving
X,. As X; — 0, lnXI — -o0 and (ler])2 —+ oo, A large positive coefficient on (lnXI)z,
relative to that on /nX,, or a large negative coefficient on [nX,, relative to that on (lnX])z,
result in high predicted yields. Therefore, for those genotypes that had large, positive,
insignificant coefficients on (lnXI)z, the term was deleted. GNO6 had a large, negative
insignificant coefficient on InX;, relative to (InX;)?, and this term was deleted.

Coefficients, and their associated standard errors, for the log formulation of the final
translog models are given in Table 8. The computed Theil coefficients for predicted yields
in the trial for all 22 genotypes are given in Table 9.

The translog is attractive because of its flexibility; it places no restrictions on
marginal productivity and the elasticities of substitution between inputs are not constant.
Because of this flexibility it is difficult to make general statements regarding response to
RAW in different growth phases. Marginal products were estimated from the final models
for various values of RAW ] -~ RAW . These are presented in Appendix B.

When RAW 7" RAW 4 are set at their mean values the marginal response to RAW in
growth phases 2, 3 and 4 is positive for all genotypes (f: > 0, i = 2, 3, 4) while in growth
phase 1 it is negative (f 7 < 0) for all genotypes except G&\IOZZ; this supports our earlier hy-
pothesis that yields may be increased by some degree of stress in the early phase.

When RAW; - RAW 4 are set at their maximum values, f; >0 fori=2 3 4. In this
case, we are particularly concerned with the marginal products of RAW, and RAW , which
have implications for the simulation of yields in years when values of RAW in growth
phases 3 and 4 exceed the maximum in the trial; while yield response to RAW, and RAW ,,
at their limits in the trial, is increasing, it is increasing at a decreasing rate (f 33 f44 < 0).
At maximum values of RAW, the marginal response to RAW ] is generally negative with the
exception of GNO20 and GNO22, which have large positive marginal products and, to a
lesser extent, GNO2 and GNOQOI15.

Two other scenarios are specified in Appendix B. First, by letting RAW ,; = 0.5, its
minimum value in the trial, and RAW2 - RAW 4= their maximum values, we can compare
the results with those from the previous scenario and gauge the effect of water stress in the
early phase only. Genotypes differ in their response to a change in RAW in the early phase.
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Table 8. Estimated Coefficients for Translog Models, Estimated by Ordinary Least Squares

Independent Dependent Variable, Yga
Variables,
log formP Y1 Y2 Y3 Y4 Y5 Y6
Intercept 6.1026 6.2786 6.3139 6.4534 6.0712 6.3450
(0.203) (0.213) (0.132) (0.140) (0.105) (0.129)
In X4 0.2876 0.6202 0.1772 0.1891 -1.4929
(1.036) (1.087) (1.161) (0.716) (0.922)
In X, 0.3424 0.3665 0.2879 0.3551 0.5990 0.5788
(0.286) (0.300) (0.193) (0.197) (0.153) (0.171)
In X4 0.6480 0.8257 1.1426 1.1258 1.0598 1.1106
(0.587) (0.615) (0.380) (0.405) (0.302) (0.361)
In X, 0.7976 0.5629 0.4180 0.4350 0.1861 0.4161
(0.313) (0.328) (0.201) (0.216) (0.159) (0.198)
(InX,)? -0.4711 -2.7672 0.2811
(0.761) (1.398) (1.014)
(lnX2)2 0.1459 0.1196 0.0445 0.1658 0.0906 0.0808
(0.196) (0.205) (0.126) (0.135) (0.100) (0.1260)
(lnX3)2 ~0.1878 -0.0884 0.1323 0.0734 0.2570 ~0.1470
(0.386) (0.405) (0.248) (0.267) (0.197) (0.235)
(InX4)2 0.0083 0.0172 0.0045 0.0057 0.0387 0.0355
(0.067) (0.071) (0.043) (0.047) (0.034) (0.043)
lnXI.lan -0.0465 0.2233 0.3903 -0.5579 0.2268 0.2394
(1.169) (1.2260 (0.775) (0.807) (0.616) (0.779)
lnXl.lnX3 1.8515 1.4640 0.6396 0.6876 -0.3868 0.1923
(1.735) (1.820) (1.111) (1.198) (0.882) (1.045)
InX,.InX, -0.5317 -0.0226 -0.0384 0.2344 0.4555 -0.0108
(0.674) 0.707) (0.432) (0.466) (0.343) (0.420)
lnX2.lnX3 -1.4236 -1.2058 -0.6504 -0.3783 0.2074 -0.1942
(0.396) (0.415) (0.254) (0.273) (0.202) (0.252)
lnXZ.lnX4 0.4839 0.2566 0.1905 -0.0142 -0.1146 0.0851
(0.328) (0.344) (0.210) (0.227) (0.167) (0.211)
lnX3.lnX4 0.3655 0.2026 0.1048 0.1600 -0.2080 0.0020
(0.290) (0.304) (0.186) (0.200) (0.147) (0.181)
R? 0.8646 0.8582 0.8685 0.8292 0.8227 0.810
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Independent Dependent Variable, Yga
Variables,
log form® Y7 Y8 Y9 Y10 Y11 Y12
Intercept 5.6116 6.5250 5.8690 5.7612 6.3598 5.9725
(0.100) (0.272) (0.077) (0.102) (0.137) (0.103)
In X -1.4953 0.0800 -0.3845 -2.1701 -0.4353 -0.1359
(0.880) (0.393) (0.672) (0.892) (1.200) (0.901)
In X, 0.1488 0.6243 0.3764 0.3438 0.5708 0.6096
(0.146) (0.384) (0.112) (0.148) (0.200) (0.150)
In X5 0.0586 1.7864 0.5029 0.2301 1.0494 0.3971
(0.288) (0.789) (0.220) (0.292) (0.393) (0.295)
In X, 0.2992 0.6284 0.4836 0.3028 0.5682 0.4394
(0.152) (0.420) (0.116) (0.154) (0.207) (0.156)
(InXI)2 -3.3675 ~0.6710 -4.8030 -1.9925 -1.3504
(1.334) (1.019) (1.353) (1.820) (1.366)
(lnX3)2 0.1812 0.0412 0.1575 0.2871 0.1305 0.2230
0.095) (0.263) (0.073) (0.097) (0.130) (0.098)
(lnX3)2 -0.3918 0.3550 -0.0962 -0.3155 -0.0832 -0.2872
(0.188) (0.519) (0.144) (0.191) (0.257) (0.193)
(lnX4)2 ~-0.0189 0.0655 0.0029 -0.0280 0.0101 -0.0301
(0.033) (0.091) (0.025) (0.033) (0.045) (0.034)
lnXl.lnXZ -0.5692 0.6863 -0.6105 -0.8591 0.0808 ~-0.5650
(0.587) (1.571) (0.449) (0.596) (0.801) (0.601)
lnXl.lnX3 2.4390 0.2132 1.0273 2.0693 1.6578 1.9479
(0.842) (2.332) (0.643) (0.854) (1.149) (0.862)
InXl.lnX4 -0.3797 0.3026 -0.2264 0.1221 -0.3844 -0.5359
(0.327) (0.906) (0.250) - (0.332) (0.447) (0.335)
lnX?_.lnX3 -0.9477 -0.5402 -0.3208 -1.0425 -0.4029 -0.4502
(0.192) (0.532) (0.147) (0.195) (0.263) 0.197)
lnXZ.InX4 0.1606 0.0875 0.2679 0.1643 0.1426 0.1430
(0.159) (0.441) (0.122) (0.162) (0.217) (0.163)
lnX3.lnX4 0.1559 0.0526 0.1437 0.1966 0.2950 0.2961
(0.141) (0.390) (0.107) (0.143) (0.192) (0.144)
R? 0.9510 0.6574 0.8581 0.9521 0.7868 0.8866
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Independent Dependent Variable, Yg*
Variables,
log form® Y13 Y14 Y15 Y16 Y17 Y18
Intercept 6.1226 6.2857 6.0585 5.0848 6.4553 6.2776
(0.121) (0.139) (0.149) (0.168) (0.279) 1(0.126)
In X, -0.8239 0.0546 0.5650 0.8278 -0.0486 0.0019
(1.065) (1.222) (1.309) (0.857) (1.430) (1.107)
In X, 0.1745 0.2874 0.0763 0.1649 0.6082 0.2533
(0.177) (0.203) (0.218) (0.236) (0.394) (0.184)
In X, 0.6617 0.8685 1.0417 0.7491 1.2526 0.8791
(0.349) (0.400) (0.429) (0.485) (0.809) (0.363)
In X, 0.4593 0.4823 0.5309 0.4349 0.5647 0.5273
(0.184) (0.2110 (0.226) (0.259) (0.431) (0.191)
(InX)? -1.6031 -1.1551 -0.2001 -0.6561
(1.615) (1.853) (1.984) (1.679)
(InX,)? 0.1365 0.0962 0.0646 0.0902 0.0837 0.1632
(0.115) (0.132) (0.142) (0.162) (0.270) (0.120)
(InX ) -0.0040 -0.1041 -0.0698 -0.1598 0.2090 -0.0893
(0.228) (0.2610 (0.280) (0.320) (0.5330 (0.237)
(InX 4)? -0.0096 0.0160 0.0119 0.0155 0.0328 0.0272
(0.040) 90.045) (0.049) (0.056) (0.093) (0.0410
InX | .InX, -0.3679 0.0648 -0.1333 -0.2301 0.5294 -0.7229
(0.711) (0.816) (0.874) (0.967) (1.613) (0.739)
InX.InX4 0.7354 1.7590 1.8057 1.8840 0.2481 1.5590
(1.019) (1.169) (1.252) (1.435) (2.394) (1.059)
InX | .InX, 0.1815 -0.1682 -0.5652 -0.4549 -0.0978 -0.2740
(0.396) (0.455) (0.487) (0.558) (0.930) (0.412)
InX5.InX4 -1.0417 -0.7264 -0.5544 -0.3927 -0.8057 -0.3742
(0.233) (0.267) (0.286) (0.327) (0.546) (0.242)
InX,.InX, 0.2367 0.0743 0.2053 0.0901 0.2822 0.0875
(0.193) (0.2210 (0.237) (0.271) (0.453) (0.200)
InX5.InX, 0.1036 0.2198 0.2770 0.2524 0.1812 0.2099
(0.170) (0.195) (0.209) (0.240) (0.400) (0.177)
R? 0.9423 0.8797 0.7417 0.6087 0.6519 0.8050
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Table 8. (continued)

Independent Dependent Variable, Yg*
Variables,
log form® Y19 Y20 Y21 Y22
Intercept 6.2608 6.3729 5.6690 6.0302
(0.181) (0.212) (0.1120 (0.210)
In X, 0.0115 0.9058 -0.4120 2.3045
(0.928) (1.863) (0.984) (1.847)
In X, 0.5272 0.2300 -0.0138 0.4383
(0.256) (0.310) (0.1640 (0.307)
In X 1.2022 1.2983 -0.0111 0.7152
(0.526) (0.611) (0.322) (0.605)
In X, 0.4161 0.6591 0.5283 0.6578
(0.280) (0.322) (0.170) (0.319)
(InX,)? . 0.7644 -1.7957 1.6963
(2.825) (1.492) (2.800)
(InX,)? 0.1356 0.0993 0.2033 0.0091
(0.175) (0.202) (0.106) (0.200)
(InX 5)? 0.1591 0.0258 -0.5027 -0.1896
(0.346) (0.398) (0.210) (0.395)
(InX ) -0.0064 0.0628 -0.0082 -0.0208
(0.060) (0.069) (0.037) (0.069)
InX | .InX, 0.0056 0.0559 -1.0286 1.0842
(1.0470 (1.244) (0.657) (1.233)
InX|.InX 4 0.4984 1.4456 2.7875 2.0861
(1.554) (1.783) (0.941) (1.767)
InX;.InX 4 -0.0021 -0.1541 -0.4636 -0.6515
(0.604) (0.693) (0.366) (0.687)
InX,.InX 0.4984 1.4456 2.7875 2.0861
(0.354) (0.408) (0.215) (0.404)
InX,.InX 0.2498 0.0150 0.2135 0.4011
(0.294) (0.337) (0.178) (0.334)
InX 5 InX 4 0.1740 0.1707 0.3359 0.3557
(0.260) (0.298) (0.157) (0.295)
R? 0.7487 0.8707 0.9392 0.8681

a Yg is genotype numbers. See Appendix A for description of genotypes.

b X1 through X4 are relative water availabilities, RAWi for the four growth phases.
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Table 9. Theil Coefficients for Predicted Yields from Final Translog Models

GNO? U M USs U®
1 0.0974 0.0019 0.0399 0.9582
2 0.1101 0.0102 0.0068 0.9830
3 0.1074 0.0078 0.0005 0.9917
4 0.0857 0.0140 0.0061 0.9799
5 0.1152 0.0138 0.0609 0.9253
6 0.0995 0.0164 0.0003 0.9832
7 0.1159 0.0065 0.0583 0.9352
8 0.1383 0.0051 0.0210 0.9739
9 0.0779 0.0182 0.0284 0.9534
10 0.0988 0.0033 0.0062 0.9905
11 0.1013 0.0237 0.0017 0.9746
12 0.0965 0.0164 0.0316 0.9519
13 0.0952 0.0108 0.0101 0.9791
14 0.1035 0.0104 0.0005 0.9892
15 0.1237 0.0253 0.0263 0.9484
16 0.1423 0.0282 0.0394 0.9324
17 0.1234 0.0083 0.0361 0.9556
18 0.0968 0.0169 0.0034 0.9797
19 0.1008 0.0222 0.0054 0.9724
20 0.1178 0.0129 0.0110 0.9761
21 0.1136 0.0011 0.0406 0.9584
22 0.1266 0.0044 0.0171 0.9785

Note: U estimated from equation (29), UM from equation (32), US from equation (33)
C
andU " =1-0U" - U".

2Numbers refer to genotypes. See Appendix A for descriptions.

The marginal response to RAW , is reduced, and for some genotypes is negative, while the
marginal response to RAW , increases for some genotypes and is decreased for others. The
marginal product of RAW, varies, but many genotypes exhibit a large positive marginal re-
sponse to RAW in the early phase. Holding values of RAW in all other growth phases con-
stant at their maximum value, marginal response to RAW )i is positive but declining when
RAWI i\s at its minimum value, and becomes negative as RAWI approaches its maximum
value of 1.

Second, Nageswara Rao et al. (1985) noted that the response to a late season drought
was modified according to whether or not the early phase was droughted. RAWi were set
equal to 0.5 for all i. This represents the situation in which RAW ] is at its minimum value,
and RAW3 and RAW , are close to their mean values. By comparing this situation to the
first scenario in which RAW in all phases were set equal to their mean values, we can
examine how an increase in stress in the early phase affects the response to late season
stress. Again, results vary across genotype. Marginal response to stress in phase 3 is
reduced for most genotypes (except GNO8 and GNOI17), while in phase 4 it is increased for
some genotypes and decreased for others.
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Simulation of Yields in Three Sample Locations

The translog cannot be used to predict yields when any X P = 0, therefore, in pre-
dicting yields in the three study sites, zero values of X; were set equal to 0.01, the minimum
amount of water applied in the highest intensity of the long term drought pattern, P7, in
which the crop received virtually no water for the extent of the experiment.

The exponential of the intercept in Table 8 gives the predicted yields when all X P =
I ( no drought). These compare favorably with maximum yields recorded in the experiment
and in other irrigated post rainy season trials at ICRISAT, but they are high compared with
the yields normally obtained in the rainy season. The measure of RAW developed in this
study does not adequately reflect the differences in meteorological conditions between the
two seasons. The model is not intended to predict what yields would have actually been in
any given year in any given location; it is argued, however, that the relative ordering of
genotypes, in terms of yield, is maintained. The simulated yields are not, therefore, to be

regarded as representing actual yields, but should be regarded as indices of genotype per-
formance.

Summary statistics for the distributions of simulated yields in Hyderabad, Anantapur,
and Gujarat are given in Tables 10, 11 and 12, respectively. For Hyderabad and Anantapur,
these statistics include years in which it was determined that rainfall was insufficient to al-
low planting of groundnuts; these years are included in the analysis with simulated yields set
at zero. There are a number of years in Hyderabad in which no drought was recorded,
RAW =1 in all growth phases. This is reflected in the values of the median and higher per-
centiles, in Table 10, which are close to, or equal, the maximum yields and, consequently,
the distributions of yields in Hyderabad are highly skewed to the left, observations being
concentrated at higher values of yield. The CDFs will have long lefthand tails then turn
sharply upward as yields approach their maximum value.

A similar situation occurs in Gujarat, where there were a number of years in which
no drought was recorded. However, due to the short rainy season in Gujarat, there were
also a number of years in which late season drought severely reduced yields, as indicated by
the minimum yields in Table 12. The yield distributions are also negatively skewed, but not
to the extent of those in Hyderabad. Note that the lower percentiles in Gujarat are very
low, while the median and upper percentiles approach the maximum yields. Consequently,
yields in Gujarat tend toward a bimodal type of distribution, observations being
concentrated in the upper and lower ranges of yield. The CDFs will have a steplike
appearance, with a gradual increase in the lower tail, a long flat section over the mid range
of yields, rising sharply as they approach maximum yields.

Anantapur not only experiences droughts more often than either Hyderabad or Gu-
jarat, but is also prone to long term droughts with the result that minimum yields for many
genotypes are negligible. The greater frequency of droughts is demonstrated by the values
of the lower percentiles and the median. Distributions in Anantapur are positively skewed,
observations being concentrated below the mean. The degree of skewness is also more
variable, across genotypes, than in the other two sites. CDFs will have a smoother, more
familiar S-shaped appearance.

Subsequent to the analysis reported here, in an effort to reduce the high incidence of
vears (15 out of 74) in Anantapur in which there was insufficient rainfall on which to plant
groundnuts, decision rules for planting were relaxed and planting dates were determined for
a further 12 years. RAW, were estimated and yields for these years were simulated.
Reducing the rainfall requirement in the planting rules means that in many years, soil
moisture at date of planting was very low (< 20mm. for 9 of the 12 years). This, associated
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Table 10. Summary Statistics for Simulated Yields (kg./ha. by genotype), Hyderabad

GNO? Maximum = Minimum Mean Std. Dev. Skewness Median
1 4,470 0 3,612 1,189 -1.5 4,245
2 5,331 0 4,272 1,401 -14 4,999
3 5,522 0 4,431 1,444 -1.3 5,146
4 6,348 0 5,106 1,650 -1.4 5,905
5 4,816 0 3,631 1,002 -1.6 4,147
6 5,982 0 4,610 1,465 -1.3 5,304
7 3,061 0 2,444 606 -2.6 2,720
8 6,821 0 5,171 2,046 -1.0 6,136
9 3,539 0 3,004 817 -2.1 3,391
10 3,625 0 2,767 757 2.1 3,128
11 5,781 0 4,545 1,597 ~-1.2 5,339
12 3,925 0 3,255 563 -1.8 3,723
13 4,834 0 3,843 1,111 -1.9 4,468
14 5,368 0 4,347 1,381 -1.4 5,065
15 4,278 0 3,451 1,122 -1.4 4,040
16 3,319 0 2,737 804 -1.6 3,160
17 6,361 0 5,013 1,763 -1.2 5,882
18 5,324 0 4,354 1,335 -1.5 5,036
19 5,237 0 4,169 1,409 -1.3 4,805
20 5,858 0 4,577 1,634 -1.1 5,400
21 3,597 0 2,568 675 -2.5 2,897
22 4,158 0 3,257 1,158 -1.2 3,917

Percentiles

GNO 5th 10t 25th 75th 90th 95th
1 474 2,024 2,866 4,470 4,470 4,470
2 819 2,416 3,235 5,331 5,331 5,331
3 1,024 2,422 3,384 5,522 5,522 5,522
4 1,130 2,811 3,914 6,348 6,348 6,348
5 1,790 2,253 2,888 4,332 4,332 4,332
6 1,624 2,530 3,378 5,696 5,696 5,696
7 761 1,762 2,292 2,736 2,736 2,900
8 1,113 2,032 3,092 6,821 6,821 6,821
9 781 2,071 2,554 - 3,539 3,539 3,539
10 674 1,871 2,469 3,177 3,177 3,399
11 825 2,412 3,022 5,781 5,781 5,781
12 650 2,103 2,729 3,925 3,925 3,925
13 819 2,474 3,273 4,560 4,560 4,560
14 1,073 2,506 3,198 5,368 5,368 5,368
15 738 2,036 2,549 4,278 4,278 4,278
16 842 1,677 2,183 3,319 3,319 3,319
17 999 2,479 3,440 6,361 6,361 6,361
18 1,098 2,625 3,375 5,324 5,324 5,324
19 834 2,121 2,947 5,237 5,237 5,237
20 1,121 2,142 3,291 5,858 5,858 5,858
21 596 1,736 2,432 2,897 2,899 2,930
22 352 1,729 2,369 4,158 4,158 4,158

33ee Appendix A for description of genotypes.
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Table 11. Summary Statistics for Simulated Yields (kg./ha. by genotype), Anantapur

GNO? Maximum Minimum Mean Std. Dev. Skewness Median
1 4,189 0 964 1,141 1.0 475
2 4,957 0 1,034 1,229 1.2 555
3 5,179 0 1,170 1,355 1.2 646
4 6,083 0 1,142 1,260 1.4 752
5 5,270 0 1,156 1,024 1.0 1,173
6 5,779 0 1,330 1,428 1.2 819
7 3,473 0 843 913 1.1 770
8 6,699 0 1,192 1,631 1.7 433
9 3,730 0 975 843 0.7 921
10 4,060 0 742 928 1.7 515
11 5,761 0 935 993 2.0 853
12 3,777 0 727 778 1.5 530
13 5,062 0 967 1,172 1.3 457
14 4,999 0 1,064 1,115 1.1 866
15 3,726 0 971 901 0.7 885
16 2,752 0 813 673 0.4 868
17 6,431 0 1,382 1,715 1.3 700
18 5,146 0 1,059 1,048 1.3 880
19 5,223 0 1,055 1,214 1.2 587
20 5,570 0 1,012 1,345 1.5 449
21 3,725 0 827 942 1.3 678
22 4,065 0 764 941 1.3 418

. . Percentiles

GNO 5th 10th 25th 75th 901" 95th
1 0 0 1 1,740 2,749 3,143
2 0 0 3 1,934 2,886 3,247
3 0 0 43 1,863 3,419 4,123
4 0 0 118 1,814 3,033 3,798
5 0 0 114 1,904 2,345 2,746
6 0 0 181 2,147 3,545 4,403
7 0 0 6 1,322 2,311 2,916
8 0 0 41 1,858 3,959 5,083
9 0 0 164 1,485 2,246 2,514
10 0 0 5 1,163 2,009 3,010
11 0 0 92 1,318 2,122 2,769
12 0 0 53 1,009 1845 2,491
13 0 0 7 1,735 2888 3,220
14 0 0 19 1,648 2681 3,308
15 0 0 49 1,608 2269 2,702
16 0 0 110 1,279 1682 2,043
17 0 0 18 2,260 4409 5,337
18 0 0 127 1,616 2625 3,088
19 0 0 26 1,876 2889 3,390
20 0 0 2 1,518 3288 4,089
21 0 0 6 1,179 2531 2,869
22 0 0 1 1,299 2232 2,702

®Numbers refer to genotypes. See Appendix A for descriptions.

bIn 15 years (25% of the sample), no groundnuts were planted and simulated yields = 0.
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Table 12. Summary Statistics for Simulated Yields (kg./ha. by genotype), Gujarat

GNO? Maximum  Minimum Mean Std. Dev. Skewness Median
1 5,783 8 2,760 2,040 -0.3 4,466
2 6,618 8 2,760 2,040 -0.3 4,466
2 6,618 6 3,405 2,304 -0.4 5,319
3 5,802 203 3,535 2,320 -0.4 5,518
4 6,348 213 3,983 2,605 -0.4 5,459
5 4,379 210 3,082 1,536 -0.7 4,089
6 5,696 171 3,679 2,243 -04 4,935
7 3,195 0 1,889 1,065 -0.5 2,736
8 6,821 83 4,171 2,895 -0.3 5,891
9 3,549 48 2,236 1,445 -0.4 3,064
10 3,283 0 2,142 1,258 -0.5 3,177
11 5,799 59 3,540 2,424 -0.3 4,842
12 3,928 6 2,452 1,628 -0.4 3,438
13 5,420 22 2,917 1,986 -0.4 4,560
14 5,368 14 3,458 2,154 -04 4,946
15 4,278 51 2,700 1,760 -0.4 3,909
16 3,319 21 2,200 1,233 -0.4 2,887
17 6,363 21 4,035 2,646 -0.4 6,327
18 5,324 38 3,373 2,122 -0.3 4,529
19 5,237 76 3,297 2,185 -0.4 4,716

20 7,208 10 3,728 2,503 -0.3 5,839

21 2,906 0 1,909 1,158 .-0.5 2,826

22 4,240 4 2,539 1,852 -0.4 4,124
Percentiles

GNO sth 10t 25th 75th 90t 95th
1 94 197 294 4,470 4,470 4,930
2 257 492 590 5,331 5,331 5,781
3 342 499 678 5,522 5,522 5,620
4 430 652 825 6,348 6,348 6,348
5 280 657 1,794 4,332 4,332 4,348
6 346 615 1,122 5,696 5,696 5,696
7 294 468 584 2,736 2,736 2,916
8 209 349 818 6,821 6,821 6,821
9 260 413 433 3,539 3,539 3,542
10 291 489 568 3,177 3,177 3,247
11 362 545 635 5,781 5,781 5,787
12 187 382 517 3,925 3,925 3,926
13 206 330 416 4,560 4,560 4,879
14 340 721 854 5,368 5,368 5,368
15 323 492 551 4,278 4,278 4,278
16 340 657 777 3,319 3,319 3,319

17 395 743 819 6,361 6,361 6,362
18 415 758 850 5,324 5,324 5,324
19 327 506 581 5,237 5,237 5,237
20 168 494 854 5,858 5,858 6,330
21 148 363 543 2,897 2,897 2,900
22 89 180 254 4,158 4,158 4,187

2Gee Appendix A for description of genotypes.



50

with the fact that in many of these years planting was followed by a long dry spell, leads to
very low values of RAW,. Furthermore, planting rules were extended into the first few
days of September. Such late planting dates extend the growing season into the post rainy
season, increasing the incidence of late season drought.

In a number of these years, simulated yields for some genotypes were highly inflated
when others approached zero. The problems are two fold, one associated with the design of
the experiment, the other with the estimated response functions. '

In the experiment, the plots were uniformly irrigated for the first 29 days to ensure
a good crop stand; consequently, the carryover of soil moisture ensured that RAW b is never
less than 0.5, even in the highest intensity of early drought treatments.

Second, when RAW, becomes very small, or patterns of drought occur that are not
represented in the trial, the estimated translog response functions are not always well-
behaved. Highly inflated yields are predicted for some genotypes when RAW ]~ 0 (RAW ;<
0.1 for 6 of the 12 years), especially when associated with extreme drought in the second
phase (RAWZ — 0), or with no drought in the fourth phase (RAW4 — 1), a pattern that is not
represented in the trial. However, even if the response functions had been well behaved, it
is likely that yields in most of these years would have been minimal, with the result that
including these years would merely extend the lower tails of the simulated yield
distributions. '

For four of the 12 years, the translog function predicted reasonable, low yields for
all genotypes. Including these observations in the simulated yield distributions for
Anantapur increased mean yields by, on average, 2.1%, and reduced standard deviations by,
on average, 1.6%. In subsequent sections on risk analysis, sensitivity of results to the
inclusion of these observations is noted, where appropriate.

VII - RISK ANALYSIS

Using these simulated groundnut yields, it is now possible to assess how a selection
of groundnut genotypes perform in diverse and risky environments. It was shown in section
IT that yield distributions of different genotypes may exhibit cross-overs in lower yielding
environments, and that there may exist a trade-off between yield potential under favorable
conditions and the stability, or conversely the variability, of performance over a range of
environmental conditions. One purpose of the analysis in this section is to determine
whether such cross-overs exist.

One concern is with the empirical identification of risk efficient genotypes for the
three sample locations : Hyderabad, Anantapur, and Gujarat. Another is with the method-
ological issues associated with the different analytical approaches. While a trial such as that
conducted by ICRISAT may approximate the range of environmental conditions occurring in
a region, genotypes identified as stable or widely adaptable on the basis of the trial data
alone will not necessarily be the preferred genotype in any given location within the region.
By comparing results from the three sample locations with those from the trial, one can see
how recommendations based on the trial results alone would compare with those obtained by
incorporating location specific meteorological information.

Results from the approach developed by Finlay and Wilkinson (1963) and Eber.hart
and Russell (1966) using the actual yields from the trial is an initial point for comparison.
The same kind of analysis can be conducted on the simulated yields in each sample location.
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The results from the alternative approaches to risk analysis discussed in section III are then
presented and compared to this 'base’ approach both across and within locations.

Stability Analysis

Actual Experimental Yields

Recalling that each drought pattern in the trial included a control non-stressed
treatment (intensity 1), yields were averaged over these plots so that results would not be
biased toward higher yielding environments. Following equation (1), actual yields (in
kg./ha.) for each genotype, in each treatment were regressed on the environmental index,
the mean yield over all genotypes in each treatment. Genotype mean yields, and the regres-
sion coefficients ¢_ and b_, are presented in Appendix C, ranked by mean yield. The un-
corrected MSE for each gé€notype is taken as a proxy for 52 d and included in the appendix
table for completeness; the two measures of stability, _ and 52 , are not complementary, in
fact they are negatively correlated (r=-0.42), and lead"to completely different rankings, in
terms of stability, of genotypes.

Following Finlay and Wilkinson (1963), the stability parameters, b g» are plotted

against genotype mean yields (Y ,.) in Figure 7. The plot is divided into four quadrants; the
vertical dividing line is the ovérall average yield of all genotypes over all treatments, the
horizontal line represents average stability, when b_ = I. If a decision maker wishes to
maximize stability (minimize b_) and maximize mean yield, then we can identify a number
of genotypes that can be eliminated from consideration. In a manner similar to EV analysis,
genotypes are discarded if there exists another genotype that lies to the right and below it in
mean-stability (Eb_) space. In this manner the "stability efficient” set of genotypes can be
identified and con{%ins GNO4, GNQO9, GNO16 and GNO17.5

Plotting the regression lines from equation (1) demonstrates the relative performance
of genotypes over the range of environments (treatments) in the trial (Figure 8). Of the
genotypes from the stability efficient set, GNO4 and GNO17 are high yielding, but differ in
their degree of stability, while GNO9 and GNOI6 are lower yielding and more stable.
GNOI19 is included as an average performer both in terms of yield and stability. It can be
seen from Figure 8 that cross-overs in yield performance do occur in environments
(treatments) with lower yielding potential. The importance of these cross-overs depends on
the likelihood of such low-yielding environments occurring. If the probability of such
events is low, then GNO4 would be the preferred genotype.

In assessing the performance of genotypes in this way, one must remember that the
environmental index is a function of the environments contained in the trial; to assess the
importance of cross-overs in yield, and the trade-off between yield and stability, the same
type of analysis is conducted on the simulated yield data for the three sample sites. To ac-
count for the error structure associated with the estimated response functions used in the
simulation of yields, results from each of the three sites should be compared with those
from the stability analysis for the predicted experimental yields from the estimated response
functions.

5 The "stability" efficient sets include only those genotypes where the linear line segments connecting the points of
minimum instability for a given mean yield forms a convex point get. In this way, using a convex combination of ef-
ficient genotypes leads to more stable yield for a given mean than any single inefficient genotype. In this case, the
efficiency locus is only approximate in that the covariance between yields of the individual genotypes is not consid-
ered explicitly.
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Predicted Experimental Yields

The slope coefficients from the regression of predicted yields on the experimental
environmental index are also presented in Appendix C, along with the mean yield and un-
corrected MSE for each genotype. Mean yields are plotted against _ in Figure 9. The
partition of genotypes into the different quadrants is essentially the” same as the actual
experimental yields with a few exceptions. Most noticeable is the change in position of
GNO17 which exhibits a higher degree of instability and is no longer stability efficient;
GNOI18 replaces GNQO17 in the stability efficient set. The regression lines for selected
genotypes are plotted in Figure 10 and are easily compared with those in Figure 8. Again,
cross-over points correspond to the highest intensities of drought in late-season or long-term
drought patterns in the trial.

On the basis of these results, one would be tempted to recommend GNO4 for loca-
tions that infrequently experience drought, and GNOI8 or GNO9 for locations with a
greater likelihood of late-season or long-term droughts. Whether such recommendations are
sound can be examined by conducting the same type of analysis on the simulated yields for
each of the sample locations.

Simulated Yields: Hyderabad

It should be recalled from section V'] that there are a number of years in Hyderabad
and Anantapur in which there was insufficient moisture on which to plant a groundnut
crop. For these years no growing season was defined, and yields are set to zero and
included in the analysis.

Genotype yields in each year ¢, Ygt’

mean yield of all genotypes in each year Y., Mean yields, the regression coefficients, and
uncorrected MSE are given in Appendix C. In 40% of the years in Hyderabad, no drought
(as measured by RAW) occurred and therefore mean yields are much higher than in the
trial. The stability parameters, b_, are plotted against mean yields in Figure 11. The geno-
types are equally divided between the north-east and south-west quadrants, and follow a
more or less linear pattern, stability decreasing as mean yield increases. The stability effi-
cient set of genotypes contains GNO8, GNO4, GNO3, and GNO7. A noticeable new entry
is GNO8; its position relative to its position in the experimental results (Figure 9) may be
attributed to the fact that the experiment did not cover the full range of environments
occurring in Hyderabad as measured by RAW in the four growth stages. Within the
experimental range, GNOS8 does not perform particularly well, but when simulating yields
outside this range, GNOS8 responds well to increases in RAW in growth stages G3 and G4.
Consequently, its mean yield in Hyderabad is comparable to that of GNO4, while its
stability parameter is far higher due to its poorer performance in suboptimal conditions.
GNOS8, in this case, is an example of a highly unstable genotype (relative to the other
genotypes included in the trial), specifically adapted to high yielding environments. A
relatively small reduction in mean yield can be traded for a relatively large gain in stability
by switching from GNO8 to GNO4.

were regressed on an environmental index, the

The regression lines for a selection of genotypes are plotted in Figure 12. It can be
seen that cross-overs occur among the high yielding, less stable genotypes GNO4 and GNOS.

GNO4 outyields GNOS8 when Y't < 3,636 kg./ha., which represents approximately one third
of the 84 years in Hyderabad. GNO4 remains the dominant genotype, in terms of yield,
until the environmental index drops to 1,437 kg./ha., when it is replaced by GNOS; such a
low index represents only two of the 84 years in the sample.
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Simulated Yields: Anantapur

In contrast to Hyderabad, meteorological conditions at Anantapur over the period
1911-1984 were highly variable with droughts occurring frequently in any of the four
growth stages. Mean yields are low, as can be seen from the table in Appendix C. In plot-
ting the stability parameters against mean yields (Figure 13), the genotypes are not so clearly
partitioned into two quadrants. Most noticeable is the position of GNOS5, which has a mean
yield, in Anantapur, comparable to that of GNO4, the highest ylelder in the trial, but also
exhibits a high degree of stability. The inference is that GNOS is well adapted to all envi-
ronments occurring in Anantapur, but cannot take advantage of higher yielding environ-
ments such as those occurring in Hyderabad. The stability efficient set contains four
genotypes in Anantapur: GNO17, GNO6, GNO5 and GNO16.

The regression lines for these genotypes are plotted in Figure 14. The cross-over in
yield performance between GNO17 and GNO6 (at 7 = 756 kg./ha.) occurs at almost the

same point on the environmental scale as the cross-over between GNO6 and GNO5 (at Y
706 kg./ha.). Just over one third of the years in Anantapur are represented by an env1ron—
mental index below 706 kg./ha., and the problem of genotype selection in Anantapur, based
on this type of stability analysis, reduces to a choice between two genotypes, GNOI17 and
GNOS. Inclusion of observations on yields for four more years, as discussed at the end of
section VI, did not effect the results of the stability analysis for Anantapur.

Simulated Yields: Gujarat

Gujarat, with its short but intense rainy season, is prone to late season droughts.
However, in 11 out of 32 years, no droughts occurred at all. Gujarat can, therefore, be
viewed as an intermediate location. Like Hyderabad, there are a number of years in which
yields achieve their predicted potential in non-stressed conditions, but there is also the pos-
sibility of severely reduced yields resulting from late season droughts. Consequently, as can
be seen from Appendix C, mean yields are relatively high, but not as high as those in
Hyderabad.

The plot of b, against mean yields in Figure 15 is similar to that for Hyderabad,
with the noticeable ex¢eption of GNOS5 which approaches the position it holds in Anantapur.
According to Finlay and Wilkinson’s criteria, GNOS5 appears to be a stable, widely adaptable
genotype, but by Eberhart and Russell’s second parameter of stability (MSE) it is highly
unstable, having the highest MSE (Appendix C).

From Figure 16, a situation similar to that in Anantapur is seen to exist. While a

cross-over in yield between GNO8 and GNOI17 occurs at Y = 1,950 kg./ha., there is very
little advantage to be gained in terms of yield, in sw1tchmg from GNOS8 to GNOI17, before
another cross-over occurs further down the environmental scale, between GNOS5 and GNO17

at Y't = 1,552 kg./ha. The 34 years included in the sample can be clearly divided into two
groups, those with no, or at least very low intensities of, drought and those with severe late-
season drought; 34% of years have an environmental index below 1,552 kg./ha., while the
remainder all have an environmental index above 1,950 kg./ha., the point of cross-over be-
tween GNO8 and GNOI17. The choice of genotype then reduces to a choice between GNOS
and GNO5. If we also take account of the fact that even in the highest yielding environ-
ments, the yield advantage of GNO8 over GNOI17 amounts to about 250 kg./ha., then the
choice is similar to that in Anantapur, between GNOI17 and GNOS5.
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Evaluation Using Alternative Risk Decision Criteria

Based on this stability analysis, it is clear that the genotype recommendations are
affected by the incorporation of independent meteorological information from the three
sites. As suggested in sections II and III, the stability analysis does not provide a formal
decision rule that either recognizes the probability of drought or deals with the trade-off
between mean yield and stability. Thus, it is important to compare these results with those
from the various decision criteria discussed in section III. These criteria are applied to the
genotypes at each location and to the experiment using the predicted yields from the re-
sponse function.

Entire efficiency frontiers are generated by mean-variance (EV), mean-Gini (MG)
and first, second and third degree stochastic dominance (FSD, SSD and TSD) criteria (see
section [II] for a discussion of the criteria).6 Other methods reported in the table reduce the
size of the efficient sets either by limiting the efficiency analysis to s[/)ecified intervals of
risk aversion (stochastic dominance with respect to a function, SDWRF)’ or through a com-
plete ranking according to certainty equivalents using the exponential utility, empirical mo-
ment generating function, EUMGF, from equation (19). The results from applying these
criteria are summarized in Table 13. Selected data in support of the analyses are in Ap-
pendix D. Complete results are in Bailey (1988).

In developing the results in Table 13, it is important to recall that for the efficient
frontiers associated with the first four criteria, no explicit values of the Arrow-Pratt risk
aversion parameter (equation (4)) needed to be assumed. This was not the case, however,
for either the SDWRF or the EUMGEF criterion. That is, SDWRF can be used to order
genotypes only if upper and lower bounds on the absolute risk aversion coefficient are
specified. These bounds were derived from results reported by Binswanger (1978; 1980) of
games where Indian farmers were asked to choose between a number of gambles each with
two payoffs of equal probability. The derivation is in Appendix E.

In looking at the results in Table 13, several conclusions can be drawn. First, within
each location, the results are more or less consistent across the alternative decision criteria.
However, as was found in the stability analysis above, the sets of efficient genotypes differ

6 For each genotype, each observation on yield (each treatment in the trial, each year in the sample locations) is re-
garded as a single element of a discrete sample probability density function, each having equal probability of occur-
ring. Anderson, Dillon and Hardaker (1977) report FSD, SSD and TSD rules for the case of a discrete probability
distribution. They are comparable to the rules for continuous probability functions discussed above, except that the
calculations involve summing over the cumulative functions rather than integration. Defining Ax, = x, - X and if
x, is the highest value for x, then the discrete analogs of F2 and F3 are ! ! !

r
F, (x)= iizFl(xi_l) aAx, (r=2,...,n)

F (x,)=0
and 271

r
F3(xr) =1/2 .EZ[FZ(xi) + Fz(xi-l)]Axi (r=2,...,n)
i=

F3(x1) =0.

In this study, the analysis of first, second and third degree stochastic dominance was carried out using the Fortran
program presented in Anderson, Dillon and Hardaker (1977, p. 313).

7 The SDWRF analysis was carried out using a modified form of a program written by Meyer, reported in King and
Robinson (1981b) and modified by Loren Tauer.
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substantially across locations. This result supports the hypothesis that genotype evaluations
must consider differences in specific local environmental conditions.

It is also interesting, although not too surprising, that the efficient genotypes as
identified by the two simplest and most widely used risk criteria (the stability analysis and
EV analysis) are identical for a given location. They all contain the lowest yielding, most
stable genotypes. This consistency is undoubtedly explained in part by the fact that both
criteria are based exclusively on mean yield and some measure of variation in yield. This is
particularly true for the experiment and for Gujarat when the simple correlations between
the standard deviations (Table D.1) and the regression slope coefficients from the stability
analysis are 0.99 and 0.91. For the other two locations, these simple correlations are much
lower.

Within each location, the results are also more or less consistent across the alternative
approaches to risk analysis (Table 13). As expected, the efficient sets generated under FSD
are quite large, containing more than 10 genotypes in the experiment and in two of the
three locations. Only in Hyderabad are there fewer efficient genotypes. $SD analysis is
effective in considerably reducing the set of genotypes under consideration to five genotypes
in Hyderabad and seven in Gujarat, both of which have relatively less variable environments
than Anantapur, which has a greater frequency of severe droughts and a SSD efficient set of
nine genotypes. TSD is ineffective in reducing the size of the SSD set except in Anantapur.
The inclusion of four more observations on yield in Anantapur did not affect the results
from EV and MG analysis. However, in the stochastic dominance analysis, one more
genotype (GNO2) is included in the FSD efficient set, and two more (GNO2 and GNO18) in
the SSD efficient sets. The TSD efficient set remains unchanged. :

The SSD efficient sets contain a larger number of the most highly ranked (in terms
of mean yield) genotypes than the EV efficient sets, particularly in Hyderabad and Gujarat.
This supports Anderson’s (1974) proposition that as the environmental range becomes more
limited, the greater the chance that only very highly ranked varieties will appear in the SSD
or TSD sets,

The MG criterion exhibits far greater discriminatory power than the SSD and EV
criteria. The MG criterion is a necessary condition for SSD. If distributions cross only
once, then it is a sufficient condition. Examination of the simulated yield data revealed that
many distributions cross more than once. The MG efficient set in Gujarat contains only
one, the highest yielding, genotype. In Hyderabad the two highest yielding genotypes are
MG efficient, while in Anantapur, the MG efficient set contains two high yielding geno-
types plus a lower yielding, more stable genotype. It is not known, however, what the im-
plications of this greater discriminatory power are, in terms of the degree of risk aversion.
If the MG criterion is reducing the size of the SSD efficient set, it is doing so by rejecting
some genotypes that may be preferred by some risk averse decision makers. The results
correspond with those from the SDWRF analysis over the slight to moderate range of risk
aversion and support Buccola’s and Subaei’s (1974) hypothesis that the MG criterion best
represents the preferences of relatively weakly risk averse decision makers.
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To obtain additional insight into this issue, similar comparisons can also be made
between extended mean-Gini (MEG) efficient genotypes and those efficient by SDWRE.2
This is possible because the absolute Gini index of equality §(v) = u F - Tr(v) is a weighted
integration of the area under the CDF, F(x), and a risk averse decision maker places more
weight in the lower tail of the distribution by increasing the value of v.

Extended mean-Gini calculations were made by Bailey (1988) for integer values of v
from 3 to 10, and for arbitrarily selected higher values of v = 20, 25 and 50. Selected
results are presented in Table 14 and the tables in Appendix D (Tables D.7-D.10).°

Table 14. Extended Gini-efficient Genotypes®

b Experiment Hyderabad Anantapur Gujarat

2 4 8,4 17, 6, 5 8

3 4,18 8,4 17, 6, 5 8, 17

4 4, 18 8, 4 17,6, 5 8,17, 5

5 4, 18 8, 4 17,6, 5 8,17,6,5

6 4,18 8,4 17,6, 5 8,17,6,5

7 4,18, 9 8,4 17, 6, 5 8,17,6,5

8 4,18, 9 8, 4 17, 6,5, 9 8,17,4,6,5
9 4, 18, 9 8,4 17,6, 5,9 8,17, 4, 18, 5
10 4,18, 9 8, 4 17,6, 5,9 8,17, 4,18, 5
20 4,18, 9 8,4,6,5 n.a.°© 8,17, 4

25 4, 18,9 8,4,6,5 n.a. n.a.

50 4, 18, 5,9 8,4,6,5 n.a. n.a.

Source: Bailey 1988.
#Numbers in the table are genotypes as described in Appendix A.

bExponent on the absolute parametric index from equation (10).

“Not applicable.

8 Recall from section III that the necessary conditions for the distribution F to dominate G according to expected util-
ity, where p’(x) > 0 and p”(x) < 0 are:

By 2 b and pp - Tp(v) > Bg-Tg(v)forv>1
where I‘F(v) = -v cov[x,(l-F(x))v_]'], which is the MG criterion if v=2. For the extended mean-Gini, Shalit and
Yitzhaki (1987) note that in the case of discrete distributions with K observations, one should calculate (MEG) by:

F(xi) = [Rank(xi) - 0.5}/K, and
Z, = [(K + .05 - Rank(xi))/K]v_1 is the estimator of {l—F(xi)]v_l.

9 Some properties of the extended Gini should be noted: the extended Gini, I'(v), is non-decreasing in v, i.e., dr(v)/dv
2 0; it follows that u - I'(v) is non-increasing in v. As v approaches infinity, u - I'(v) approaches a, the minimum
outcome value (Shalit and Yitzhaki, 1984). The upper bound on v at which 4 - T'(v) approaches the minimum value,
a from equation (10), varies over the four locations. At values above this upper bound the extended Gini misbehaves
and is no longer non-decreasing in v.
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From these results, it is clear that while the MG efficient set (v=2) from the trial
corresponds to the risk intervals, 0 < r A(x) < 0.00037 in the SDWRF analysis, the mean-ex-
tended Gini (MEG) sets for v = 3, 4, 5, 6 correspond to the set, 0.00037 < ryg < 0.00198. At
the extreme value of v = 50, GNOS is included and corresponds to interval, 0.00198 <
RA(x) < 0.005. The union of all MEG efficient sets for v = 3, 4, ..., 50 corresponds to that
from SDWRF for the full range of r 4- For Hyderabad, efficient sets from MG analysis and
MEG analysis for values of v = 3,74, ..., 10, contain GNO4 and GNOS8 corresponding to
SDWREF results for interval R2.1° Only when v > 10, does the MEG set include GNO6 and
GNOS, representing the higher risk averse intervals of R4 and RS5.

In Anantapur, from the SDWRF analysis, GNOI7 alone dominates over mild to
moderate ranges of absolute risk aversion; from MG and MEG analysis, all values of v » 2
appear to represent severe or extreme risk aversion. In Gujarat the MG efficient set corre-
sponds to those in intervals RO to R2; a value of v = 3 appears to correspond to interval R3,
and values of v = 5, 6 corresponds to intervals R4 and R5. At higher values of v, v = 9,
GNOI18 enters the MEG efficient set; under SDWRF analysis, GNO18 is always dominated
by another genotype. The end result is that a single value of v cannot be used to evaluate
genotypes for a given level of risk aversion in all locations; different values of v correspond
to different values of r 4(x) in the different locations and there is no way of specifying, ex
ante, the degree of risk aversion represented by a particular value of v.

Somewhat in contrast to these efficiency criteria, the final alternative discussed is the
EUMGETF criterion. This alternative represents an attempt to circumvent the major criticism
of stochastic dominance or any other efficiency criterion in which genotypes may be ineffi-
cient, but inefficient by only a small degree. The EUMGF approach is attractive in that by
ranking genotypes in terms of their certainty equivalents, (equation (19)), it allows one to
assess the extent of the differences in performance of genotypes at different levels of risk
aversion. Only the top five ranked genotypes are presented for each specified level of r 4
in Table 13. (Appendix Table D.6 contains the corresponding certainty equivalents fo
provide some idea of how close the rankings are; the full range of results is in Bailey
(1988)). The results generally support those from SDWRF but also indicate the order in
which genotypes enter and leave the efficient set as the degree of risk aversion increases.
The inclusion of four more observations on yield in Anantapur does not affect the ordering
of genotypes by SDWRF except at extreme levels of risk aversion (0.00198 < r < 0.005),
when GNO6 remains in the SDWRF efficient set. Similarly, in the EUMGF analysis, the
positions of GNO5 and GNO6 are inverted when r = 0.005.

To interpret the results from SDWRF and EUMGF analysis, however, it is important
to remember that the values for r , were generated from an experiment by Binswanger. He
finds that when payoffs in the game played with farmers rise to levels equivalent to
agricultural investments (as in the 50 RS game from which the bounds on r, used in this
analysis are derived), most farmers have similar pure attitudes toward risk and were largely
concentrated in the moderate and intermediate risk aversion classes (35% and 40%,
respectively), with approximately 10% in the risk neutral and risk preferring classes and 8%
in the severe and extreme classes (Binswanger 1978, p. A-55).

One could, therefore, argue that if any selection of genotypes is to be made, it
should be based on preferences in the intermediate and moderate risk aversion classes. If
our decision were based on the SDWRF results for the trial only, then GNO4 would be
identified as the preferable genotype. If the location-specific results from the sample sites
are used, then GNO4 would be selected in Hyderabad, GNO6 in Anantapur, and GNOS in

10 RI refers to risk interval I defined in Appendix E. As I increases, the interval reflects greater aversion to risk.
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Gujarat; the more stable, but lower yielding, genotypes such as GNO5 and GNQO9 are ex-
cluded from consideration when attention is focused on the moderate and intermediate levels
of risk aversion. The same conclusions would be drawn from the results from EUMGE
analysis.

Binswanger’s intervals of risk aversion were, however, determined by the game, and
farmers were classed accordingly; the bounds on r 4 were not elicited directly from farmers.
The rescaling of the values of r, for use in our analysis involved generalizations regarding
average area, price, etc. We have also, inherently, assumed that farmers attitudes towards
the payoffs in the game are the same as towards actual returns from a groundnut crop. In
short, the bounds on r , used in the analysis must be regarded as more or less arbitrary. An
alternative use of the @DWRF and EUMGTF approaches would be to conduct a search over
the intervals of r ,, sequentially sub-dividing each interval, to pinpoint the exact values of r
at which the ordering of genotypes changes. However, it is unlikely that researchers will
ever be able to measure either individuals’ risk preferences or the distribution functions of
outcomes with the accuracy required for such a search. Thus, it is argued that the results
contained here are sufficient to indicate how the ordering of genotypes changes as risk
aversion increases.

Furthermore, care must be used in the EUMGF approach because it is based on the
assumption of constant absolute risk aversion associated with the negative exponential utility
function. Binswanger (1980, p. 400) finds evidence that suggests farmers have non-linear,
risk averse utility functions which exhibit increasing partial risk aversion. Zeckhauser and
Keeler (1970) show that constant absolute risk aversion utility functions display partial risk
aversion; increasing partial risk aversion is satisfied by the negative exponential utility
function Ufw) = ¥ where w = W+x, the argument of the partial risk aversion function.
Therefore, the use of the EUMGF approach to order genotypes according to risk
preferences of farmers such as those included in Binswanger’s study is not inappropriate.

Vill - SUMMARY AND CONCLUSIONS

This study is based on the premise that a major source of risk facing farmers in the
semi-arid tropics is the year-to-year variation in crop production. Uncertain yields are due
to the variable environment and particularly to fluctuations in available moisture, both
within and between years. Any evaluation of the performance of genotypes requires obser-
vations on yields over a range of environments. The traditional approach has been to use
the results from multisite, multiseason (MSMS) nursery trials, and to regress individual
genotype yields, at each site in each season, on an environmental index composed of mean
genotype yields.

Farmers, however, are concerned with how new genotypes will perform in their ar-
eas. The presumption that results from MSMS trials are good proxies for performance over
time in any given location is questionable. Measurements of environmental factors at each
trial site are rarely recorded and the full range of possible environmental conditions may not
be covered by the trial. Results from sites in which the crop has failed also may be
disregarded or go unreported. Furthermore, the environmental index reflects the totality of
environmental factors as represented by mean genotype yields; the environments (sites) are,
in effect, classified according to average genotype performance in that environment.
Results cannot, therefore, be extrapolated to other locations as no independent measure of
the environment exists. Finally, while the approach classifies genotypes by their mean yield
and relative stability, without further information on farmers’ preferences, a choice of
genotype according to yield and degree of stability can not be made. Any method of
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evaluating a new technology, in terms of its degree of riskiness, must take account not only
of the probability distribution of returns, but also of farmers’ preferences and attitudes
toward risk.

To address some of these shortcomings in this traditional approach, the objectives of
this study are: a) to explore alternative ways of generating data on genotype performance
which include independent information on environmental factors specific to production re-
gions, and b) to compare the plant scientists’ "stability" analysis for different approaches to
evaluating genotype performance with alternative risk decision criteria that account for both
the probability of adverse environmental conditions, as well as different attitudes toward
risk. An application is made to selecting risk reducing groundnut genotypes in India. Em-
phasis is placed on evaluating genotypes in terms of their response to water stress because
the performance of rainfed crops in the semi-arid tropics is largely determined by moisture
availability.

To accomplish these objectives, the results from a single site experiment conducted
by ICRISAT, in which 22 genotypes of groundnut were subjected to a range of drought
conditions, are used to estimate the relationships between yield and available moisture.
Groundnut genotypes of comparable maturity were selected to include lines found to be
tolerant, average or susceptible to drought in previous screenings. These included
established commercial and Indian cultivars, as well as advanced breeding lines. The
drought patterns varied in the timing, duration and intensity of water stress, ranging from
non-stressed control plots to plots in which the crop received virtually no water for the
duration of the growing season.

In selecting the study locations, attention was focused on the two major groundnut-
producing regions in India: Gujarat and Andhra Pradesh. Between them, these two states
accounted for just under half of India’s groundnut production in 1984. Based on the avail-
ability of extensive historical meteorological data, one site was selected from Gujarat and
two sites, Hyderabad and Anantapur, from Andhra Pradesh. The sites differ climatically
and for the latter two sites, about 80 years of daily meteorological data were available, while
for Gujarat about 30 years were available.

Simulating Yield Response

To affect control of the drought treatments through the application of irrigation
without interference from rainfall, the trial was planted in the late post rainy season and
continued into the summer season under conditions that, meteorologically, are different to
those in the rainy season. Furthermore, the trial is characterized by discrete applications of
water, irrigation being applied only when symptoms of wilting were observed in the non-
stressed control plots. This is in contrast to the nature of rainfall in the rainy season, when
soil moisture may be continually replenished by intermittent rain showers. Thus, the prob-
lem of simulating yields in each of the three sample locations is compounded by the diffi-
culties involved in translating results from the post rainy season trial to rainy season condi-
tions. To do this, an index of relative water availability (RAW, available moisture relative
to potential water requirements, 0 < RAW. < 1) was developed using a simple daily soil
moisture budgeting procedure. It takes account of the soil moisture holding capacity and
the consumptive water use requirements of the plant, given the potential evapotranspiration
rates and stage of crop growth, and allows for the carryover of soil moisture from one
period to another. To account specifically for the effect of timing of water application, the
growing season was divided into four growth phases: seedling-flowering; pegging to pod set;
pod set to pod filling; pod filling to maturity. The relationships between yield and relative
available water (RAW:) in the four phases (i=/...4) were estimated using data from the ex-
periment. The estimated coefficients from each genotype specific response function are
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used, along with estimates of RAW from the meteorological data, to simulate yields for a
series of years in each location.

A number of difficulties were encountered in modelling the response of groundnut
to RAW in different growth stages. Modelling the response to drought in the early vegeta-
tive and flowering phase was particularly problematic. Groundnut has the ability at this .
stage of growth to lie dormant until soil water is replenished. Initial analysis of the experi-
mental data indicated that, over some range, water stress in the early phase actually has a
positive effect on yield, i.e., marginal productivity of RAW in this early phase may be
negative. Moreover, sensitivity to droughts later in the season is modified according to
whether or not drought occurred in the early phase. Further, drought treatments in the ex-
periment did not cover the full range of 0 < RAWi < 1 in all growth phases (i=I...4) and

difficulties were encountered with predicting outside the range of drought conditions in the
trial.

Initially a number of possible response functions were estimated, but because of the
confounding effect of stress in the early phases of plant development, the translog flexible
form was the only one that would account for the interaction between relative water avail-
ability at different stages of growth and prohibits estimated yields from being negative.

The difficulties encountered in generating yield distributions lead to some sugges-
tions regarding future experimentation and research. The problems involved in translating
results from the post rainy season to the rainy season need to be resolved. Ideally, conduct-
ing similar trials in the rainy season, if a satisfactory means of creating variable stress
treatments can be found, would resolve many of the problems. Alternatively, research ef-
forts could be directed more toward agrometeorological investigations. Further development
of crop-weather models would allow the characterization of groundnut growing environ-
ments. As was discussed earlier, in relation to the traditional approach to stability analysis,
environments cannot be classified according to the environmental index used in that
approach, as the index is determined by average crop performance. Similarly, in the experi-
ment, the treatments (timing of water application) were, in effect, determined by the crop,
water being applied only at the first signs of wilting in the non-stressed control plots. If,
however, a more satisfactory model of the factors determining relative available water in
any given environment can be developed, then it can be ensured that treatments in the trial
adequately represent the full range of conditions prevailing in the sample locations, and the
problem of predicting outside the range would be resolved. Classification of groundnut
growing environments in terms of independent meteorological and other environmental fac-
tors would assist in the extrapolation of results from a suitably designed single site trial in
which the same factors had been measured.

Risk Analysis and the Evaluation of Genotype Performance

Having generated yield distributions for three sample locations, the next task was to
examine a variety of approaches to evaluating genotypes in terms of their yield and degree
of stability or, conversely, their riskiness. The traditional approach to "stability" analysis is
compared to approaches involving various efficiency criteria such as EV analysis, first, sec-
ond and third degree stochastic dominance (FSD, SSD and TSD) and stochastic dominance
with respect to a function (SDWRF), and the more recently developed mean-Gini (MG) and
mean-extended Gini (MEG) criteria, and to the exponential utility empirical moment gen-
erating function approach (EUMGF) that gives a complete ordering of alternative actions
for specified levels of absolute risk aversion.

Within any given location, results are consistent across the range of methods used.
Comparing "stability" analysis with EV analysis, the plots of the stability parameter, against
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mean yields, and the plots of standard deviations against mean yield, are strikingly similar.
The empirical results indicate that the efficient set produced by EV and MG analysis are
subsets of the SSD efficient set. Other methods reduce the size of the efficient set, either
by restricting the efficiency analysis to specified intervals of risk aversion (SDWRF and
MEG), or through a complete ranking (EUMGF). With such consistency of results, the
choice of a particular approach to the analysis of risk efficiency depends on available
computational facilities and on one’s hypotheses regarding the risk attitudes of producers.

If we accept Binswanger’s finding that most farmers are only moderately risk averse,
then the MG criterion is perhaps appropriate, bearing in mind that it appears to best repre-
sent weak risk aversion. It is simple to apply and produces a much smaller set than the EV
or SSD criteria. The results coincide with those from SDWRF over the slight to moderate,
or intermediate, risk aversion intervals. If, however, the objective is to identify genotypes
to be released to a more heterogenous group of farmers, including a range of moderately to
more severely risk averse individuals, as represented in the SDWRF analysis, then the
problems associated with the interpretation of the risk parameter in the MG and MEG
analyses detract from their use. Under such conditions, SDWRF reduces the size of the SSD
and TSD efficient sets at most locations.

One criticism of efficiency criteria such as SSD or SDWRF concerns the accuracy of
their discriminatory power; it may be that genotypes that are identified as inefficient are
inefficient by only a small degree. The EUMGTF approach is attractive in that, by ranking
genotypes in terms of their certainty equivalents, it allows the researcher to assess the extent
of the differences in performance of genotypes at specified levels of risk aversion (if one
accepts the underlying assumption of constant absolute risk aversion, or increasing partial
risk aversion). For example, in the EUMGF analysis of the experiment yields, GNOI4
ranks among the top four genotypes over neutral to severe risk aversion, yet it is not
included in the SSD efficient set, and was identified as inefficient over all levels of risk
aversion in the SDWRF analysis. The value of results from both the SDWRF and EUMGF
approaches, however, depends on the specification of the absolute risk aversion coefficient.

If comparisons are made across sites, the trial results are very different from those
for the three sample locations. Based on the trial results alone, one may speculate that high
yielding genotypes such as GNO4 and GNOI18 would be suitable for areas with a relatively
low probability of water stress, while the greater stability of genotypes such as GNOS5 and
GNO9 would make them more attractive in areas more prone to drought. However, GNO18
does not appear in the efficient sets in any of the sample locations. From the application of
other methods of risk analysis to the experiment yields, GNO4 would appear to be the
dominant genotype even at higher levels of risk aversion; from the analysis of the trial re-
sults alone, there is no indication of the prominence of GNOS$ found in the analysis of sim-
ulated yields in Hyderabad and Gujarat. ‘

In the final analysis, how does the inclusion of independent meteorological informa-
tion and economic concepts of risk compare with results from stability analysis of the
single-site trial results alone? First, the results show that the incorporation of independent
information allowing the simulation of yield distributions leads to different conclusions than
would have been drawn from the trial results alone. Second, the incorporation of different
assumptions regarding risk leads to different orderings of genotypes. While high yielding
genotypes are preferred over the moderately risk averse range, they are not dominant over
the full range of risk aversion.

The analysis and results presented in section VII depend crucially on the simulation
of yields in each location and, therefore, on the estimation of the response of yields to rela-
tive water stress. Given the consistency of results within each location, it is suggested that
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the direction of most concern for future research lies not with the choice of selection crite-
ria, but with the improved measurement and modelling of agrometeorological relationships.

Risk Efficient Genotypes for Three Sites in India

A specific objective of this study is to assess how a group of groundnut genotypes
would perform in three sample locations in India. The analysis provides insights into the
relative performance of the various genotypes, but any decisions regarding selection of spe-
cific genotypes are left to the ICRISAT plant breeders who are far more familiar with the
characteristics of each genotype. However, a consideration of the results, for varying
degrees of risk aversion, for the three sample locations allows us to offer some general
recommendations for the selection of genotypes for further screening. The set of risk-
efficient genotypes which warrant further attention in each location are as follows:

Hyderabad: GNO4, GNO5, GNO6, GNO8, GNO17;
Anantapur: GNOS5, GNO6, GNO9, GNO17;
Gujarat: GNO4, GNOS5, GNO6, GNO8, GNO17.

Any further reductions of the efficient sets are hampered by the need to specify farmers
attitudes toward risk.

GNOS8 appears to be particularly responsive to favorable conditions, while GNOS and
GNO9 perform better in lower yielding environments. A number of genotypes appear in
the risk efficient sets for all locations and may be regarded as widely adaptable, as well as
risk efficient, for specific intervals of risk aversion, in any given location.

GNO4 (ICGS-36), GNOS5 (ICGS-11), and GNO6 (ICGS-35) are all ICRISAT breed-
ing lines. GNOS5 was recommended, in 1985, for release for post rainy season cultivation in
central India and the peninsula, and was released (as Robut 33-1-18-8-Bi) in 1986
(ICRISAT, 1986, p.367). GNOS8 (X41-x-1-B x Goldin-1) and GNO9 (Manfredi x X-14-4-
B-19-B) are both crosses between established commercial cultivars. GNO17 (EC 109271

(55-437)), of West African origin, has already been identified as drought tolerant in a
variety of trials.

The analysis provides some surprising results with regard to the relative performance
of such well established genotypes as TMV-2 (GNOL10), J11 (GNOI12), and J24 (GNO22).
These are genotypes that have already been released to the farming community, have been
widely adopted and are frequently used as control genotypes in ICRISAT trials. They are
among the lowest ranked genotypes (in terms of mean yield), particularly in Anantapur;
none of them appear in the SSD efficient sets in any of the sample locations.

Concluding Observations

This study evaluates genotypes with respect to their response in pod yield to varia-
tions in timing, duration and intensity of water stress. In a more comprehensive evaluation,
however, other properties of the genotypes should also be considered. The set of genotypes
tested vary considerably in their degree of susceptibility to various diseases and pests. No
account is taken here of other variables such as soil characteristics, or other inputs such as
fertilizer, and disease and pest control. Yield response to variations in uncontrollable factors
such as available moisture may well be affected by variations in input levels. The
treatments in the trial received uniform applications of fertilizer and herbicide; production
costs were constant across all treatments. Consequently, yields were used as a proxy for
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gross returns. The inclusion of other variables would allow for variation in production costs
to be incorporated in the analysis and genotypes could then be evaluated in terms of gross
margins.

Farmers employ a range of management strategies to reduce the risk of income loss
due to unpredictable variations in yield. One approach to spreading risk is through diversi-
fication, either varietal diversification within a crop, crop diversification, or through inter-
cropping. Recommendation of a number, or mix, of genotypes and the encouragement of
diversification of plant stands may aid in the reduction of production variability due to cli-
matic variability or pests and diseases. In this study, the selection of genotypes is treated as
a choice between mutually exclusive alternatives. No attempt is made in this analysis to
construct efficient "portfolios" of genotypes. Such an extension would be relatively simple
using results from the EV, MG, or MEG analysis. It is not so easily achieved using SSD or
SDWREF criteria, where pairwise comparisons must be made between all proposed combina-
tions of genotypes.

Constructing portfolios would be most important in evaluating trade-offs between
drought escape and drought resistance. However, these would almost always involve
genotypes of different duration because shorter duration material has a greater chance of
escaping late season droughts while longer duration genotypes are usually more drought
tolerant and have higher potential yields. Intercropping genotypes of different maturity
could be one approach to achieving yield gains in locations such as Gujarat where end of
season drought is frequent. Research on this question is currently being conducted by the
groundnut scientists at ICRISAT.
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Table A.1. Characteristics of Genotypes included in the Trial

GNO ICG GNP# Identity Variety Comments

1 #35 CGC-4063 SP Drought tolerant in screening
trials in 1981-83

2 #402  _J 11 x Robut 33-1 SP High yielding cross between two
established Indian cultivars

3 #404 ICGS-24 SP ICRISAT advanced breeding line

4 #405 ICGS-36 SP ICRISAT advanced breeding line;
yielded > 6,000kg./ha. in 1981
trials

5 #406 ICGS-11 SP ICRISAT advanced breeding line;
included in kharif AICORPO
CVT in Gujarat, 1984, 1985

6 #408 ICGS-35 SP ICRISAT advanced breeding line;
yielded > 6,000kg./ha. in 1981
trials

7 #409 1CGS-21 SP ICRISAT advanced breeding line;

yielded > 6,000kg./ha. in 1981
trials; included in kharif
AICORPO CVT in Gujarat,
1984, 1985, promoted to rabi
AICORPO NET, 1985

8 #411 X41-x-x-1-B x
Goldin-1 Sp High yielding in 1982 trials
9 #413 Manfredi x
X-14-4-B-19-B SP Cross between two established
high yielding cultivars; X-14-4-
B-19-B is used in breeding
programs to increase nitrogen
fixation
10 221 #87 ™YV 2 SP Long established Indian selection;
susceptible to infection by A.
flavus, and highly susceptible to
foliar disease,
11 1104 #94 Faizapur 1-5-2 SP High yielding Indian cultivar;

moderately resistant to infection
by A. flavus.
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Table A.l. {cont.)

GNO ICG GNP# Identity Variety Comments

12 1326  #75 J11 SP Long established high yielding
Indian cultivar; susceptible to
foliar disease, resistant to A.
flavus. :

13 1697 #42 NC Ac 17090 VAL From Peru; drought tolerant
: breeding line, resistant to foliar
disease, susceptible to 4. flavus.

14 1712 #700 NC Ac 17142 VAL From Brazil; extreme photo-
period sensitivity; resistant to
foliar disease

15 2738 #73 Gangapuri VAL Established Indian cultivar; sus-
ceptible to PMYV, pod rot and
infection by A. flavus.

16 3605 #221 EC 76444 VAL Recent acquisition

17 3657 #38 EC 109271 (55-437) VAL Early maturing Senagalese geno-
type; drought tolerant in screen-
ing trials, 1981-83

18 3704 #214 EC 21024 VAL Recent acquisition

19 3730  #129 Manfredi-107 SP High vyielding commercial culti-
.ovar

20 4790 #84 Krapovicas Str#16 VAL From Argentina; identified as

drought tolerant in trials, 1981-
83, relatively resistant to foliar
diseases

21 5094  #239 NC Ac 16129 VAL Promising line from Brazil; per-
formed well in ICRISAT vyield
trials, 1983

22 7827 #869 JL 24 SP High yielding Indian cultivar;
susceptible to foliar diseases

Source: Nageswara Rao, Williams and Singh (1985).

Notes: ICG - ICRISAT Groundnut Germplasm number; GNP = ICRISAT Groundnut Program number; GNO =
number used to identify genotypes in this study; SP = Spanish (variety vulgaris); VAL = Valencia
(variety fastigiata), NC Ac = North Carolina accession number; EC = original import number; AICORPO
= All India Coordinated Research Project on Oilseeds; CVT = Coordinated Varietal Trial; NET =
National Elite Trial
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Table B.1 Marginal Products from Translog Response Functions, Estimated for Selected
Values of RAW,

RAW, = mean, i = 1,2,3,4 RAW, = maximum value, i = 1,2,3,4
GNO? RAW, RAW, RAW, RAW, RAW, RAW, RAW3 RAW,

1 -114 198 286 132 -59 210 287 257
2 -83 230 375 115 52 252 416 222
3 -55 143 393 104 -8 161 504 170
4 -68 166 438 123 -37 195 584 194
5 -243 114 310 96 -437 166 387 89
6 -47 154 373 125 =22 227 514 184
7 -504 165 220 71 -535 102 94 79
8 -61 160 395 122 -21 268 733 252
9 -144 56 204 110 -179 112 198 148
10 -638 237 272 58 -774 174 146 86
11 -239 180 394 125 -323 243 522 215
12 -183 196 237 98 -200 223 220 139
13 -258 192 338 125 -368 153 295 180
14 -207 186 395 116 -175 184 446 185
15 -49 64 312 90 29 57 386 150
16 -23 67 232 67 74 64 259 103
17 -58 223 392 117 -41 309 571 238
18 -151 118 370 134 -158 126 438 200
19 -62 179 356 77 -50 230 484 151
20 -17 155 387 129 156 177 575 242
21 -323 138 206 99 -304 71 83 133

22 112 177 249 92 502 222 297 197
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Table B.1 (cont.)

RAW, = O.S,RAWJ- = maximum, j = 2,3,4 RAW, =0.5,i=1.2,34
GNO*® I(ANVI RAW, RJ%VV3 RAW, RJRVVI RAW, RJ\VV3 RAW,

1 -135 252 -287 456 -174 241 105 165
2 94 177 -80 207 -174 230 206 77
3 359 53 233 147 46 88 286 75
4 -79 374 337 118 -22 277 247 58
5 1,030 87 366 -22 504 59 229 10
6 -392 199 533 224 -272 151 363 126
7 1,093 181 -435 146 624 244 157 108
8 -44 109 691 168 =217 117 428 66
9 161 260 =77 231 127 190 14 108
10 1,487 244 -285 42 735 237 -37 1
11 968 159 -41 240 366 136 24 136
12 617 281 -292 232 271 214 106 130
13 737 237 60 127 306 240 242 33
14 651 135 -135 191 175 193 50 128
15 176 69 -73 240 21 89 22 158
16 119 82 -134 158 -1 102 -59 122
17 ~-88 181 517 291 -175 164 412 50
18 327 302 -94 284 170 237 12 154
19 -111 254 362 168 -101 195 301 40
20 -413 172 116 300 -315 199 228 160
21 623 245 -576 230 339 290 213 - 138
22 -217 6 -179 238 -447 81 o 54 153

Source: Bailey (1988).

Note: Marginal products, in kg./ha., estimated for a change in RAWi of 0.1, The estimated production functions
are in Table 8.

#Numbers refer to genotypes. See Appendix A for descriptions.
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Table C.1 Mean Yield, Regression Coefficients, and MSE from Stability Analysis, Actual
Experiment Yields, Ranked by Mean Yield

GNO? Mean Yield agb bgb MSE®
(kg./ha.)

4 2,237 -44.4 1.26 64,095
18 2,101 62.1 1.12 61,696
14 2,052 -4.7 1.13 55,959

6 2,045 -56.3 1.16 76,530
17 2,040 171.8 1.03 108,988
11 1,980 -108.0 1.15 55,599

3 1,961 -42.7 1.10 65,453
13 1,954 -149.5 1.16 54,749

2 1,915 -117.8 1.12 84,354
12 1,852 -20.7 1.03 93,142
19 1,828 73.9 0.97 68,653

5 1,791 -25.8 1.00 81,866

9 1,741 248.1 0.82 44,369
10 1,711 106.7 0.88 83,146
20 1,666 -234.2 1.05 68,346

7 1,657 83.4 0.87 90,285
21 1,650 65.6 0.87 82,077
15 1,637 94.8 0.84 97,734

1 1,616 -61.7 0.92 48,819

8 1,595 -211.7 0.99 81,668
16 1,509 267.9 0.68 121,341
22 , 1,452 -96.8 0.85 75,742

Mean 1,818

Source: Bailey (1988).

#Numbers refer to genotypes. See Appendix A for descriptions.
bRegression coefficients from equation (1).

c .
Mean square error of the regression.
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Table C.2  Mean Yield, Regression Coefficients, and MSE from Stability Analysis,
Predicted Experiment Yields, Ranked by Mean Yield

GNO? Mean Yield ag bgb MSE®
(kg./ha.)

4 2,192 -96.8 1.29 11,165
18 2,046 115.6 1.09 18,225
14 2,009 =225 1.15 3,357
17 1,996 -89.8 1.18 30,977

6 1,992 -54.6 1.15 15,499

3 1,922 -22.8 1.10 7,220
11 1,916 -84.2 1.13 8,903
13 1,913 -42.6 1.10 13,850

2 1,873 -217.1 1.18 14,128
12 1,804 86.0 0.97 22,748
19 1,773 -30.3 1.02 10,765

5 1,740 173.3 0.88 24,496

9 1,705 336.6 0.77 11,554
10 1,689 170.1 0.86 36,784
21 1,633 226.8 0.79 21,370

7 1,623 266.9 0.76 35,310
20 1,622 -347.1 1.11 14,813

1 1,604 -178.8 1.00 14348
15 1,570 147.4 0.80 23,457

8 1,564 -377.1 1.09 23,591
16 1,436 257.7 0.66 10,676
22 1,429 -216.8 0.93 34,695

Mean 1,775 .

‘ Source: Bailey (1988).

#Numbers refer to genotypes. See Appendix A for descriptions.

bRegression coefficients from equation (1).

c .
Mean square error of the regression.
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Table C.3  Mean Yield, Regression Coefficients, and MSE from Stability Analysis,
Simulated Yields, Hyderabad, Ranked by Mean Yield

GNO? Mean Yield agb bgb MSE®
(kg./ha.)
8 5,171 -1152.2 1.63 270,707
4 5,106 -145.2 1.36 21,701
17 5,014 -492.9 1.42 139,335
6 4,610 70.3 1.17 128,419
20 4,577 -589.7 1.34 57,156
11 4,545 -518.0 1.31 40,745
3 4,431 -174.9 1.19 8,101
18 4,354 117.5 1.09 24,403
14 4,347 -42.4 1.13 20,676
2 4,272 -187.6 1.15 14,382
19 4,169 -276.2 1.15 49,580
13 3,843 351.1 0.90 39,613
5 3,631 725.7 0.75 178,639
1 3,612 -153.5 0.97 25,739
15 3,451 -94.8 0.92 28,369
22 3,257 -334.8 0.93 76,966
12 3,255 271.5 0.77 55,963
9 3,004 4492 0.66 28,047
10 2,767 560.6 0.57 97,575
16 2,737 214.6 0.65 22.904
21 2,568 686.3 0.49 110,329
7 2,444 715.6 0.45 75,557
Mean 3,871

Source: Bailey (1988).

#*Numbers refer to genotypes. See Appendix A for descriptions.
bRegression coefficients from equation (1).

c .
Mean square error of the regression.
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Table C.4  Mean Yield, Regression Coefficients, and MSE from Stability Analysis,
Simulated Yields, Anantapur, Ranked by Mean Yield

GNO? Mean Yield agb bgb MSE®
(kg./ha.)

17 1,382 -158.3 1.53 481,715
6 1,330 -1.6 1.32 197,443
8 1,193 -271.4 1.46 436,446
3 1,170 -96.0 1.26 172,954
5 1,156 410.4 0.74 477,539
4 1,142 -57.4 1.19 93,756

14 1,064 -9.0 1.07 45,204

18 1,059 89.9 0.96 121,946

19 1,054 -89.3 1.14 113,575
2 1,035 -138.6 1.17 79,930

20 1,012 -237.8 1.24 187,786
9 975 223.3 0.75 126,244

15 971 135.5 0.83 88,759

13 967 -163.6 1.12 44,698
1 964 -89.3 1.05 150,267

11 935 6.4 0.92 90,113
7 843 93.6 0.75 253,668

21 827 117.4 0.70 370,361

16 813 216.8 0.59 84,378

22 764 -64.4 0.82 172,720

10 742 13.4 0.72 313,196

12 727 70.0 0.65 158,382

Mean 1,006

Source: Bailey (1988).

#Numbers refer to genotypes. See Appendix A for descriptions.
bRegression coefficients from equation (1).

c .
Mean square error of the regression.
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Table C.5. Mean Yield, Regression Coefficients, and MSE from Stability Analysis,
Simulated Yields, Gujarat, Ranked by Mean Yield

GNO? Mean Yield agb bgb MSE*®
(kg./ha.)
8 4,171 -337.0 1.48 83,931
17 4,035 -94.4 1.36 40,349
4 3,984 -67.3 1.33 87,648
20 3,728 -124.8 1.27 207,393
6 3,679 194.7 1.14 78,424
11 3,540 -210.3 1.23 136,605
3 3,535 -79.6 1.19 51,801
14 3,458 87.8 1.11 3,689
2 3,405 -148.9 1.17 154,149
18 3,373 87.3 1.08 98,948
19 3,297 -119.4 1.12 8,769
5 3,082 894.9 0.72 419,569
13 2,917 -153.7 1.01 95,942
1 2,760 -362.6 1.03 185,181
15 2,700 -52.2 0.90 5,618
22 2,539 -343.0 0.95 40,752
12 2,452 -30.5 0.82 136,373
9 2,236 8.2 0.73 61,903
16 2,200 286.7 0.63 26,095
10 2,142 193.3 0.64 31,781
21 1,909 116.8 0.59 30,413
7 1,889 253.7 0.54 43,929
Mean 3,047

Source: Bailey (1988).

®Numbers refer to genotypes. See Appendix A for descriptions.
bRegression coefficients from equation (1).

c .
Mean square error of the regression.
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Table D.1 Mean Yields and Standard Deviations, Ranked by Yield, Predicted

Experimental Yields, and Simulated Yields for Hyderabad, Anantapur

and Gujarat

Experiment Hvyderabad Anantapur Gujarat

GNO®* Mean Std. GNO® Mean Std. GNO® Mean Std. GNO* Mean Std.
4 2192 1127 8 5171 2046 17 1382 1715 8 4171 2895
18 2046 956 4 5106 1650 6 1330 1428 17 4035 2646
14 2009 998 17 5013 1763 8 1192 1631 4 3983 2605
17 1996 1038 6 4610 1465 3 1170 1355 20 3728 2503
6 1992 1011 20 4577 1634 5 1156 1024 6 3679 2243
3 1922 958 11 4545 1597 4 1142 1260 11 3540 2424
11 1916 986 3 4431 1444 14 1064 1115 3 3535 2320
13 1913 966 18 4354 1335 18 1059 1048 14 3458 2154
2 1873 1032 14 4347 1381 19 1055 1214 2 3405 2304
12 1804 856 2 4272 1401 2 1034 1229 18 3373 2122
19 1773 891 19 4169 1409 20 1012 1345 19 3297 2185
5 1739 784 13 3843 1111 9 975 843 5 3082 1536
9 1705 679 5 3631 1002 15 971 901 13 2917 1986
10 1689 769 1 3612 1189 13 967 1172 1 2760 2040
21 1633 705 15 3451 1122 1 964 1141 15 2700 1760
7 1623 691 22 3257 1158 11 935 993 22 2539 1852
20 1622 973 12 3255 963 7 843 913 12 2452 1628
1 1604 882 9 3004 817 21 827 942 9 2236 1445
15 1570 714 10 2767 757 16 813 673 16 2200 1233
8 1564 964 16 2737 804 22 764 941 10 2142 1258
16 1436 587 21 2568 675 10 742 928 21 1909 1158
22 1429 828 7 2444 606 12 727 778 7 1889 1065

Source: Bailey {1988).

#Numbers refer to genotypes. See Appendix A for descriptions.
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Table D.2 Gini Coefficients, Predicted Yields from Trial, Ranked
by Mean Yield

GNO? L r u-T
4 2,191.63 649.90 1,541.73
18 2,045.91 550.08 1,495.82
14 2,009.03 575.96 1,433.07
17 1,995.91 599.54 1,396.37
6 1,991.91 584.96 1,406.95
3 1,922.32 552.49 1,369.83
11 1,916.38 570.89 1,345.49
13 1,913.36 556.00 1,357.36
2 1,872.50 596.08 1,276.42
12 1,803.50 492.13 1,311.38
19 1,773.37 514.52 1,258.85
5 1,739.47 450.93 1,288.54
9 1,704.53 390.38 1,314.15
10 1,688.82 438.98 1,249.83
21 1,632.98 400.12 1,232.86
7 1,622.74 387.85 1,234.89
20 1,621.58 563.11 1,058.47
1 1,603.64 510.41 1,093.23
15 1,570.05 410.08 1,159.97
8 1,564.12 557.63 1,006.50
16 1,435.84 336.12 1,099.72
22 1,428.60 479.64 948.96

MT® efficient set: 4, 18, 12, 5, 9, 7, 16

MGS*® efficient set: 4

Source: Bailey 1988
2Numbers refer to genotypes. See Appendix A for descriptions.

bThe MT criterion is: F dominates G if Hp > by and I‘F < I‘G, with at least one strict inequality.

“The MG criterion is: F dominates G if y, > u ., and pp -To > u. - T, with at least one strict inequality
! f F G F F="G G
(Yitzhaki, 1982).
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Table D.3  Gini Coefficients, Simulated Yields for Hyderabad, Ranked
by Mean Yield

GNO? @ r u-T
8 5,171.34 1061.23 4,110.10
4 5,106.18 826.88 4,279.30

17 5,013.48 893.10 4,120.39
6 4,610.31 734.74 3,875.57
20 4,576.83 838.90 3,737.93
11 4,545.24 8§11.23 3,734.00
3 4,431.22 725.93 3,705.29
18 4,353.85 656.97 3,696.88
14 4,346.98 686.64 3,660.34
2 4,272.37 702.36 3,570.01
19 4,168.99 708.69 3,460.30
13 3,843.00 520.88 7 3,322.12
5 3,631.23 493.29 3,137.95
1 3,611.73 584.62 3,027.10
15 3,450.60 558.15 2,892.45
22 3,257.39 588.14 2,669.25
12 3,254.74 459.97 2,794.77
9 3,004.38 375.88 2,628.50
10 2,767.35 342.68 2,424.67
16 2,737.47 394.19 2,343.28
21 2,567.51 281.08 2,286.43
7 2,444.13 254.60 2,189.53

MT® efficient set: 8, 4, 6, 3, 18, 13, 5, 12, 9, 10, 21, 7

MG*€ efficient set; 8, 4

Source: Bailey 1988
#Numbers refer to genotypes. See Appendix A for descriptions.

bThe MT criterion is: F dominates G if Bp2bg and I‘F < I‘G, with at least one strict inequality.

“The MG criterion is: F dominates G if Bp > kg and bp - I‘F > Bg - I‘G, with at least one strict inequality
(Yitzhaki, 1982).
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Table D.4  Gini Coefficients, Simulated Yields for Anantapur Ranked
by Mean Yield

GNO? M r u-T
17 1,381.79 869.43 512.36
6 1,330.10 753.71 576.39
8 1,192.47 790.93 401.55
3 1,170.00 704.88 465.13
5 1,155.58 553.40 602.18
4 1,142.10 655.21 486.89
14 1,064.23 594.81 469.43
18 1,059.31 554.77 504.55
19 1,054.85 630.38 424.47
2 1,034.45 638.69 395.77
20 1,011.56 666.05 345.51
9 974.61 465.39 509.22
15 970.58 495.53 475.05
13 967.20 604.77 362.43
1 963.76 596.72 367.04
11 935.10 458.93 436.17
7 8§42.72 481.76 360.95
21 826.53 487.84 338.68
16 812.73 374.64 438.10
22 764.39 482.03 282.36
10 742.05 460.18 281.87
12 727.44 401.33 326.11

MT® efficient set: 17, 6, 3, 5, 9, 16

MG*€ efficient set: 17, 6, 5

Source: Bailey 1988

#Numbers refer to genotypes. See Appendix A for descriptions.

bThe MT criterion is: F dominates G if kg > kg and I‘F < I‘G, with at least one strict inequality.

“The MG criterion is: F dominates G if Bp > by and Bp - I‘F =4 - I‘G, with at least one strict inequality
(Yitzhaki, 1982).
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Table D.5  Gini Coefficients, Simulated Yields for Gujarat Ranked
by Mean Yield

GNO? U T p-T
8 4,171.41 577.85 3,593.56
17 4,035.04 518.67 3,516.37
4 3,983.46 517.46 3,466.00
20 3,728.42 498.86 3,229.57
6 3,678.74 449.37 3,229.37
11 3,539.97 481.26 3,058.71
3 3,534.79 455.40 3,079.40
14 3,457.63 425.87 3,031.75
2 3,405.13 456.19 2,948.94
18 3,372.78 422.03 2,950.75
19 3,296.72 431.04 2,865.67
5 3,082.37 303.28 2,779.09
13 2,916.67 391.14 2,525.53
1 2,760.01 404.28 2,355.73
15 2,700.21 347.69 2,352.53
22 2,538.68 362.80 2,175.87
12 2,452.33 323.72 2,128.61
9 2,236.29 286.73 1,949.56
16 2,200.38 246.12 1,954.25
10 2,142.27 244.79 1,897.47
21 1,909.37 227.71 1,681.66
7 1,889.09 208.72 1,680.37

MTI?® efficient set: 8, 17, 4, 20, 6, 14, 18, 5, 9, 16, 10, 21, 7

MG*® efficient set: 8

Source: Bailey 1988

3Numbers refer to genotypes. See Appendix A for descriptions.

b

The MT criterion is: F dominates G if Hp > By and T
“The MG criterion is: F dominates G if Bp 2= g and By - I‘F > pg - r

(Yitzhaki, 1982).

F

<T

G’

G with at least one strict inequality.

with at least one strict inequality
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Table D.7  Extended Gini Coefficients, Predicted Yields from Trial, Ranked
by Mean Yield®
GNOP® v=3 v=5 v=8
7 I'(v) p-T'(v) I(v) p-T(v) I'(v) p-T(v)
4 2,192 985 1,207 1,336 855 1,572 620
18 2,046 837 1,209 1,143 903 1,356 690
14 2,009 873 1,136 1,190 819 1,413 566
17 1,996 891 1,105 1,186 810 1,389 607
6 1,992 882 1,110 1,196 796 1,410 582
3 1,922 839 1,083 1,146 776 1,361 561
11 1,916 853 1,064 1,140 776 1,331 586
13 1,913 851 1,063 1,171 743 1,396 517
2 1,873 894 978 1,201 672 1,404 468
12 1,804 752 1,051 1,034 769 1,236 567
19 1,773 771 1,002 1,037 736 1,220 553
5 1,739 691 1,049 955 784 1,143 597
9 1,705 598 1,107 827 878 996 709
10 1,689 674 1,015 943 746 1,147 542
21 1,633 622 1,011 876 757 1,068 565
7 1,623 606 1,017 867 755 1,076 546
20 1,622 839 782 1,116 505 1,292 330
1 1,604 761 843 1,015 589 1,186 418
15 1,570 628 942 864 706 1,031 539
8 1,564 818 746 1,070 494 1,228 336
16 1,436 517 919 717 719 864 572
22 1,429 714 715 950 478 1,105 - 324
GNOP v=10 v=20 v=50
B I'(v) p-T(v) I(v) p-T(v) I'(v) p-T(v)
4 2,192 1,659 533 1,861 331 2,018 173
18 2,046 1,438 608 1,642 404 1,814 232
14 2,009 1,500 509 1,710 299 1,874 135
17 1,996 1,470 526 1,683 312 1,865 131
6 1,992 1,490 501 1,672 320 1,796 196
3 1,922 1,443 479 1,638 284 1,786 136
11 1,916 1,401 515 1,567 350 1,698 218
13 1,913 1,482 431 1,681 232 1,814 99
2 1,873 1,481 392 1,660 212 1,786 86
12 1,804 1,315 489 1,505 298 1,646 157
19 1,773 1,292 481 1,476 297 1,637 137
5 1,739 1,213 526 1,368 371 1,459 281
9 1,705 1,063 641 1,227 478 1,341 364
10 1,689 1,230 459 1,432 257 1,580 109
21 1,633 1,146 487 1,345 288 1,511 122
7 1,623 1,163 460 1,376 247 1,518 105
20 1,622 1,354 268 1,486 136 1,559 62
1 1,604 1,251 353 1,408 196 1,524 80
15 1,570 1,096 474 1,255 315 1,395 175
8 1,564 1,285 280 1,410 154 1,489 75
16 1,436 923 513 1,080 356 1,229 206
22 1,429 1,161 268 1,288 140 1,370 59

®Calculation based on equation (12).

b

GNO refers to genotypes described in Appendix A.
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Table D.8 Extended Gini Coefficients, Simulated Yields for Hyderabad, Ranked
by Mean Yield®

GNOP v=3 v=5 v=§

p I(v) p-T(v) T(v) p-I(v) I(v) p-I(v)

8 5,171 1,777 3,395 2,648 2,524 3,316 1,856
4 5,106 1,407 3,699 2,160 2,946 2,812 2,294
17 5,013 1,514 3,499 2,305 2,708 2,959 2,055
6 4,610 1,249 3,361 1,914 2,697 2,476 2,134
20 4,577 1,415 3,162 2,137 2,439 2,725 1,852
11 4,545 1,371 3,175 2,078 2,467 2,665 1,880
3 4,431 1,234 3,197 1,890 2,541 2,452 1,979
18 4,354 1,124 3,230 1,741 2,613 2,284 2,070
14 4,347 1,171 3,176 1,803 2,544 2,351 1,996
2 4,272 1,193 3,079 1,828 2,445 2,375 1,897
19 4,169 1,204 2,965 1,844 2,325 2,388 1,781
13 3,843 9,04 2,939 1,435 2,408 1,932 1,911
5 3,631 8,39 2,792 1,294 2,337 1,692 1,939
1 3,612 1,003 2,609 1,557 2,054 2,048 1,564
15 3,451 952 2,498 1,465 1,986 1,907 1,544
22 3,257 992 2,266 1,500 1,757 1,925 1,332
12 3,255 794 2,461 1,248 2,007 1,670 1,584
9 3,004 654 2,350 1,043 1,961 1,417 1,588
10 2,767 596 2,171 966 1,801 1,334 1,433
16 2,737 675 2,063 1,046 1,691 1,378 1,360
21 2,568 501 2,066 837 1,730 1,184 1,383
7 2,444 451 1,993 750 1,694 1,062 1,382

GNO® v=10 v=20 v=50

5 ['(v) p-T(v) I'(v) pw=T(v) I'(v) p=T(v)

8 5,171 3,577 1,594 4,215 956 4,759 413
4 5,106 3,099 2,007 3,906 1,200 4,665 442
17 5,013 3,233 1,780 3,961 1,053 4,607 407
6 4,610 2,718 1,892 3,392 1,218 4,085 525
20 4,577 2,969 1,608 3,609 968 4,179 397
11 4,545 2,916 1,630 3,606 939 4,222 323
3 4,431 2,699 1,733 3,392 1,040 4,042 389
18 4,354 2,528 1,826 3,237 1,117 3,942 412
14 4,347 2,594 1,753 3,287 1,060 3,954 393
2 4,272 2,619 1,654 3,312 960 3,944 329
19 4,169 2,623 1,546 3,267 902 3,843 326
13 3,843 2,164 1,679 2,854 989 3,524 319
5 3,631 1,870 1,761 2,404 1,227 3,069 562
1 3,612 2,266 1,345 2,877 735 3,397 215
15 3,451 2,101 1,350 2,653 798 3,172 278
22 3,257 2,110 1,147 2,631 626 3,076 182
12 3,255 1,868 1,387 2,455 800 3,007 248
9 3,004 1,596 1,409 2,150 854 2,722 283
10 2,767 1,511 1,256 2,037 730 2,523 244
16 2,737 1,529 1,209 1,978 760 2,446 291
21 2,568 1,355 1,213 1,871 697 2,354 213
7 2,444 1,217 1,227 1,698 746 2,187 257

#Calculation based on equation (12).

bGNO refers to genotypes described in Appendix A.
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Table D.9 Extended Gini Coefficients, Simulated Yields for Anantapur, Ranked
by Mean Yield®
GNOP v=3 v=3 v=8 v=10
B I'(v) p-C(v) T(v) p-T(v) T(v) p-T(v) T(v) p-T(v)
17 1,382 1,136 245 1,301 81 1,360 21 1,372 10
6 1,330 1,016 314 1,204 126 1,287 43 1,306 24
8 1,192 1,010 182 1,136 57 1,177 16 1,185 8
3 1,170 937 233 1,091 79 1,148 22 1,159 11
5 1,156 793 362 1,004 151 1,106 49 1,130 26
4 1,142 882 260 1,045 97 1,112 30 1,126 16
14 1,064 815 249 979 85 1,043 21 1,055 10
18 1,059 767 292 941 118 1,021 38 1,040 19
19 1,055 841 214 981 74 1,034 21 1,045 10
2 1,034 851 184 983 52 1,024 11 1,030 5
20 1,012 860 152 971 41 1,003 8 1,008 4
9 975 662 312 836 139 925 50 948 27
15 971 698 273 864 107 939 32 955 15
13 967 800 167 920 47 957 10 963 5
1 964 796 168 917 47 954 10 959 4
11 935 682 253 832 104 902 33 918 17
7 843 654 189 780 62 828 15 836 6
21 827 653 174 769 58 813 14 821 6
16 813 544 269 698 115 775 38 794 19
22 764 635 129 728 36 757 8 761 3
10 742 602 140 696 46 731 11 737 5
12 727 542 185 653 75 704 24 716 12

#Calculations based on equation (12).

bGNO refers to genotypes described in Appendix A.
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Table D.10 Extended Gini Coefficients, Simulated Yields for Gujarat, Ranked
by Mean Yield®

GNOP v=3 v=5 v=§ v=10 v=20
B I(v) p-T(v) T(v) p-T(v) T(v) p-T(v) T(v) p-T(v) I(v) p-T(v)

8 4,171 2,403 1,769 3,254 917 3,675 496 3,776 395 3,889 282
17 4,035 2,170 1,865 2,959 1,076 3,354 681 3,453 582 3,610 425
4 3,983 2,154 1,829 2,921 1,063 3,299 684 3,390 594 3,504 480
20 3,728 2,065 1,664 2,806 923 3,190 539 3,292 436 3,452 2717
6 3,679 1,887 1,792 2,600 1,079 2,989 690 3,096 583 3,252 427
11 3,540 1,988 1,552 2,669 871 2,992 548 3,069 471 3,175 365
3 3,535 1,911 1,624 2,619 916 2,972 563 3,054 430 3,142 393
14 3,458 1,785 1,673 2,445 1,012 2,794 663 2,890 567 3,064 393
2 3,405 1,891 1,514 2,570 835 2,909 496 2,993 413 3,112 294
18 3,373 1,751 1,622 2,370 1,003 2,687 686 2,773 599 2,937 436
19 3,297 1,802 1,494 2,456 841 2,778 518 2,855 441 2,955 342
5 3,082 1,316 1,766 1,909 1,173 2,305 777 2,436 646 2,657 425
13 2,917 1,633 1,283 2,236 681 2,539 378 2,609 307 2,691 226
I 2,760 1,665 1,095 2,243 517 2,514 246 2,572 188 2,622 138
15 2,700 1,450 1,251 1,968 732 2,224 477 2,286 414 2,382 319
22 2,539 1,515 1,024 2,057 482 2,313 226 2,367 171 2,413 125
122,452 1,350 1,103 1,834 618 2,079 374 2,141 312 2,233 219
9 2,236 1,196 1,041 1,625 611 1,840 397 1,893 343 1,972 264
16 2,200 1,029 1,171 1413 788 1,628 572 1,696 505 1,845 355
10 2,142 1,040 1,102 1,453 689 1,683 459 1,748 395 1,861 281
21 1,909 965 944 1,344 565 1,556 354 1,616 294 1,719 191
7 1,889 883 1,006 1,237 652 1,441 448 1,501 389 1,614 275

®Calculations based on equation (12).

bGNO refers to genotypes described in Appendix A.
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APPENDIX E

Determination of Intervals of Absolute Risk Aversion

If upper and lower bounds on the absolute risk aversion coefficient, r ,(x) = -
U”(x)/U(x), can be specified then SDWRF can be used to order genotypes tfér the
dxfferent sub-groups of decision makers represented by those intervals. Such intervals on

can be derived from the results reported by Binswanger (1978, 1980) of games where
Indxan farmers were asked to choose between a number of alternative gambles each with
two payoffs of equal probability decided by the toss of a coin as follows:

Game Pavoff Risk Aversion Class
Heads Tails
F 0 200 Neutral to negative
E 10 190 Slight to neutral
C 30 150 Moderate
B 40 120 Intermediate
A 45 95 Severe
O 50 50 Extreme

Risk aversion is measured by the partial risk aversion function:
(E.1) P(W: x)=-x [U(W+x)/U(W+x)]

where W = initial wealth, x = a gain or loss from a gamble, and w = W+x = total assets =
W + gain, or W - loss (Menezes and Hanson 1970; Zeckhauser and Keeler 1970).

P(W; x) is simply a multiple of the absolute risk aversion function of total assets
(Binswanger 1978):!

(E.2) P(W; x) = xrA(W+x).

Given the games’ payoffs, Binswanger estimates P by approximating it on a
utility function with constant partial risk aversion:

(E3) UM) = (1-P)M*F
where M is the certainty equivalent of a gamble such that UM )=EU. If X; ij is the j th
outcome of gamble i (i = 1,2; j = 1,2) and all X have probability of 1/2,"then M and

P can be estimated sequentially from the equatlons (Binswanger 1978):

(E4) UM)=1/2 (1-P)[X111'P+X121‘P] =1/2 (I—P)[XZII‘P+X22 -Py

1 Note that the partial risk aversion function should not be confused with Pratt’s relative risk aversion function:

g (x) = - x{U”(x) /U (x)] = xr, (x).
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Binswanger (1978; 1980) presents the bounds on the values of P implied by the choices
in the game. From these bounds one can derive M, the certainty equivalent at the point
of indifference between two gambles,

(ES5) M=U"'EU=[1/2(X; [ Tex UF AP
and the corresponding bounds on the absolute risk aversion coefficient as:
(E.6) ry= P/M

Binswanger’s reported bounds on P, and our estimated M and r 4> are presented in Table
E.1.

Table E.1.  Partial and Absolute Risk Aversion Coefficients for Binswanger’s Risk
Aversion Classes

Game Payoff Risk Aversion P MP r 4
Heads  Tails Class lower  upper lower  upper
bound bound bound bound
0 200 Neutral to -00 0 -00 0
Negative
100
E 10 190 Slight to 0 0.315 0 0.0038
Neutral
82.89
C 30 150 Moderate 0.315 0.812 0.0038 0.0114
71.28
B 40 120 Intermediate 0.812 1.74 0.0114 0.0280
62.15
A 45 95 Severe 1.74 7.51 0.0280 0.1502
50
0] 50 50 Extreme 7.51 ) 0.1502 00

a Binswanger (1980)

b Certainty equivalent at point of indifference between two games.

¢ Estimated r A =P/M.
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Partial risk aversion, P(W; x), is fixed regardless of the level of the payoff
(Zeckhauser and Keeler 1970; Menezes and Hanson 1970). However, r 4 is affected by a
multiplicative transformation of the payoffs of the game and in order to use the bounds
of r 4 estimated from the payoffs in the game, they must be transformed so that they
correspond to payoffs in terms of kg./ha. of groundnuts. Raskin and Cochran address
this problem: if r ,(x) is elicited as r/$§, as a measure of aversion to annual income risk,
for instance, and if the crop under consideration represents the entire income of the
farmer and the farm area is known, then the conversion factor between the two scales
would be the area, 4, and r ;(w) = Ar/$, where w is in per unit area income dollars
(Raskin and Cochran 1986, p.207).

A number of generalizations are made in order to transform Binswanger’s results
into meaningful bounds on r A for the groundnut genotype yield distributions. Of the six
villages included in Binswanger’s study, groundnuts are an important crop, in terms of
percent gross area, in one (Dokur) and a secondary crop in two others (Binswanger 1978;
Jodha 1977). Rescaling of r , is based on the average area sown to groundnuts, in both
sole and mixed crops, in Dokur, over a sample of small, medium and large farmers,
estimated from data presented by Jodha (1977) as 0.56 ha. The average product price for
groundnuts is 400Rs./quintal = 4Rs./kg. (Tom Walker, personal communication). Yields,
in kg./ha., can thus be converted into a gross income from an average area of A = 0.56
ha.; if yield = y kg./ha., then gross income = 4Ay Rs. = 2.24y Rs. Yields of genotypes
range from a minimum of zero in severely droughted years (treatments) to a maximum
of 6800 kg/ha under non-stressed conditions, equal to approximately 15,200 Rs. gross
income from 0.56ha, which is approximately 76 times the maximum payoff in the game.
Rescaling the estimated r , from the game therefore involves a conversion factor of
4(0.56)/76 = 0.02945. The bounds of r A thus obtained and used in the SDWRF analysis
are given in Table E.2. Arbitrary bounds, of -0.001 and 0.005, were set at the upper and
lower limits. The full range of r , for risk averse decision makers (0, 0.005), is included
as a subset of the conditions for SSD.

Table E.2. Estimated Bounds on Risk Aversion Intervals used in Generalized
Stochastic Dominance (SDWRF) Analysis

Bound on r 4

Risk Aversion Class Code
lower upper
Neutral to negative -0.0001 0 RNEG
Neutral 0 ' 0 RO
Slight to neutral 0 0.00005 R1
Moderate 0.00005 0.00015 R2
Intermediate 0.00015 0.00037 R3
Severe 0.00037 0.00198 R4
Extreme 0.00198 0.005 R5

Risk Averse 0 0.005 RALL
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