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The Translog Production Function: 1Its Properties,
Tts Several Interpretations and Estimation Problems
by

Richard N. Boisvert#®

Although the theoretical importance of differing rates of
substitution among productive inputs was recognized in the early 1930's,
the first serious challenge to the simplifying assumptions embodied in
the Cobb-Douglas and Leontief-type production functions came in the early
1960's. Until that time, much of the empirical work in production
economics was at an aggregate level. Functions relating total production
{or value added) in an economy to aggregate labor and capital inputs were
offered in support of the marginal productivity theory of value: the
data pointed to constant returns to scale and depicted a remarkable
constancy of labor's share of output in the United States over time
(Douglas, 1976).

Because there had been little empirical evidence to the contrary,
economists, working on a variety of theoretical problems, were content
with assuming either zero or unitary substitution elasticities among
labor and capital. The simplistic assumptions were also made out of
mathematical ccenvenience or necessity, but as economists studied
individual sectors of the economy, the seriousness of the limitations
emerged. The starting point for the development of an alternative was
"the empirical observation that the value added per unit of labor used
within a given industry varies across countries with the wage rate”
(Arrow, et al., 1961, p. 225). 1In addition to its obvious implications

*Richard N. Beisvert is an assoclate professor in the Department of
Agricultural Economics, Cornell University, Ithaca, N.Y.



for factor shares and the functional distribution of income, the varying
degrees of substitutability lead to reversals of factor intensities at
different price ratios; the consequences for international trade are
discussed by Minhas (1962).

Efforts to estimate the substitutability among productive inputs
have intensified for two additional reasons. First, the desire to
understand the processes of biased technical change and induced
innovation in both developed and less—developed countries requires
analytical models characterized by variable elasticities of substitution
and capable of including many factors of production. Disaggregating
labor and capital into subclasses can help refine policy implications of
an analysis and is necessary when production processes are not separable
between primary and intermediate factors (Binswanger, 1974).1

The second reason is the rapid change in relative prices between
reproducible capital and labor and natural resource inputs since 1970.
To develop policy measures for allecating natural resources one must

understand the input intensities likely to arise from relative price

1The historical significance of the separability assumption is that
it was used to justify estimating value added as a function of labor and
capital alone. If the assumption were valid, no specification error
would result from ignoring other inputs such as intermediate materials.
Mathematically, separability deals with the appropriateness of being able
to separate a function in many variables into subfunctions, each con-
sisting of a smaller number of variables. Leontief (1947) demonstrated,
for example, that a sufficient condition for two inputs, Xy and Ko s to be

functionally separable (weakly) from a third (x3) is for the ratio of the
marginal products of % and %, to be independent of the level Xge In
this case, the production function for a product Y = Yl(xl,xz,x3) can be

written as Y = Yz[vl(xl,xz)x3] = Y3[v, x3], where v = vl(xl, xz).



changes, as well as the physical possibilities of substituting for
nonrenewable or slowly regenerating natural resources whose gupplies are
extremely inelastic even at very high prices. This requires formal
consideration of inputs other than aggregate labor and capital.

Several factors have contributed to difficulties emcountered in
efforts to estimate input substitutabilities. Perhaps the most important
is the data limitation. Rarely does one find sufficient data on
disaggregate input levels, prices, and output to specify appropriate
analytical models either at the firm or industry levels. As the need for
these kinds of data becomes more apparent, omne can only hope that
additional resources are devoted to collecting data in a more usable
form.

A second factor has been the flexibility of the analytical models
themselves. Although the CES production function, for example,
accommodates elasticities of substitution different from zero or unity,
they remain constant at all levels of input. The general applicability
of the CES function has been restricted because of the nonlinear
estimation problems and the necessity to choose among several alternative
CES forms on the basis of functional separability (Uzawa, 1962}.

These difficulties are in part responsible for the developmeut of
mére'flexible forms of production functions, the transcendental
logarithmic (translog) production function (Christensen, Jorgenson and
Lau, 1972) and generalized Leontief production function (Diewart, 1971).
The “translog" form is the most widely used, perhaps because of its
several possible interpretations and its mathematical similarity to the

applications of Shephard's duality theory and translog cost functions.



Recent advances in econometric methods and the resclution of theoretiecal
issues in measuring input substitution also help to explain its recent
popularity.

Despite the frequent use of translog formulations, it is still quite
difficult for graduate students and others to find a single document that
describes in detail the properties and possible interpretations of the
formelations. Even the earlier papers on the subject assume that the
reader has a working knowledge of Taylor approximations in many
variables, Shephard’'s Duality Theory, sufficient conditions for linear
homogeneity of general functions, and the statistical relationshiﬁs of
mathematical models estimated in different algebraic forms.2
Binswanger's (1975) discussion paper is the one exception in that he
tries to demonstrate the simple mathematics of Shephard's Duality. His
emphasis 1s on cost and ﬁrofit functions and not on the translog
production formulation.

Binswanger justifies the preoccupation with cost functions because
of the ease with which it allows one to estimate Allen partial
elasticities of substitution and their associated standard errors.
However, there is a comnsiderable loss of information in the sense that
marginal productivities and the assoclated standard errors are difficult
to derive. Also, the Allen partial elasticities of substitution are

based on the assumptions of neoclassical markets. Although one may lose

2The most frequently cited reference on the properties of the
translog production function is Christensen, Jorgenson, and Lau (1972),
but the document is not readily accessible. Berndt and Christensen
(1973) provide a useful summary of the function's properties but none of
the derivations are provided.



some precision in interpreting statistical tests, the flexible production
formulation may allow one to estimate other types of substitution
elasticities that do not embody inherent behavioral assumptions.

The purpose of this paper is to derive in a systematic fashion the
mathematical, economic and statistical relationships in the translog
production formulations. The derivations are provided in detail, witH
the expectation that the paper can serve as a source document for
graduate students or others trying to work with these models for the
first time. At times, the algebra becomes tedious, but not unnecessarily
so. A thorough knowledge of production economics is agsumed.

The translog production function is discussed at the outset. A
slight digression on the various definitions of the elasticity of
substitution is needed to help distinguish between concepts which embody

behavioral assumptions and those that do not.

The Translog Production Function

As with some other exponential functions, the translog production
function is most often written in its logarithmic form, but for

completeness, it is useful to write the function as

n
o og. n 1/2¢ By s In =,]
(1) ¥ = £(Ry,reesx ) = x, ° X 321 +J ]
1 n/ T oo % M %
i=1 i=1
where
y = output;
ag = efficiency parameter;
Xj = input j; and
a

and Bij = unknown parameters.



Taking natural logarithms of both sides, one obtains the more familiar

form3

n n
o In x, + 1/2 ) ) Bij In x, 1In Xy

{(2) Iny =1n . + 1
1 i=1 j=1

0

il o~18

i
This algebraic formulation can be viewed in three ways: as an exadt
production function, as a second-order Taylor series approximation to a
general, but unknown production function or as a second-order

approximation to a CES production function. Each alternative

3Formulating the problem with the 1/2 in front of the quadratic
expression is convenlent in many of the derivations. However, some care
is required when using parameter estimates obtained from statistical
procedures directly in these derived expressions. The situation where
this difference is important is highlighted throughout.

The equality of Bij and 5ji for i # j is assumed throughout to maintain

consistency with Young's theorem of integrable functions (that the second
cross partial derivative of the function with respect to i, then j, is
equal to the second cross partial with respect to j, then i} (Berndt and
Christensen, 1973).

These same authors mention briefly the possibility of including a
technological index (A) into the translog function.

n
Iny =1ne, +a, ln A+ i£

a, Inx, +1/2 ¥ § 8.. 1n x, 1n x,
1t ' 121 =1 3 - ]

n
+1/2 8,, (In A2 + 121 B, 1n x, 1n A.

Imposing Hicks-neutral technical change implies

@, = 13 Byy = 03 Byy = 0 (all ).

By letting 1n @y = In ao‘ + 1n A, the function assuming Hicks-neutral

technical change is given by equation (2). These conditions are assumed
throughout the theoretical sections for convenience of exposition.



interpretation may be more appropriate for some applications than others;

therefore, each is worth discussing.4

Interpretation 1 - Exact Production Function

As an exact preduction functlon, equation (2) reduces to a
Cobb-Douglas function in the case where all Bij = 0. Thus, one immediate
use offered by the translog production function is a straightforward test
qf the appropriateness of the maintained hypothesis embodied in the
Cobb~Douglas function.”

More importantly, one must examine the function when at least one
5ij # 0, in which case it may or may not be well-behaved (e.g., output
1s monotonically increasing in all inputs and if the isoquants are
convex).

To demonstrate these properties, it is couvenient to begin with the

production elasticities. From equation (2)

_Olny _ v -
(3) ei—m;-ai+ ) sij 1o %, (i=1,...,n).

The marginal products arve
8o v

0ln Xi] [y/xi]=[ai +
j

13

oy
(4) fi T Bx, [
i

Bij 1In xj][Y/Xi}°

i
—t

4Having to treat three diffevent interpretations separately is tedi~
ous. However, the literature to date appears to be somewhat imprecise in
its discussions of the translog production function. One objective of
the paper is to c¢larify the ambiguity.

S0ne test is the F-test described by Maddala (1977, p. 197) for
testing linear restrictions in regression models. In this case, the
restrictions are imposed by merely eliminating the quadratic terms. More
is said about a general test of homogeneity below.



For finite levels of x,, the marginal product of x, can be positive for a

range in values of x, but can be negative if 6ij > 0 (all i, )

]

and Xj + 0. Similarly, if there exists at least one Bij < 0, fi < 0 as
x, + =, Thus, because monotonicity requires that for all i, fi > 0, the
translog function is not well-behaved globally.

The second direct and cross partial derivatives are obtained by

applying the chain rule to equation (4). For all { and j,

6y2 n -1
(o) fj_i = = yla, + Z Bij in xj] [~ ]
ox, =1 X
i i
n
1 v 2
+ =y, /x> + L[« + T B.. 1n x ]
X, ii" i X, i j=1 ij h|
y 3 n 2
= 2o |=(ay + _E By Lnoxy) + By o+ Loy + .z Byy 1n x;1
Xy j=1 j=1
y- n -on
=~ By * (ai + .E Bij in xj~1) (o + .Z Bij 1n Xj)
x, j=1 j=1
3
and
a2y 1 1 n n v
(6) f_ij = SEIEEE = ;I y(gij) ;3-+ (o + jZ Bij 1n xj)(aj +-i§151j In x, )yt

¥y

1%4

i

n 1 _
= By t (o + jzlﬁij in xj)(aj + izlﬁij In x,J| -



The isoquants are strictly quasi-convex 1f the Bordered Hessian

matrix
0 f1 f2 PN fn
fl f11 f12 T fln
(7) F = f2 f21 f22 e v e f2n
£ f . e + o
n nl nn

is negative definite.® Because the values of the first and second par-
tial derivatives vary with input levels, there is no guarantee that the
isoquants are globally convex. However, in empirical research, "...
there are regions in input space where these conditions are satisfied.

If these conditions can be verified for eachxdata point for any estimated
translog function, the well-behaved region may be large enough to provide
a good.representation of the relevant production function" (Berndt and
Christensen, 1973, p. 85). From equations (4) and (5), positive, but
diminishing marginal productivity requires that e > 0 and (ei-l)e:_L > Bii
if Bii < 0. According to one definition (Ferguson, 1969), imput 1 and

input j are substitutes (complements) if e e, -+ Bij is greater or less

1]
than zerc (equation (6)).

Economists are also often interested in the rate at which output
changes when all factors are changed by the same proportion. This output

response i$ generally referred to as the economies of scale embodied in

the production function. For a homogeneous production function, scale

br is negative definite if the successive principle minors alternate
in sign. Defining the k+l principle minor by Fk’ F is negative definite

1 — n
1f Fy <0, Fy >0, Fy <0 veoy (-1)PF_> 0.
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economies may'be less than, equal to or greater than unity, but for a given

function the “"returns to scale” are invariant with respect to the initial

input levels and are equal to the sum of the production elasticities.
Frisch (1965) and Ferguson (1969, p. 81-83) establish tﬁat the "function
coefficient” (the proportional change in output due to equal proportional
changes in all inputs) is equal to the sum of the production elasticities
for monhomogeneous functions as well. The practical significance lies in
the fact that for nonhomogeneous functions such as the translog function,

the function coefficient 1s not invariant with initial input levels. From

equation (3) the function coefficient (&) is

n n
o, + L] ) B,, In x,1-

13

[}l e K

n
(8) e = Z e, =
=1 f=1 1=1 j=1

Although there may be advantages in working with nonhomogeneous func-
tions, one can derive sufficient conditions under which the translog fume-
tion is homogeneous. In general, a function is homogeneous of degree h. If

(9) £(t Xpy veey £ X)) = th(f(xl, PRNE )2

If the function is written in logarithms, it is homogeneous of degree h if

for any k

(10) g(ln x, + Ink, +.o, Inx_ +1n'k) =h In k + g(ln x,, ««., In x ).
1 n 1 n

Therefore, the translog function is homogeneous if one can find restric-—

tions on a and Bij such that

_ 0
+ _
(11) 1ny In a, + 121 o, (In x, + In k)

n n
+ 1/2 _Z 'Z Bij(ln x; + 1n k}(In x
i=1l j=1

i + 1n k)

= 1ln y+ h 1n k,
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where 1n y is defined as in equation (3). Expanding equation (11), one

obtains

n 3
+ =
(12) 1ny In g + 1£1ai In x, + i£1ai 1n k

ol n
+1/2 ) ) B, lnx In %+ 1ok dnox; + 1ok In x, + (In ®)?]

i=1 j=1 ™
n n n T
=1n ag + _2 a; la x +1/2 [.E .; By In x; 1n xj}.z a; In k
i=1 i=l j=1 i=]

n o
+1/2[ Y )8

. lnk In x +1nk 1o x, + (In k)27.
i=1 j=1 ]

ij
The desired expression in equation (11) obtains if one can restrict

Bij such that the last term in brackets in equation (12) vanishes. This

occurs when

n

n
i = .= 0.7
P13 izl j21613

(13)

He—13

i
Thus, a sufficient condition for homogeneity is that the row and column sums
of the coefficients on the guadratic expressions sum to zero. Furthermore,
from equations (10), (12) and (13) it follows that the degree of homogeneity

is given by

7Expanding this last term in brackets [ | in (12) and rearranging, one
has

o ja n

e} n o
(14) In x.(ln k )+ In x,(ln k )+ [1n k]2 ( ).
jZl 3 121813 121 I .jzlﬁlJ 121 jzlﬁlj

Applying the results of (13) each term in ( ) goes to zero, the entire
expression vanishes and (12) meets the conditions set out in (11).
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(15) @,

1

I t~—123

i

equation (2) is linear homogenecus if the sum of the a equals unity.

Another important result for the homogeneous case can be derived by
applying the results of equation (12) to the function coefficient in equa-
tion (8). That is, if equatiom (13) holds, then the double sumlin brackets
in equation (8) vanishes and the function coefficient (or scale economies
become independent of the input levels. This is similar to the results ob-
tained in the Cobb-Douglas case. However, in the Cobb-Douglas case, the
individual production elasticities are constant as well. For the

homogeneous translog model, the individual production elasticities change

as input levels change, but their sum remains constant.

Another practical implication of these results in equation (13) is
that if one agsociates an error structure with equation (2) and estimates
the parameters using ordinary least squares, it is possible to test the
null hypothesis of homogeneity. Provided that the traditional assumptions
about the general linear regression model can be made, the test of linear
homogeneity in equation (2Z) involves the F-test for a general linear hy-
pothesis. The derivation 1s cumbersome and is therefore relegated to
Appendix A, where a special case of three inputs is considered.

The final characteristic of the production function that must be exam—
ined is the elasticitf of substitution between inputs. There are several
alternative definitions of the elasticity of substitution and in the case
of the translog function, their derivations are complex computationally. A

second interpretation of the function can facilitate this computational
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problem. Therefore, to avoid duplication, the discussion of substitution

elasticities is deferred to the next section.

Interpretation 2 - Taylor Approximation

The second interpretation of the translog function is as a second
order Taylor series approximation to an unspecified underlying production
function. Allen (1937, pp. 456-58) demonstrates that if h(ql,qz,...,qn)
is a function in n variables and if (rl, Ths 20 rn) is a fixed point at

which the n derivatives to the function exist, then

i

(16) vy +r

h(ql + rls q2 2! R | ql’l + rl‘l)

n
oh
- h(r,,.eer ) + 17 q 2.
1 n is1 i aqi ]
1* e T
n 2 n 0 2
1 2 0h i 8 h
+ = 3 a, 5 foob = } ) q.q, 7
1 ]
21 12y i ain nl o2 j=1 i*] ﬁqibqj
rl’ ...’ rn r]-’ ."’rn

+ higher order terms.
These first three terms of the Taylor series expansion are exactly the
translog function if one defines f as a logarithmic function®

In yv* = h(ln x. %, ..., In xn*);

1
qi = 1n xi*; ri = In ri;
1n ag = h(ln £y, +ovy In r.)s
a, = dln y*/dln xi*;

81,ower case letters rather than Greek symbols are used to indicate the
parameters of this model in an effort to distinguish this formulation from
equation (2).
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bii

821n y*/3(1n xi*)z; and

b, . = 821n y*/dIn x * In x *.
ij i 3j
To apply this second-order approximation, one must select a specific

point (In Tys +res 1n rn) around which the approximation is expaﬁded. If

one selects r, = r, = ++. ¥ =1 80 that Inr, = ... =1ln r_ = 0, then
1 2 n 1 n

equation (16) becomes

n n
a, In x % + 1/2 Z Z b,, In x,% 1n x_ %
1 1 i i=1 j=1 13 i J

(17) 1n v* = 1n a, +
i

o
Il B3

where

in ao=f(0, tEry 0)

= EYEY *
ay dln y*/81n x;
In xi* =0, all 1

b,, = ®ln y*/®in x * B¥ln x,*
ij i j

in xi*, 1n xj* = 0 for all i and Foe

Thus, the production elasticities and the logarithmic second deriva-
tives for an unknown production function are approximated at the point

In x, *#* = 0 for all'i by the parameters of the function. These parameters
in tiurn can be used to examine whether or not this unspecified production

function is well-behaved at this particular point or to test the function
for homogeneity, etc. The major drawback to interpreting the translog
function as a second—order approximation is that the approximation to the
true underlying function worsens z2s one moves away from the point around
which the expansion 1s made.

There is, however, a practical reason for considering this interpreta-

tion in empirical analysis. When estimated using conventional regression
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techniques, the important characteristics of the production function evalu-

ated at the geometric means of y and x, in equation {2) are identical to

the ones in equation (17) because the Taylor expansion around zero is

equivalent to scaling the data around the geometric mean. To see this let

there be t = 1, ..., T observations on the variables Y. and X, SO that

equation (2) can be writtem as in Appendix A.

n n
- 2
(18) Iny_=1n ag+ E a, In x,, + ) vy (n %,

i=1 i=1
1

+ B., In x, In x., +u_.
51 i1j it jt t

where Yii T 1/2 Bii and u, is an error term. To establish the equivalence

in the characteristics of the functions, one must verify that such a scal-

ing procedure implies that E 1n Xi* = (0 and establish a relationship be-

tween the estimated parameters.9

The first task is to define 1ln Xit*

T T
In x,% = 1n (x, f{ O x )liT = {ln x, =— 1/T E In x
i it it it

s
=1 =l it

94s mentioned in footnote 1, the estimating form of the equatiom
internalizes the 1/2 in front of the quadratic expression in equation (2)

and does not distinguish between lao X0 in th and In Kjt In LI The

estimating form of (17) is

n nn
* #y2 * %
a, In i + E gii(ln "y e + E E bi' In X In =

In y* = In a, +
1 i=1 iy 4 I

i

(=]
IR i~

where

gii =1/2 bii and £, is an error term.
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and derive its expected value

T
& = -
E 1n X E lln LI 1/T ‘z in X,
t=1
T T
1 E 1
= = In x,, ~= 2 1n x,
T £=1 it T =1 it
T 1 T
=1/T JInx,, =-=T ) Inx,_ = 0.
=1 it T2 te1 it

The second part is more difficult to establish, but algebraically, the
procedure 1s to expand the estimating form of equation (17) (c.f. footnote

9). For convenience, let

~

1
lnxi—ﬁ

Sealing the equation from footnote 9

~ o ~

n n
(19) Iin Yo T lny = 1n 2y + izlai(ln xit~ln xi) + {iz

nn ~ ~
+) 1B

L {in Xit_l? xi)(ln xjt—ln xj)} + et.

ij

Expanding the term in squavre brackets, one has

~ ~

n
{20) I a (In x, -ln x,) =
=1 i it i i

| -3
ii]
[
'-.l
[=]
i
I
 ~18
f
bt
=
M

1 i
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and expanding the term in { }, ome has

n ~
(z1) ) gii(ln X *ln X )2 + Z E b, (ln s —ln X )(ln x, ~ln x )
: jt
i=1 i<j
E 2 § N v 2
= g..(1n x, )4 - 2 g In x,, In x_, + Z g..(1n x_)
TREe! it ;4811 it 17,48 1
nn ~
+Yyb,.1nx, 1n 2 E by (in x,)
1<3 ij it i3 Xit 3

"~ ~

- 2 Z by (In x)(In x ) + Z I by (In xit)(l; LR
i<] i<j .

Substituting back into (19) and collecting some common terms one has

~ ~ ~

{(22) 1In Ve = in ag +1ny - z a, In X; + Z E b _(1n xi)(ln xj)

i=1 i<j
TICTE TS T N
+ g..{ln x )* + (a, - 1n x -2g.,. Inx )ln ,
121 ii i 121 i i ij ii it

. gy (1n x; )2 + 1) byy(n xy )(1n xy,) + ey

i=1 i<j
Thus, the two models in equations {18) and (22) are equivalent if we let
~ n ~ ~
o = —_—
(23) 1In 0 In a0 + ln y .z a, 1n Xy + z E bij(ln xi)(ln xj)
=] i<j
¥ X 2
+ Lgy(nxy )% 8y = Vg5 by = By 35 and
i=1
« = (a, - Z by, Inx, - 2, 1nx,).
i i J%i | ii i

Because the coefficlents on the squared and cross—product terms are identical,

(24) a, =a - Z B i 1n Xj + zYii in Xy and
J%i
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n ~
(25) a, = ay + jziﬁij in Xj + ZYii 1n X, -

~

Recalling the relationship between Yii and ﬁii and 84 and bii in the
different forms of the models, this demonstrates that the production elas-—
ficities estimated directly from the scaled model (equation 17) are identi-
cal to the production elasticities of the unscaled model (equation 2) eval-
uated at the geometric mean.

'In summary, it has been shown that there is a direct correspondence
between these two Interpretations of the translog production function at
the point around which the second model is expanded. Th:ough a similar
procedure, one can establish that the same relationship holds for other

values of x and y as well. That is, if one were to expand equation (17)

around any other interesting point (say the arithmetic mean of xi), the re-

lationships in equations (24) and (25) would hold by making the appropriate

gubstitution for 1n xj. The practical implications of this correspondence

is that one can derive the first and second order partial derivatives and
other production velationships for a partiéular point on the unscaled
function by estimating the scaled model only. This simplifies the cal-
culation of marginal products and second direct and cross partial

derivatives a great deal.t® More importantly, the correspondence

10that is, if the data are scaled at the geometric mean (both x and y)

b,. and bi are interpreted directly as the first and second order

315 P43 1

logarithmic derivatives. Calculating £ from expressions

i and fij and fii’

equivalent to equations (4), (5) and (6) becomes easy because 1n X, = 0 as

a result of the scaling. However, y and x in these equations are at the
geometric means of the variables in unscaled units.
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simplifies the calculations of various measures of the elasticity of

substitution between inputs.ll

Elasticities of Factor Substitution

The discussion of factor substitution possibilities and their méa-
surement dates to the 1830's with the work of Robinson (1933) and Hicks
(1970). Initial discussions were limited to the case of two inputs and the
elasticity of substitution was defined as: the proportional change in the
input ratio due to a proportional change in the marginal technical rate of
substitution, output held comnstant.

Allen (1938) is credited with the development of a measure of a par-
tial elasticity of substitution between any two inputs in an n—factor pro-
duction system. It is related to the demand for factors under the assump-
tion of competitive markets and profit maximizing behavior. The Allen par-
tial is defined as:

the effect on the quantity demanded of one factor of a change

in the price of another factor, where the partial derivative is

taken holding output and other factor prices constant {Sato and

Koizumi, 1973, p. 47).

For two factors, i and j, the Allen partial for equation (2) is given

by
)
x f,
AP I | F
- =1 _ij
(26) Ulj xix ® F

liThe translog function can also be interpreted as a Taylor Series
Approximation to a CES production function. Kmenta (1967) and Griliches
and Ringstad (1971) have used a two input version, but the parameters of a
more general form in many variables are underidentified. Thus, the deriva-
tion is relegated to Appendix C and is primarily of academic interest.
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where F is the determinant of the bordered Hessian matrix in (7) and Fij
.1s the cofacter of fij and F. While Ferguson (1969) and others have
demonstrated that the Allen partials for the C-D function are equal to
unity for all { and j, for the translog function (2) Gij can be positive,

negative or zero. The only restricticuns on the wvalues are that

e xjfj
23 = ° = e
(273 jzlkj 11 0: where kj ~ :

for linear homogeneous functions. For functions that are not linear
homogeneous, Fergusomn (1969, pp. 180-85) derives the relationship between
Oij and input demands under cost minimization assumptions.

The original concept of the elasticity between factors in the two-
factor case has also been extended to the n~factor case. It is called

the direct elasticity of factor substitution (DES) and is defined as the

ratio between a percentage change in the factor proportion and
a percentage change in the marginal vate of substitution given
all other factors [and output] (Sato and Koizumi, p. 54).

In mathematical terms, the direct elasticity of substitution is given by

d(x./x,) Q£ /f)
(28) e, = -t S

ij Xj/xi fi/fj

Stated in this way, it is the generalization of the two-factor elasticity

of substitution discussed by Ferguson (196%, p. 91). Exactly why this
concept of the direct elasticity of substitution has only recently been
applied in the n—factor case is unclear. Oune rationale is that it still
makes it difficult to classify inputs. This, however, seems to be a
minor problem. The Allen partial, ome alternative which is so depéudent

on the assumption of linear homogeneity and economic rationality
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narrowly defined, has its own problems. One might argue that what is
really important is the relative curvature of the isoquants as measured
by the direct elasticity of substitution from which response to changing
prices can always be obtained anyway. (There are other elasticity con-—
cepts as well and Sato and Koizumi (1973) do as good a job as anyone in
establishing the formal relationships among them.)

The computation of the DES for the translog function is complicated
algebraically. Therefore, the derivation is relegated to Appendix C. It
is also demonstrated in this appendix that computations are simplified in
the case of interpreting the translog function as a second-order approxi-
mation to an unknown function (e.g., the data are scaled arocund the geo—
metric mean).

Input Separability

Separability of inputs is an issue that is often discussed in aggre-
gate production analysis. Discussions of separability relate to the in-
ternal structure of functions and whether a function of many arguments
can be separated into subfunctions. There are essentially two reasons
for this interest. If fumections are separable in some groups of inputs,
production decisions and relative factor intensities can be optimized
within each subset, and then optimal factor intensities can be obtained
by holding fixed the within-subset intensities and optimizing the be-
tween-subset intensities (Berndt and Christensen, 1973). If a production
function is separable in several groups of inputs, then the inputs within

a subset can be agpregated into a single composite input.12

2 eontief {1947} and Solow (1954-55) were among the first eceno-
mists to discuss this issue.
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The practical implications of the interest in separability is to
enable one to study complex productlon relations in a plecemeal fashion.
This often simplifies statistical analysis and is often necessary because
of the lack of data.

To begin the discussion of separability, consider (as Berndt and
Christensen do), a twice differentiable, strictly concave homothetic
production functlon with strictly positive marginal products.13
(29 Y = f(x) = f(xl,xz,.qo,xn)e
The set of {inputs N = [1,...,n] is partitioned into r mutually exclusive
and exhaustive subsets [Nl,...,Nr}, a partition denoted R.

The production function f(x) is said to be weakly separable with
respect to the partition R if the marginal rate of substitution between
two inputs X and %j from any subset Ns(s=l,...,r) is independent of the
quantities outside Nsu That is,
£

-1y = 0, for all i, 5 € N_ and k £ N_.1%
fj 8 8

3

(30) 6;;

13A function f(X) 4s homothetic if it can be written as h(g(X))
where h is monotonlc and g is homegeneous of degree 1.

14Strong geparability is when the marginal rate of substitution
between input 1 £ Ns and input j € Nt is independent of inputs outside NS

and Nt. That is,

f
i = 5
(f;) = 0, for all i € Ns’ ie Nt’ k £ Ns U Nt.

This condition implies weak separability but the reverse implication
applies only in the case of two subsets.

Lo
axk
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Performing the differentiation implied in equation (30) gives an
alternative separability condition:

(31) f£ - fif_ = 0.

jk
The major result from functional separability is given by the fol-

jfik

lowing theorem:

Weak separability with respect to the partition R is necessary
2

and sufficient for £(X) to be of the form f(Xl, X ,...,Xr)

where x° is a function cof the elements of NS only.

This theorem was proven in a less general form by Leontief, and asr
Solow points out, X" is a consistent aggregate index of inputs in NS .
That is, for production purposes, weak separability implies that any pat-
tern of inputs in Ns is equivalent as long as they yield the same index
value of X S(e.g. x° is the output of a sub-production function in the
inputs in NS). Thus, 1t follows that a consistent set of aggregate in-
puts exists if and only if the inputs are weakly separable from the

others not in Ns.l5

Berndt and Christensen (1973) demonstrate formally that weak separa-
" bility implies equality of the Allen partial elasticity of substitutionm,
(32)

g = J 3 .
e O (308 Nk F N

but the best intuitive explanation of separability is given by Humphrey

and Moroney (19753). Suppose that the usage of Xy and xj is held constant

15Strong separabllity with respect to the partition R is necessary

and sufficient for F(X) to be of the form f(X1 + X2 + .. + Xr), where X°
is a function only of the inputs in Ns' This and the theorem in the

text are established by Goldman and Uzawa, 1964,
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and use of Xk increases. If this renders Xi and Xj more effective at the
margin and their individual effectiveness is changed by exactly the same

amount, then x, and Xj are functionally separate from X . Marginal prod-

i
ucts are shifted in the same proportion, observationally the same as a
Hick's neutral technical change or a change in efficiency. Thus, if X,
is an explicit third input, it is reasonable that if the marginal prod-
ucts for X, and.xj are shifted vertically in the same proportiom, X

bears the same equally close substitution or complementarity relationship

to both input I and j (equation (32) holds).

An Example of an Aggregate Index

Perhaps the best wayrto understand the implications of separability
is to examine its implications for a separable function guch as the
Cobb-Douglas production function of the ferm

(33) Y = L® clﬁczY; e+ gty =15 05 8 y >0

The marginal rate of substitution between the two types of capital, Cl

and C, is given by

2
£ v/c c
. 1 Bt B
Gh ==~y = 75 3 and
. c2 Y 2 Y

it 1s independent of the level of the other input.

Thus, according to the separability theorem, one should be able to
find a consistent aggregate for capital and write

(35) ¥

(L, K)
where

(36) K = F(C,, C ).

1* 72
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This is true if we let

EE_ El—
_ By B
31 k=c¢"¢,
and

38y v = 1.%8,

By substituting (37) into (38) we obtain the original equation
(33). A logical extension of this argument providés the rationale for
treatinglvalue added as a function of capital and labor only and ignoring
other inputs as has been done many times. If labor and capital are
separable from other inputs, then value added (the combined output of labor
and capital) can be written as a function of labor and capital alone. (This

illustration is due to Solow, 1954~55.)

Conditions for Separability in the Translog Production Function
The situation for the Cobb~Douglas function is in contrast to the situ-
ation in the translog case. Let us examine the translog function.

n

n
a, Inx, +1/2 7§ ) B,, ln x, In x_.
1t 1 121 3=1 7 * J

(39) Iny=qay+

i ~—10

i

1f we conslder the case where any inputs i and j are functionally
separable from a third k, then we require
oy _oby _ oy 0%y _
(40) 3% 3x.ox. ~ Bx, Bx.ox O -
1 O%59% 3 OF1%%

Evaluating this expression by substituting from equations (4) and (6}

n n

b A
(41) 2=, + ] B, In xj][xjxk{ﬁkj + (a, + jzlﬁkj In x)(a +

n
Z By In x )1

i=1

n n n
- Z_.{aj + 7 B4 In xi][xﬁ’X {p, + (@ + _Z Byy 1o X)) +

8, . ln x,)}]
1™k ) j k-] 3

j=1
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This expressibn (41) simplifies to {recalling that e, is defined as

i
3 1In y/0 1n Xi):
v : '
(42) X% ei[Bkj + ek(ej)] - ej{Bik +te o e] =0

Because y2/xixjxk > 0, we can divide through by it and obtain

(43) e, Bkj + e e ej - ej Sik - ey ej e = 0
or the conditions of functional separability hold, if and only if
(44) e, B ~e, B = 0.

i "kj i ik
For a well-behaved production function, we require that ey > 0. There-

fore, if the function 1is separable and if Bkj = 0, then Bik = 0. If,

however, Bjk # 0 and Bik # 0, then we can expand (43) and find that 1 and

j are separable from k if and only 1if

n mn
(45) Bkj(“i + mzlsim In x ) - Bik(“j + mzlﬁjm Inx) =0

)

or (because Bkj = Bjk

in
CONCR izl(ﬁim B = By Bypln x, = 0,

Thus, the necessary and sufficient conditions for global separability

{(independence of the x's) we require

(47) @ Bjk iy Bik = 0;
and
(48) Bim Bjk - Bik Bjm =0 (w=l,...,n).

1f Bjk and Bjm are not equal to zero, we have

@ B B,
i ik im
(49) a_= B = —B__(m=1,'n-,n)-
J kj jm
To the author's knowledge, there has heen seweral attempts to test for

separability in the translog production function, including Berndt and
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Christensen, 1973, and Humphrey and Moroney, 1975. However, Berndt and
Christensen are the only ones who attempt to then agpgregate groups of
separable inputs. Other analysts have tested for input separability when
using a cost function to estimate elasticities of input substitution

(e.g. Berndt and Wood, 1975). In cases where tests of separability of
inputs were rejected, the authors have usually gone on to examine the sub-

stitution between labor and capital and other inputs such as natural re-

sources, energy and intermediate inputs.

Practical Problems of Estimating Translog Production Function

To delineate the statistical tests in Appendix A, it was assumed
that the translog production function was estimated as a single equation
in the form:

n n
= 2 . o
(50) In Ve In o, + Z ailn ®, + z Yii(ln Xit) + 7 Eﬁij In xitln th u

0 i AR e} 1<3

where
t=1,...,T, the number o¢f observations;

u, = an error term;

Yy = 1/2 5ii from equation (2).

Two serious problems in estimating this function by single equation
methods are readily apparent. First, as the number of factors of ﬁroduc~

tion is increased, the number of parameters to be estimated increases

rapidly. Because the additional terms are squares and cross products of
the variables, multicollinearity is a difficult problem. Second, data wmay

be limiting.

One potential solution to multicollinearity is to remove selectively

those squared or cross product terms whose t-ratios are below a certain
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critical value. This strategy could ultimately destroy the flexibility
in the relationships among inputs and after all, this flexibility is a
ma jor reason for coﬁsidering the function in the first place. Shih,
Hushak and Rask (1977) utilize this strategy quite effectively. Vinod
(1972), on the other hand, proposes a functional form that differs from
equation (2) only in the fact that all squared terms are eliminated.
This preserves much of the flexibility of the function and undoubtedly
doeé mitigate the multicollinearity problem to some extent. However,
there éeems to be little economic rationale for eliminating the squared
terms a priori.

. There are two alternative procedures for estimating the model if ome
is willing to assume linear homogeneity and profit maximizing behavior.
The first is provided in Appendix A, whereby single equation methods are
used to estimate a model in which the sufficient homogeneity conditions
are imposed by transforming the original variables.

The second involves the assumption of profit maximization. To keep
the algebra manageable, consider three inputs, the minimum number for

which the problem is interesting. Let the production function be
3 3 3
(51) Iny=a + s« Inx, +1/2 } 1} B, 1lnx, Inx_.

¢yt =1 =1 21 R

Assume that the entrepreneur is a price taker in both factor and product
markets and attempts to maximize profits (p = price of output; and r, =

price of input i)

T X,
171
1

(52) max I = py -
i

I ot

Using the general expressions above for marginal products in a translog

function, the first order conditions for profit maximization can be
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written as

0 Olny oy 1
(53) g =g oY - la, + )} B, 1n x| y/x,= = (1=1,2,3);
X, 1n xXg i =1 ij J ip
or
rix, 3
= = =
(54) ey = = Lt .zl Byy In =y (171,2,3)
J
e, = value of the ith factor relative to the value of output and in

this case, also the production elasticity.
Furthermore, if there is long run competitive equilibrium and/or
production is subject to constant returnms to scale,

(55)
i

H il

e, = 1.
1 1

If one can justify writing equation (54) in stochastic form (attrib-
uting the error to "mistakes” in trying to satisfy the first order condi-
16

tions or adjustment lags), one can write

{56a) e

a, + B In x

1 =% TP g T By Inx

+ 513 inx, +U

2 3 1

(56b) e, = %, + B

2 1n %y + 522 1n X, + 523 In Xy + U

21 2

(56c) e, =«

3 3 + 831 1n X + 323 in Xy + 533 1o %, + U_.

3 3
If one assumes that the function is linear homogeneous and the sym—

metry restrictions are applied, the sum of the e, add to unity and only

i

two of the three equations are linearly independent. Thus, the parameter

16Now that the production function is not Cobb-Douglas, the identi-
fication problem with the "mongrel” combination of first order conditions
is not a problem {Zellner, Kmenta and Dreze, 1967). From this one stand-
point, the parameters are identifiable.
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estimates of any two of the equations exactly identify the parameters of
the production function.

From (56a) and (56b)

A

d = - - &: .,&._o:
(57) @y =1-0% =@ = & = 1=, - @

Similariy, because of the symmetry restrictions
(58) B = Bus (143 1,5 = 1,2,3
and because of the restriction on the row and column sums of the B

matrix,

A ~ A

(59) Bij = —(Bii + Bik); for 1,j and k = 1,2,3.

Substituting (58) into (56) we have

(60a) e =< + Bll In %, + 512 In x, + 513 In x5 + U,

(60b) e, = @, + 512 In x; + 522 In x, + 323 In x3 + U,
=

{60c) eq 3 + 513 In % + 523 In %, + 533 In Xq + U3

We know from (59) that

(61) Byg=-Bp ~ By Pyg = P12 ™ Pope

Therefore, we have by substituting into (60a) and (60b)

r.x

- L1 - .
(6la) e = v o + 511 ln x, + 512 In x, (311 + ﬁlz)ln x3 + U
%,
(61b) e, = e %, + 812 In x + 622 In x, - (512 + 522)1n x, + UZ.

These are the estimating equatiocns; 533 and a3 are calculated ex post by
gsubstituting the parameter estimates into equations (57) and (59).
This, however, does not mean that the estimation is easy. The first

problem is that both price and quantity information are needed for each
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of the inputs. Second, as Humphrey and Moroney (1975, pp. 65-66)
suggest, one would expect random deviations from profit maximization to
affect all markets. One would hypothesize that Ul and U2 are correlated,
implying the need for some sort of two-stage estimation. However, the
estimates obtained by applying ordinary least squares or Zellner
two-stage least squares depend on which two equations from (60a)-(60c)
are chosen. Maximum-likelihood estimates would be independent of which
equations were selected. Both Kmenta and Gilbert (1968), through Monte
Carlo experiments, and Rubel, through formal proof, have demonstrated
that iterative Zellner (IZ) estimates and maximum-likelihood methods are
computationally equivalent. Accordingly, one must estimate parameters by
applying the IZ method. Assuming that the elements of the regressor
matrix are predetermined variabies, application of IZ produces consistent
and asymptotically efficient estimates of the parameters. Because all of
the remailning parameters are linear combinations of these estlmates, they
alsc have these desirable asymptotic properties.

Some Concluding Comments

The purpuse of thils report is to derive the mathematical properiles
of the translog production function, discuss its several interpretations
and describe the various approaches to estimating the function statis—
tically. Emphasis 1s placed on three separate interpretations: a) as an
exact production function; b) as an approximation to the CES function;
and c¢) as a second order approximation to an unknown function. Although
the report contains no empirical application, the presentation has

several important implications for empirical analysis.
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Perhaps the most important conclusion is that one encounters
numerous computational difficulties and additional data requirements in .
order to take advantage of the function's flexibility. Therefore, before
choosing to utilize the translog function, one must have a compelling a
priori reason for believing that such flexibility is necessary to
represent the production technology accurately. Even then, use of the
function may not be justifiable if estimates of elasticities of
substitution are less important to the analysis than are estimates of
marginal products, scale elasticities or input demand relations. This is
particularly true given that the Cobb-Douglas (C-D) function is a special
case of the translog function. Historically, the Cobb-Douglas function
has been used extensively in the literature to study both micro and more

_aggregate production problems. Since the performance of the C-D function
has been extremely good from a statistical point of view, one might
expect little to be gained from a more complex structure unless the
motivation underlying the research is a test of the maintained hypothesis
embodied in the C-D function.

This is not to argue that one should never employ this type of
flexible production function in empirical analysis. However, in addition
to the more demanding data requirements, there are several reasons why
flexible production functions such as the translog function should be
applied with extreme caution. The first reason has to do with the

| function's several possible interpretations. As pointed out above, the
‘ transiog function can be viewed as an approximation to a CES production
function and, except in the case of two inputs, the parameters of the

underlying CES function are overidentified. Therefore, in this author's
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opinion, this particular interpretation of the translog function is of
little more than academic interest.,

The translog’s iInterpretation as an exact production is perhaps the
most appealing, but it is troublesome as well. The problems encountered
in obtaining reliable estimates of the parameters of the function are
difficult, if not impossible to resolve. Equally as important is the
fact that the function is not well-behaved over the entire range of
possible input levels. Although Berndt and Christensen argue that an
estimated translog function may contain a large enough well-behaved
region to provide a good representation of the production surface, it is
unclear to this author how one can determine the size of this region. An
obvious first step would be to check conditions at each data point, but
it is doubtful that this 1s sufficient to guarantee that the function is
well-behaved throughout the extremes of the data.

By far the most widely used interpretation of the translog productin
function is as a second—order approximation to the true but unknown
production system. In these cases, the performance of the models from a
statistical point of view seemed much better than when treating 1t as an
exact production function (e.g., Wyzan, 1981; Shih, et al., 1977; Dunne,
1981; Dunne and Boisvert, 1982). 1In particular, the t-ratios on many of
the coefficients improved tremendously because the data were scaled and

the coefficients on the log—linear terms carried an interpretation of
production elasticities (see equation (25)) at the geometric means of the
data. In cases where the translog model represented a marginal
improvement over an acceptable C-D specificatiom, it is hardly surprising
that the production elasticity estimates or the level of confidence one

has in them, would differ substantlially at the point of geometric means.
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The improved results obtained by scaling the data could mean that
one has merely approximated a true underlying C-D function or that the
translog model is a satisfactory approzimation to the function at that
point. In the latter case, one must be concerned about the range In the
input levels over which the approximation remains satisfactory. However,
even when the quadratic approximation to the function is adequate, the
results, such as marginal products, production elasticities, scale
economies etc. derived from it are only flrst—order approximations.

Thusg, as Theil (1980) suggests, the statistical analysis of the translog
production function is a classic example of the tradeoff between the
quality of approximation achieved by the specification and the
statistical quality of the estimates of the parameters of the
specification. “The approximation is usually satisfactory when the
independent wvariables vary vety little, but precise parameter estimates
require adequate variation in these variables” {p. 151}.

In conclusion, it may seem strange to end such a detailed treatment
of the trauslog production function on what appears to be an extremely
pessimistic note. 1In reading the last several paragraphs, one cculd
obtain the distinct impression that the tramsleog production system should
never be used. However, these remarks are not for this purpose at all.
Rather they are to encourage production economists to understand all
flexible functional forms before using them in empirical analysis and ask
the tough questions before accepting results derived from them. The
literature abounds with applications of both the translog production and
cost systems in which the theoretical and statistical problems raised

above were not addressed adequately. There is also othetr literature
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which suggests that because the translog cost and productin systems are
not self-dual, then at best one of the estimates of common production
parameters that can be derived from both using the same data is wrong
(Burgess, 1975). What is needed is a more exhaustive investigation into
the conditions under which all flexibile production functions and or cost
function (through application of duality) provide acceptable estimates of

underlying production and input demand systems.
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APPENDIX A
In order to test the hypothesis that the translog production
. function is linear homogeneous, one must first distinguish between the
algebraic form in equation (2) and the form in which it would be
EStiﬁatedw This is necessary because econometric methods do not

distinguish between 1n x, Iln xj and 1n xj In X, . Therefore, either Bij

i
or ﬁji (i#j) are estimated, but not both as is implied by equation (2).

This presents no problem because Bij = B... The estimating equation is

Ji
n n 2
(1A) 1In V. = 1n @, + Z o, 1n X + I yii(ln Xit)
i=1 i=1
+ z XB Inx, 1lnx_, +u
<5 14 it it t
where
t =1, +.., T, the number of observations; and
u = is a normally distributed error term with zero mean and finite
yariance
Y1~ 1/2 Bii from equation (2).

The hypothesis test can be stated In terms of the estimated parameters

{and n = 3, the number of inputs)

HO: HB = h
H : H3 h
1 g ?
where

0 1 1 1 0 0 0O 0 0 O

H = O 00 0O 2 1 1 0 0 O
0o ¢ 0 0 0 1 0 2 1 0
0 0 0 00 0 1 0 1 2




1? %ol
"1
"2 o
3 1
- Y11 0
8 = 512 : and h = 0
F13 0
Y22 o
b
Y33
Thus, -
ap +oa, ooy
250+ B+ B
Hp = By * 2y * a3
By + By * 2133
The test statistle is
-1
Mg -h] | B XD w [HB - h]/r
{24y F =
{(1xt) (rzk) (kxk) (kxr) (rxl)
{r,t-k) _
u'u
T~k
where
X:= the matrix of observations on the independent variables in (14A),
including the constant and all linear (ln xi), squared (In xi)z
and cross product {ln x, 1n xj) terms;
4 = vector of estimated residuals;



T = number of observations;

k = number of independent variables, including the constant (in the
above example k = 10); and

r = number of linear restrictions (r = 4 in the above example).

An equivalent way to test for homogeneity is to estimate the model
in (1A) in an unrestricted form, reestimate it imposing the restrictions

implied in H, and compare the residual sums of squares for the restricted

0

model {RRSS) with the residual sums of squares for the unrestricted model
(URSS) (Maddala, 1977, p. 197). The test statistic is

~ (RRSS$-URSS)/r

(38) F o reky T TWRSS/(T-R)

In order to perform this test, the restricted model can be estimated

by beginning with the following algebraic form (for n=3)1

(44) In y = 1n o, + oy In X, + % 1n Xy, + oy 1n Xgy + 1/2B11(1n xlt)2
+ By, In x, Inx, +§84 1n xltrln Xq, t 1/2622(1n xgt)
+ ﬁ23 1n Xy 1n X, + 1/2333(1n xgt) + €,

The homogeneity and symmetry conditions require

(58) Byy +Byp t B3 = 0> B3 = T By T Bl

(68) By ¥ Bop ¥ B3 =0 Bp3 ™ 7 Brp 7 By

(78) Byg + Byy T B33 = 0> Byy =~ 8137 Byy 7By + 261y ¥ Byl

(8A) By, = Bpy3 Byy = Bgps and By9 = By

IThe procedure for doing this was suggested by T. D. Mount.



Using equations (5A)—(8A), one can eliminate all the parameters in

equation (2) except the a's and Bll’ BIZ and 522.

2
(34) Iny =1n %y + 1n Xl + o, 1n Xy, + @, In X + 1/2 Bll(ln Xlt)

2
+ 512 In x,, 1nx, + (- ql—ﬁlz)(ln ) in x3t) + 1/2 Bzz(ln Xo.)

+ (- (In x, In X3t) + 1/2([311 + 2312 + 622)(ln X3t%

Bia7Pao)

4+ ' .
t

2t

Written another way, one obtains

(10A) lny = 1ln ao + al 1n LI + az In Xy + a3 1n Lo

2 2
+ Bll [1/2(1ln Xlt) - 1n X, ln_x3t + 1/2(1n x3t) ]

. 2
1n Rg ™ ln %, 1n x, + (In x3t) ]

+ By, [nxyp Inx, = lnxy ¢ 2t 3¢

t

+ e ',

+ By, [1/2(1n th)z - 1n x, 1n x, + 1/2(1ln x3t)2] .

2 2t 3k
Linear homogeneity can be tested by also placing restrictions on the

sum of the ai's. This model provides a way of estimating Xy Ty Agy Bll’

612 and 813 by regressing ln y on against some transformed variables.

The values for the remaining restricted parameters can be obtained by

substituting into (5A)-(8A). The restricted residual sums of squares can

be used in the test described by (3A).



APPENDIX B
This appendix focuses on the mechanical problems assoclated with
estimating the CES production function and the extent to which the
translog formulation can be used to approximate the CES function.

In one of its most general forms, the CES function can be written as

n _.=v/p
(1B) v = o} I a, x p] 3 z a, =1;a,>0; a,>0; «>p>-1; v> 0.
0 11 i7i i i 0 =" =
It can be shown that in this form, the scale economles are equal to v and

the Allen partial elasticities of substitution (for v.= 1) are

Gij = 1/1+p (Ferguson, 1969).

From the point of view of estimating a stochastic version of this
function, it is neither linear in the parameters nor is it linear in

logarithms.

n
(28) 1ny =1n ay = (v/p) la[ | a, xi""].
i=]

Thus it cannot be estimated by ordinary least squares. Because
economists throughout the 1960's were hopeful that the CES function would
allow for a more meaningful set of empirical investigations, they
searched for alternative ways to estimate directly cr approximate the
parameters of such a pfoduction funetion.

The direct estimation of the parameters Involves the use of

non-linear least-squares techniques relying on one of two approaches.

The model is either:

a) expanded as a Taylor series, with corrections made to the

several parameters at successive iterations, or



b) methods of steepest descent are used to minimize the sum's

of squared deviations.

The Taylor Approximations often diverge and the gradient methods
converge slawly. According to Miller et al. (1975), Marquardt's
algorithm, based on the maximum neighborhood method, combines the best.of
both of the above. However, neither Miller et al. nor others have
had much success. There 1s difficulty in selecting initial values for
the parameters and the methods still do not converge. Furthermore, these
estimates are expensive to obtain and are still only approximations.

If direct estimation does anot work, what are the alternatives? One
of them was proposed in part by Arrow et al. (1961) in their original
article. For the special case where v = 1 and n = 2 from equation (lA) we

have by linear homogeneity and the assumption of competitive equilibrium

yt
(3B) ln——=Ina+ B 1n P
%21

xz), where they demonstrate that the direct elasticity of substitution

€ {where P,. is the normalized price of

2t ¥ 24

between the two inputs ¢ 1s given by
(4B) o = Lo 8;
1+p ?
thus, by estimating P using ordinary least squares, one could find

(5B) p = [2] - 1.
B

Having identified B one might be tempted to try and estimate a, and a,
by plugging (5B) into a stochastic version of equation (2B) for n = 2 and

v = 1:

~ ~

6B) In yt = In EIO + (_]./p) In [al xl P + az th—p] + et-

t

But even if we have an independent estimate of p, one still cannot

identify the parameters of ay and a, in this second step. One is left



with no way to estimate the distribution parameters. Furthermore, even
the parameter p cannot be estimated in this fashion for v # 1.

Kmenta (1967) and Griliches and Ringstad (1971) have suggested an
alternative based on a particuiar secqnd order Taylor series

approximation. The approximation is about p = 0.

To illustrate, use the two variable case. In Kmenta's notation, ¥

is a function of K and L.
(7B) 1ny =1ny - v/p la[&K ° + (1-8)L "1,

Because one wants to expand equation (7B) about p = 0, consider it as a

function of p. Letting

(8B) f(p) = In(sK P + (1-8)L P).
so that
(9B) 1ny =1ny - v/p [f(p)]-

All one has to do is find an approximation for f(p) expanded around p =

0. Ewvaluate

(10B) £(o) = 1n[6K ° + (1=-8)L °) =1n 1 =0; 1if 0 <5 < 1
and using the laws of differentiation!

1
[6K P + (1-5)L P

(11B) £'(p)

[-5K Pln K - (1-§) P 1n L]

and
{(12B) £'(o)

We also have

!

-{6 In K + (1-5)1n L].

(138) £7(p) = [6K P + (1)L P1 ™ [® (ank)® +
(1-8)L P (In 1)%] = [~6K P 1n K - (1-§)L°° In L]

[8K P + (1—5)L'p]‘2 [-5K P 1n K ~ (1-8)L P 1n L].

11f 4 is a function of x and ¢ is a constant, then

ﬂEi.= cu EE-ln c
dx dx iy



Evaluated at p = 0,

[11 [8(1n K)2 + (1~8)(In L)%]
+ [6 1n K + (1-8)1n L][1][~8 1n K - (1-§)(ln 1)]

{14B) £" (o)}

s(1n K)% + (1-5)(1n L)% + [=8%(1n ¥)% = (1-8)5 1n K 1n L

5(1-5)1n K In L - (1-8)2(1n 1)2]

5(1~5)(1n K)% - 25(1-§)(1n X)(1n L)

+ (1-8)(1n L)% - (1-25+82)(1n 1)*

5(1-5)[(1n K)2 = 2 1n K 1n L + (1n L)7]

3

5(1-8)[1n K - 1n L]%.

]

- Substitution into the Taylor's Approximation give52

-p(6 1n K + (1-6)In L) + l/2p2 85(1=-8)[In K - 1In L]2

]

(15B) £(p)

and

2

(16B) In y 2 Iny + v{§ 1n K + (1-5)1ln L) ~ 1/2vp §(1-5)[1a K ~ 1n L]zo

The extension of this idea to the function in n variables3

27he expansion around p =01is
£" 2
£(p) = £(0) + £'(0)(p-0) + 5 (p-0)” .

370 derive the second order Taylor's approximation to the general
CES formulation in {2B) write it in logarithms as

(1') lny=1n %y - v/ip g(p)

where g(p) = 1n [ z a; X |
i=1

We need to evaluate
n n n

(2') glo) =1n |} a, x _0] =1n[) a]=1n1l=0, since ] a, =

i i b i 4 i

i=1 i=1 i=1



(17B) vy =« ay xi"p]“v/p; z a, = 1 is given by
1

Il b1

o [
i

n
+ v Z a; In x
i=1 .

(188) lny = ln a - ;9-[2 a, (In xi)z-(z a; In xi)z]

0 i

or in a more recognizable form

(footnote {(3) cont.)

We also need

1 .
n - n -
(3" g'(p) = 121 a, %, -izl a, %, " Inx
B 1
n n n
(4')y g'(0) = boa, | |-) a; In x| = -3 a, 1n X,
i=1 | i=1 i=1
Using (3') we can find
n n
(5") g"(e) =11 a, xi_p] ['E a; X, p(ln xi)z]
i=1 i=1
n —p n -0 -2 n i
+ [“izl a; % in xi] [mi£1 a; % 1 [—izl a; X 1n Xi]
n 3 n 2
(6') g"(0) = (1)[121 a,(In x)] - [121 a, In x,1°.

Using equations (2'), (4') and (6'), we have the second order approxima-
tion |

n 2 n 9
gp) = oL} a 1nx] +5- [1231 a (10 x)° - (

g 2

E a; In x,)7].
: i
i=1 =

i=1

"

Plugging this into (1') we have

) ® (]
+ v[ a, 1n x,] - i
I

This is the same as (18B).

2 o 2
(7') lny =1lna ai(ln xi) - (iz a; 1n xi) ]a

0 1
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n n
= - JP - 2
(198) Iny =1ngay +v y a; Inx; - 5= | ¥ a; (1-a,)(In x,)
i=1 i=1
)
+ a, a, In x, In =x.].
1=1 5= + 3
i#]j
= - v =Jp
By letting asy ai(l ai)2 and a, 5 8, aj,
we know that aij = aji and
n n
(208) 1ln y = In L + v Z a, in x; - [ z a 1n Xyq
i=1 i=1
n n
+ 2 Z a In x, In x,
4=1 j=1 13 L ]
if]

Both equations (163) and (20B) are translog functions and if ome
assumes stochastic forms of the equations, then the composite parameters
can be estiméted. There are two perspectives from which we can view this
approximation and the estimated parameters. First, they provide a test of
the Cobb-Douglas Form. Second, they are potentially a way to estimate the
parameters of a CES production function.

To begin, the approximation (which is a quadratic function in loga-
rithms) is better the closer ¢ is to unity because the Taylor's expansion
is about p = 0. This ié not surprising éince the approximations (equa—
tions (16B) or (18B)) reduce to the Cobb-Douglas function when p = O.
Thus, even though the quality of the approximation dete£iorates as ¢
departs from unity, a standard F-test provides a direct test of the Cobb-

Douglas form (e.g., test the terms on the quadratic expressions).
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The F-test is one involving the C-D equation (the translog model with
the coefficients on the non—linear terms restricted to zero) and the
unrestricted model.

HO: a;; = &ij = 0; all i,j in equation (208)

Hl: all else

The test 1is

_ (RRSS-URSS)/r

(21B) T (nm-1) = (URSS)/a-mol

where
RRSS = resﬁéiéééd residual sums of squares
URSS = unrestricted residual sums of squares

r = number of restrictions
n = ohservations
m = independent variables.

There are two minor problems, however, in interpreting this test.

Because the test is based only on a second order approximation to the CES,
one has no way to know the effects of these omitted terms. Thus, it is

not all clear that a rejection of the C-D hypothesis is necessarily con-

firmation of the CES hypothesis. One might, for example, argue that the
‘alternative hypothesis is not restricted to the CES form. The Hl is con-
sistent with the hypothesis of a general but unspecified form.

The second problem is that the distribution parameters (ai's) are

embodied in these terms. These are O S_ai < 1, the absolute value of the

complex parameters is likely to be small. Thus, a large sample and good

variation in the input levels are needed for any confidence in the esti-

mates.



B-8

 Move importantly, there are major difficulties in identifying the

underlying CES parameters from the composite parameters of (16B) and
(20B). TFor the two input model, Kmenta (1967) approaches the problem in
several different ways. ‘First, in estimating equation (16B), Kmenta
follows the lead of Arrow et al., predetermines & = 0.519 and applies
simple least squares. He says this was to avoid multicollinearity in time
series data, but in general, there seems little basis on which to set a
priori.

The second approach involves estimating the parameters of (7B) from

the parameters of (16B). One knows that following:

(228) 1o v
from (16B) is a direct estimate of In y in equation (7B).

The parameters of (7B) in terms of the estimated parameters of {16B)

are:

(23B) b = Bl

(248) v(1-8) = BZ

(25B) p v 6(1=8) = -zBB.

To see if they are identified-(eliminating the "hats” for simplicity)

(268) (v-v8) = B,

plugging in from (23B), one has

(278) v - Bl = BZ; and
51
(28B8) v = Bl + BZ; and & = B;—:fgg

(In (25B) and from (23B)

By B
U A A

(298) p(B; + 8,)( T,



(308) p(By) (1 - P F Bz) = =284

B,(B, + B)-B,°
P+ By

Bt By B2

(31B) p(

(32B) p =

In this case, we can, without predetermining the value of &, identify
p, v, & from (28B), (23B) and (32B).

Kmenta (1967) also examines two simultaneous equation estimates for
the parameters of the two input model. Since these are readily available
in the literature and present few problems, the discussion now focuses on
the general case, equation (20B) in this case. The following parameters

are estimated

33 a
(33B) a,

a for (i=l,...,n)
it

(34B) Qij for 1 # j.

There are 2n +

Eggziz-original parameters to be estimated (equation

(17B)). Direct estimates of the ai's are obtained but then

= - Pv . 4=
(35B) aj; = ai(l ai) 5 3 (i=1l,...,n)
(368) a..= 4 a,=a, forall i,j; and
i1 -7 %12y ii 1,3
n _
(37B) ) a, = 1.
e
i=1

Clearly v and p are overidentified and there is no straightforward

way of placing a restriction on the sum of the a ,'s. Thus, the translog

i

form is of limited use in estimating the parameters of the CES production

function, except in the two input case.



APPENDIX C

To discuss the elasticity of substitution between two inputs in the
translog case, this appendix focuses oﬁ the direct elastiéity of
substitution as defined by Sargan (1971) or Sato and Koizumi (1973).
Within this context, one can demonstrate that the direct elasticity of
substitution for equation (2) is a tremendously complex functiom of the
parameters and the input levels. During the derivationm, it is shown
that if the variables are scaled around a point before the parameters are

estimated, then the direct elasticity of substitution at that point is a

function of the parameters only. The practical implication of this fact
is that if one is interested only in the characteristics of the
production function at several points, it may be easier to re-—estimate
the scaled function at these points and calculate the appropriate attrib-
utes of the function then it is to work with the unscaled function. To

begin, let’s reiterate equation (2):

n n
(1¢) lIny =1na ln x, + 1/2 Y ) B,, Iln x, In Xy -

n
+1oey 1]

0 4a1 i=1 3=l

The formula for the "direct elasticity of substitution” is gilven by

d(xj/xi) . d(fi/fj)

(2C) e,, = + .
ij Xj]ki fi/fj
Letting
aylox, f, xlay + E By 1m %) dx,
(30) t = - = - = -
+
ayiaxj fj xi(aj % Bjk In x ) dx,

| -1
(aixj + xj ; Bik in xk)(ocjxi + Xy é Bjk 1n xk)

then,



c-2

ot ot

(4C) dt = 5% de + B n d}(i
J i

Therefore,l

Bt -1 |
(5C) 5;; = (@ % Eﬁjk In x ) (%, + EBik n x + Bij)

i

CRNEES I8, 1n 1)@ xy + 3 1B, 1n xk)_z(xi)(ﬁjj/xj)
and

D¢ i -1
(6C) 5;; = (iji + %, XBjk in xk) (xj)(Biilxi)

|

-2
54 o -
( ixj + X, EBik In xk)( 1 + X, szk 1n xk)
a .
( 5 + Zsjk 1n X + Bji)
From equations {3C) and (4C), we have the equations in table 1C,
equations (7C) and (8C). If one defines the production elasticity as
=
(90) e, =0, + B, Inx,
one obtains equation (10C) in table 1C by simple substitution.

To complete the derivation of e, ., one must also find

ij

2
(11C) d(xj/xi) = (llxi)dxj - (xj/xi )d'xi

and
d(xj/xi)
(].ZC) _.;-.—]X_i—— = (l/Xj)de - (l/xi)dxi.

Substituting (12C) and (10C) into (2C), omne obtains equation {13C) in
table 2C. In order to be useful, however, we mist eliminate dxi and dxj

from equation (13C}. We can do this by recalling from (3C) that

X.e,
i

dxj
(1ac) -~ dx = X.e.
i i73

(which guarantees that output is constant) and

X.e

R | -
(15)  dx, —= ax, .

1]

lunless otherwise specified, the index of summation 1s k throughout
this appendix.
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G=5

Substituting (15C) into (13C) we obtain (16C). This expression is the
direct elasticity of substitution between X, and Xj and for the model in
equation (1C) it 1s a function of the'ai's, Bij's, and the input levels
{the dxi‘s cancel). It is not constant for all input levels. However,
recall that in the case of interpretation 2, the scaled model (equation
(17)) one knows that (from equation (25))

a, =ey for (i=1,...,n) and bij = Bij; all 1 and - j
when ei is evaluated at the geometric mean. Therefore, in order to
estimate eij’ one could egtimate a scaled function and use equation
(L7C)}. In the scaled model also, x, = 1, all i, at the point where eij

is evaluated. Becausge it was shown in the text that bij's are invariant

with respect to the point of scaling but that the ai's are aot, eij

remains a function of the input levels.



